Multiple Origins of the Green-Sensitive Opsin Genes in Fish

Elizabeth A. Register,¹ Ruth Yokoyama,² Shozo Yokoyama²

¹ Merck Sharp and Dohme Research Laboratories, Rahway, NJ 07065-0900, USA

² Biological Research Laboratories, Department of Biology, Syracuse University, 130 College Place, Syracuse, NY 13244, USA

Received: 1 October 1993 / Accepted: 20 January 1994

Abstract. Vertebrate opsins are divided into four major groups: RH1 (rhodopsins), RH2 (rhodopsinlike with various absorption sensitivities), SWS (short-wavelength sensitive), and LWS/MWS (long and middle-wavelength sensitive) groups. The green opsin genes $(g101_{Af}$ and $g103_{4t}$) in a Mexican characin Astyanax fasciatus belong to the LWS/MWS group, whereas those in goldfish belong to the RH2 group (Yokoyama 1994, Mol Biol Evol 11:32–39). A newly isolated opsin gene $(rh11_{Af})$ from A. fasciatus contains five exons and four introns, spanning 4.2 kilobases from start to stop codons. This gene is most closely related to the two green opsin genes of goldfish and belongs to the RH2 group. In the LWS/MWS group, gene duplication of the ancestral red and green opsin genes predates the speciation between A. fasciatus and goldfish, suggesting that goldfish also has an additional gene which is orthologous to $g101_{Af}$ and $g103_{Af}$.

Key words: Opsin gene — Visual pigment — Molecular evolution — *Astyanax fasciatus*

Introduction

Many vertebrate eyes contain two types of photoreceptor cells—rods and cones. Rods function in dim light and do not perceive color, whereas cones are responsible for color vision. Photoreceptor molecules, or visual pigments (VPs), are present in the outer segments of these

photoreceptor cells. Each VP consists of a transmembrane protein, opsin, and a chromophore that are covalently linked with each other. Many freshwater fishes and amphibians utilize both retinal (vitamin A₁ aldehyde) and 3-dehydroretinal (vitamin A₂ aldehyde) as chromophores. When coupled to vitamin A_2 , a VP with the same opsin shifts its absorption maximum (λ max) toward a longer wavelength (e.g., see Dartnall and Lythgoe 1965). The photoreceptor cells in the Mexican characin Astyanax fasciatus contain a fairly even mixture of VPs with vitamin A₁ and A₂ chromophores (Kleinschmidt and Harosi 1992). The VPs in the rods, single cones, and the first and second members of double cones in this species have $\lambda \max$ of 520 nm, 453 nm (blue- or short-wavelength sensitive; SWS), 554 nm (green- or medium-wavelength sensitive; MWS), and 596 nm (red- or long-wavelength sensitive; LWS), respectively (Kleinschmidt and Harosi 1992), showing that they are trichromatic like many other vertebrates. Opsins in these VPs are encoded by distinct opsin genes.

Journal

of Molecular Evolution

© Springer-Verlag New York Inc. 1994

Currently known vertebrate opsins have been classified into four distinct phylogenetic groups: (1) an RH1 group consisting of rhodopsins; (2) an SWS group with SWS VPs; (3) an LWS/MWS group with LWS and MWS VPs; and (4) an RH2 group with a mixture of opsins of various absorption sensitivities (Yokoyama 1994; see also Okano et al. 1992). Curiously, two green opsins each in *A. fasciatus* (Yokoyama and Yokoyama 1990a,b) and goldfish (Johnson et al. 1993) belong to the LWS/MWS and RH2 groups, respectively, whereas the red opsins from *A. fasciatus* (Yokoyama and Yokoyama 1990b; Yokoyama et al. 1993) and goldfish (Johnson et al. 1993) belong to the same LWS/MWS group. Until now, neither the *A. fasciatus* gene which is orthologous to the two goldfish green opsin genes nor the goldfish gene which is orthologous to the *A. fasciatus* green opsin genes has been reported.

In the present paper, we report the complete sequence of an *Astyanax* opsin gene which belongs to the RH2 group and is most closely related to the two green opsin genes in goldfish. Evolutionary analysis strongly suggests that goldfish has an additional opsin gene which is orthologous to the *Astyanax* green opsin genes.

Materials and Methods

Genomic Library Screening and DNA Sequencing. A genomic library was constructed by using the high-molecular-weight DNA made from one blind cave fish, Astyanax fasciatus (Yokoyama and Yokoyama 1990a,b). Thirty-eight positive clones were obtained by using the bovine rhodopsin cDNA (bd20) as a probe (Yokoyama and Yokoyama 1990a,b). Four of these positive clones were identified as overlapping clones of one contiguous region by restriction mapping and Southern blot analyses. One of these clones, $\lambda 11$, was found to contain a gene (designated $rh 11_{Af}$) with the entire coding region and was chosen for further characterization.

The coding regions and introns of *rhll*_{Af} were sequenced by the dideoxynucleotide chain-termination method using double-stranded templates (Sanger et al. 1977; Hattori et al. 1985) of subclones in Bluescript. The subclones were obtained either by isolation of specific restriction fragments and ligation with Bluescript vector or by deletions of some subclones using exonuclease III and mungbean nuclease (Yokoyama and Yokoyama 1990a,b).

Southern Blot Analysis. High-molecular-weight genomic DNA from both American chameleon (Anolis carolinensis) and goldfish (Carassius auratus) was prepared by following the procedures of Blin and Stafford (1976); 10 µg per lane of genomic DNA was digested by restriction enzymes BamHI, HindIII, and SstI, electrophoresed on a 0.5% agarose gel, and transferred to a Hybond-N nylon membrane (Amersham) by using the VacuGene vacuum blotting system. The cDNA clone of human red opsin gene (hs7; Nathans et al. 1986) was labeled with $[\alpha^{-32}P]$ -dATP (deoxyadenosine triphosphate) by the random priming method and used as a hybridization probe. Hybridization was carried out at 55°C using the commercial protocol Hybond-N membrane. Hybridized membrane was washed at 55°C four times (30 min each) in 1 × SSC (0.15 M NaCl/0.015 M sodium citrate)/0.1% SDS.

Sequence Analysis. The amino acid sequence deduced from $rh11_{Af}$ (Rh11_{Af}) was compared to those deduced from the rhodopsin genes from brook lamprey Rh_{Lj}; Hisatomi et al. 1991) and goldfish (Rh_{Ca}; Johnson et al. 1993), red opsin genes from goldfish (R_{Ca}; Johnson et al. 1993) and Astyanax (R007_{Af}; Yokoyama and Yokoyama 1990b; Yokoyama et al. 1993), green opsin genes from goldfish (G1_{Ca} and G2_{Ca}; Johnson et al. 1993) and Astyanax (G010_{Af} and G103_{Af}; Yokoyama and Yokoyama 1990a,b), blue opsin genes from goldfish (B_{Ca}; Johnson et al. 1993) and A. fasciatus (B_{Af}; Yokoyama and Yokoyama and Yokoyama 1990a,b), blue opsin genes from goldfish (B_{Ca}; Johnson et al. 1993), and UV-sensitive gene from zebrafish (UV_{Br}; Robinson et al. 1993).

To construct a rooted phylogenetic tree for these opsins, we used the rhodopsins from *Drosophila melanogaster* (Rh1_{Dm}; O'Tousa et al. 1985; Zuker et al. 1985; Rh2_{Dm}; Cowman et al. 1986; Rh3_{Dm}; Zuker et al. 1987; Rh4_{Dm}; Montell et al. 1987), octopus (*Paroctopus defleini*) (Rh_{pd}; Ovchinnikov et al. 1988), squid (*Loligo forbesi*) (Rh_{Lf}; Hall et al. 1991), and crayfish (*Procambarus clarkii*) (Rh_{pc}; Hariyama et al. 1993).

These amino acid sequences were initially aligned by using a multiple alignment program in CLUSTAL V (Higgins et al. 1992) and then adjusted visually to increase their similarity. The number (K) of amino acid substitutions per site for two sequences was estimated by $K = -\ln (1 - p)$, where p is the proportion of different amino acids between the two sequences. Topology and branch lengths of the phylogenetic tree were estimated by using the neighbor-joining (NJ) method (Saitou and Nei 1987) based on the K values. Bootstrap frequencies for branches of the NJ tree were estimated by bootstrap analysis with 1000 replications (CLUSTAL V; Higgins et al. 1992).

Results and Discussion

*rh11*_{Af} contains five exons and four introns, spanning 4.2 kb from start to stop codons (Fig. 1). Introns are located in exactly the same positions as the vertebrate rhodopsin genes from cow (Nathans and Hogness 1983), human (Nathans and Hogness 1984), and chicken (Takao et al. 1988) and the blue opsin genes from human (Nathans et al. 1986) and Astyanax (Yokoyama and Yokoyama 1993). A consensus TATA box sequence (TATAAA) was found 86 bp upstream from the start codon. Splice junction signals (GT/AG) are conserved in all introns and there is no nonsense mutation in the coding region.

From the deduced amino acid sequence (354 residues long; Fig. 1), several potentially important amino acids can be identified: (1) Lys (299), the site of Schiff base linkage to the chromophore (Bownds 1967; Wang et al. 1980); (2) Glu (116), the Schiff base counterion (Zhukovsky and Oprian 1989; Sakmar et al. 1989; Nathans 1990); (3) Cys (113) and Cys (190), the site for a disulfide bond (Karnik and Khorana 1990); (4) Cys (143), involved in phosphorylation through interacting with the C-terminal tail (Karnik et al. 1993); and (5) multiple serines and threonines in the C-terminal region, potential sites for phosphorylation (Palczewski et al. 1988). These observations, together with no premature termination codon, strongly suggest that $rh11_{AF}$ is a functional gene. Its function, however, remains to be evaluated.

The rooted phylogenetic tree for $rh11_{Af}$ and other fish opsins is shown in Fig. 2. The opsins in fishes are distinguished into four major groups-i.e., RH1, RH2, SWS, and LWS/MWS groups. Among these the RH1 and RH2 groups are most closely related, their common ancestor having diverged from that of SWS opsins, and the common ancestor of all these opsins diverged from that of LWS/MWS opsins before that. (See also Yokoyama 1994.) The groupings of RH1, RH2, LWS/MWS and SWS groups correspond to Rh, M2, L, and a mixture of S and M1 groups in Okano et al. (1992). Note that LWS and MWS opsins belong to two separate groups: (1) G1_{Ca}, G2_{Ca}, and Rh11_{Af} with unknown function (RH2 group) and (2) G101_{Af}, G103_{Af}, R007_{Af}, and R_{Ca} (LWS/MWS group). When all currently known vertebrate opsins are considered, the latter group also include the red opsins from chicken 270

GGC TTACCTTCTT GATCACITTC TGCTAATCCT

CTAAATCCCT TAATCAAGGT ATAAATGCTG CCATTTGGAC ATCGCCTGAG TCACAAGAGG GCAAGGAGCA AGCACTGAAA CCTTTGCCTG ATTTACTGAC AACCACAGAC

									10										20										30
ATG	TCA	GGT	CTA	AAT	GGT	TTT	GAG	GGG	GAT	AAC	TTT	TAC	ATC	ССТ	ATG	AGT	AAC	CGC	ACG	GGG	стс	GTA	CGG	GAT	CCA	TTT	GTT	TAT	GAG
Met	Ser	Gly	Leu	Asn	Gly	Phe	Glu	Gly	Asp	Asn	Phe	Tyr	Ile	Pro	Met	Ser	Asn	Arg	Thr	Gly	Leu	Val	Arg	Asp	Рго	Phe	Val	Tyr	Glu
									40										50										60
CAG	TAC	TAT	TTA	GCA	GAA	CCA	TGG	CAG	TTT	AAG	СТС	CTG	GCT	TGT	TAC	ATG	TTT	TTT	CTG	ATA	TGT	CTG	GGT	стс	CCC	ATC	AAT	GGC	TTC
Gln	Tyr	Tyr	Leu	Ala	Glu	Pro	Trp	Gln	Phe	Lys	Leu	Leu	Ala	Cys	Tyr	Met	Phe	Phe	Leu	Ile	Cys	Leu	Gly	Leu	Pro	Ile	Asn	Gly	Phe
					_		_		70										80										90
ACC	CIT	TTT	GIC	ACG	GCT	CAG	CAC	AAG	AAA	CTT	CAA	CAG	CCG	CTC	AAC	TTC	ATC	CTG	GTC	AAC	CTG	GCT	GTG	GCC	GGA	ATG	ATC	ATG	GTC
INC	Leu	Pne	val	Inr	Ala	GLN	HIS	Lys	Lys	Leu	Gln	GIN	Pro	Leu	Asn	Phe	ile	Leu	val	Asn	Leu	ALA	Val	Ala	Gly	Met	Ile	Met	Val
TCC	TTC		TTO	ACT	ATC	400	ATT	400	TOU	COT	OTO	A A T		TAC	***	TAC	TTT		110			тот				~~~	TTT		120
nuc Ove	Dha	CLV	Dho	The	TIA	The	TLA	Sor	Son	41 a	Vol	AAT		TAC	Pho	TVC	Pho	Guu	Dro	The	Al n	nui Ove	666 81 n	ALL TIO	GAG	GUA	Dho	Mot	ALO
cys	FIIC	ary	riie		ite		116	961	301	πια	val	ASII	uty	1,71	rae	1 9 1	130	ury	riu	4411	ліа	Cys	ALG	ne	atu	ary	140	мет	ALa
ACA	стт	GGA	GG	rgago		G a	30bo	TT		AAG	GT	GAA	GTG	GCT	стс	TGG	TCA	TTG	GTG	GTG	стс	GCC	ATT	GAG	AGA	TAC	ATT	GTG	GTC
Thr	Leu	Gly	G								ly	Glu	Val	Ala	Leu	Тгр	Ser	Leu	Val	Val	Leu	Ala	Ile	Glu	Arg	Tyr	Ile	Val	Val
							150				-					•	160										170		
TGC	AAG	ссс	ATG	GGA	AGC	TTT	AAA	TTC	TCA	GCC	AGT	CAT	GCA	TTA	GGT	GGG	ATT	GGT	TTT	ACC	TGG	TTC	ATG	GCA	ATG	ACC	TGT	GCT	GCT
Cys	Lys	Рго	Met	Gly	Ser	Phe	Lys	Phe	Ser	Ala	Ser	His	Ala	Leu	Gly	Gly	Ile	Gly	Phe	Thr	Trp	Phe	Met	Ala	Met	Thr	Cys	Ala	Ala
							18								0										190				
CCT	CCT	CTT	GTT	GGA	TGG	TCC	AG	GTAA	GAAT	Ά.	1740	pp 1	TATT/	AAC/	AG G	TAC	ATT	CCT	GAG	GGG	CTG	CAG	TGC	TCG	TGT	GGA	CCA	GAC	TAC
Pro	Pro	Leu	Val	Gly	Trp	Ser	Ar								g	Tyr	Ile	Pro	Glu	Gly	Leu	Gln	Cys	Ser	Cys	Gly	Pro	Asp	Tyr
					200										210										220				
	ACA	UIU	AAC	CCC	AAA	TAC	AAC	AAI	GAG	TCC Son	TAL	Gi I Vol	AIC	TVD	AIG	Dho	GII Vol	GIC	CAC	Dho	ALL	GIC		GIC	ACI	GII	AIC	Dha	Dha
()	101.	Leu	ASIT	Pro	270	TAL	ASI	ASI	GLQ	Sel	1.01.	val	ne	TYP	me t	Pile	val	vat	піз	Phe	ne	var	260	val	140.	vat	ne	Pne	rne
ACT	TAT	GGA	CGG	стт	GTG	TGC	ACA	GTC	A AA	TCG	GT/	AGA	ACC	50)0bo	TAA	ACTO	CCAG	GCT	GCA	GCA	GCA	CAG	CAG	GAC	тст	GCA	тсс	ACT
Thr	Tvr	Glv	Arg	Leu	Val	Cvs	Thr	Val	Lvs	Ser									Ala	Ala	Ala	Ala	Gln	Gln	Glu	Ser	Ala	Ser	Thr
	'	•	250			•			•				260										270						
CAG	AAG	GCA	GAA	AAA	GAA	GTC	ACT	CGA	ATG	GTC	ATC	CTG	ATG	GTG	GTG	GGA	TTT	TTG	GTG	GCC	TGG	ACC	ссс	TAT	GCC	ACC	GTT	GCC	GCC
Gln	Lys	Ala	Glu	Lys	Glu	Val	Thr	Arg	Met	Val	Ile	Leu	Met	Val	Val	Gly	Phe	Leu	Val	Ala	Тгр	Thr	Pro	Tyr	Ala	Thr	Val	Ala	Ala
			280										290										300						
TGG	ATT	TTC	TTC	AAC	AAA	GGT	GCT	GCT	TTC	ACT	GCC	CAG	TTC	ATG	GCC	GTT	CCT	GCC	TTC	TTC	тсс	AAA	AGC	TCA	GCT	стс	TTC	AAC	CCC
Тгр	Ile	Phe	Phe	Asn	Lys	Gly	Ala	Ala	Phe	Thr	Ala	Gln	Phe	Met	Ala	Val	Pro	Ala	Phe	Phe	Ser	Lys	Ser	Ser	Ala	Leu	Phe	Asn	Pro
			310									_								320									
ATC	ATA	TAT	GTG	CTG	CTG	AAC	AAA	CAG	GTI	AGTO	CCAT	86	50bp	TT	GATT/	ACAG	TTC	CGT	AAC	TGC	ATG	CTG	ACA	ACC	CTG	TTC	TGC	GGA	AAG
Ile	Ile	Туг	Val	Leu	Leu	Asn	Lys	Gln			-						Phe	Arg	Asn	Cys	Met	Leu	Thr	Thr	Leu	Phe	Cys	Gly	Lys
	330		~~*		~ 4		700	TC+	ACT		54U	400			~**	CT C	100		070	100	320	CT C	TOO			T.A.C.			TOT
AAC	Dec	Lau	GGA	UA1	GAA	GAG	TUU Cor	ILA Sor	AUI	ulli Vol	IUA Sor	ALL	AAG	ALA	GAA	U GI GI Vol	Sor	ALC	ulu Vol	Sor	AUC	ulu Vol	For	DDC	ouu Alc	146	AGU	10010	,101
ASN	PF0	Leu	uty	лар	ulu	ulu	ser	ser	mr	vat	ser	me	LYS	101°	ulu	vat	ser	(AF	vat	ser	Sel.	vat	ser	F TQ	ALG				

ATCAACACTG ATTCACCATC AGAAATCTCT GAACTTGACT TGCACTTCGG TITTGCTTAC ATTGTCTTCT CAACAATCCA CAGTATGTGC TGACTGAGAG ATTTCTTTTG GTAATGTTTG TATTGTTTGC CTCTGTACCA A

Fig. 1. Nucleotide sequence and deduced amino acid sequence of the Astyanax $rhll_{Af}$ gene. The deduced amino acid sequence is written below each nucleotide triplet.

(Tokunaga et al. 1990), American chameleon (Kawamura and Yokoyama 1993), and human (Nathans et al. 1986) and the green opsins from gecko (Kojima et al. 1992) and human (Nathans et al. 1986; Yokoyama 1994). It should be noted that when gl_{Ca} and $g2_{Ca}$ are expressed in cultured cells and reconstituted with vitamin A₁, the respective VPs attain λ max of 511 and 505 nm and neither of them exhibit green sensitivity. However, Johnson et al. (1993) suggest that goldfish use these opsins under conditions of vitamin A₂ acclimation to detect green light. More recently, Raymond et al. (1993) have shown that gl_{Ca} and $g2_{Ca}$ are in fact expressed in the green photoreceptor cells of goldfish. $r007_{Af}$ and $g103_{Af}$ are also known to be expressed in the eye in approximately equivalent amounts (Yokoyama and Yokoyama 1993).

Figure 2 clearly shows that $Rh11_{Af}$ belongs to the RH2 group together with the green opsins from goldfish (Johnson et al. 1993). The RH2 group also includes the chicken green opsin (Okano et al. 1992; Wang et al. 1992) and the blue gecko opsin (Kojima et al. 1992; see Yokoyama 1994). The existence of $rh11_{Af}$ demonstrates that *A. fasciatus* has genes in both RH2 and LWS/MWS groups. Note that all red and green opsins in *Astyanax*

.0 .1 .2 Fig. 2. Phylogenetic tree for the fish opsins constructed by the NJ method (Saitou and Nei 1987) based on K values. *Circled numbers* indicate clustering chances generated by bootstrap resampling (CLUSTAL V, Higgins et al. 1992).

(Yokoyama and Yokoyama 1990a,b; Yokoyama et al. 1993) and human (Nathans et al. 1986) belong to the LWS/MWS group, whereas the red and green opsins in goldfish belong to LWS/MWS group and RH2 group, respectively (Yokoyama et al. 1993). At present, a goldfish gene, corresponding to $g101_{Af}$ and $g103_{Af}$ is not known. Interestingly, Fig. 2 shows that gene duplication of the ancestral red and green opsin genes predates the speciation between A. fasciatus and goldfish, strongly suggesting that goldfish should have a gene which is orthologous to the green opsin genes in A. fasciatus. Johnson et al. (1993) have isolated a second red cDNA clone, which differed from r_{Ca} at five nucleotide positions with three nonsynonymous changes. Thus, the number (K) of amino acid substitutions per residue between the two red opsins in goldfish is 0.0084. (See Materials and Methods.) These two opsins diverged very recently and their common ancestor and the ancestor of R007_{Af} diverged before that. Thus, the second red opsin in goldfish is very unlikely to be orthologous to the green opsins in A. fasciatus.

To evaluate whether goldfish has more than one gene in the LWS/MWS group, the human red cDNA (hs7; Nathans et al. 1986) was hybridized to the genomic DNAs of goldfish and American chameleon *Anolis carolinensis* (Fig. 3). The *A. carolinensis* genome contains only one red opsin gene, which contains six exons and five introns spanning 3.7 kb from start to stop codons

Fig. 3. Southern hybridization of *Bam*HI (*B*)-, *Hin*dIII (*H*)-, and *Sst*I (*S*)-digested genomic DNAs with human red cDNA clone (hs7, Nathans et al. 1986). *Ac* and *Ca* denote American chameleon and gold-fish, respectively. λ *Hin*dIII size standards are indicated in kb at the left margin.

(Kawamura and Yokoyama 1993). The HindIII- and SstI-digested Anolis genomic DNAs show one hybridizing band and the BamHI-digested DNAs show two hybridizing bands, which is consistent with the restriction map of the genomic clone for the red opsin gene isolated from A. carolinensis (Kawamura and Yokoyama 1993). The length from the initiation codon to the stop codon of $r007_{Af}$ is only 1.6 kb, and this is the shortest vertebrate opsin gene known, to date (Yokoyama et al. 1993). Similarly, the sizes of $g101_{Af}$ and $g103_{Af}$ are about 3.2 kb and 2.8 kb, respectively. Thus, the LWS/MWS gene in goldfish may also be of a similar length. The Southern hybridization using the three different restriction enzyme digests reveals at least two bands for goldfish, strongly suggesting that the goldfish genome contains more than one copy of the LWS/MWS opsin gene.

In goldfish retina, cones have been distinguished into five morphological classes: (1) double cones with a larger, principal (LD) member; (2) double cones with a shorter, accessory (SD) member; (3) long single (LS) cones; (4) short single (SS) cones; and (5) miniature short single (MSS) cones (Stell and Harosi 1975; Marc and Sperling 1976a,b). The LD cones and many of the LS cones have λ max of 579–625 nm; the SD and the remainder of the LS cones have λ max of 509–537 nm; and the SS cones have λ max of 441–452 nm (Stell and Harosi 1975; Tsin et al. 1981). The MSS is suspected to have UV sensitivity (Hashimoto et al. 1988).

When the rhodopsin (rh_{Ca}) and red (r_{Ca}) and blue (b_{Ca}) goldfish opsin cDNA clones are expressed in cultured cells, reconstituted with vitamin A₁, and measured for their absorption spectra, λ max are shown to be 502, 525, and 441 nm, respectively (Johnson et al. 1993). In situ hybridization analyses show that rh_{Ca} and b_{Ca} are expressed in the rods and SS cones, respectively, and also suggest that r_{Ca} is expressed in the LD cones (Raymond et al. 1993). The λ max of 525 nm for the VPs encoded by r_{Ca} is much shorter than 579 nm measured for the LD cells. It remains to be seen if the two red cDNA clones in goldfish represent two alleles or two loci. The present analyses have suggested the existence of more than one goldfish gene in the LWS/MWS group. If these genes are isolated, then the relationship between these genes and the two red cDNA clones also needs to be clarified.

To understand the red and green vision in fish and many other vertebrates, all opsin genes from the LWS/ MWS and RH2 groups in different species must be isolated and characterized. It is also essential to evaluate the λ max values of the VPs encoded by these genes. It is now possible to conduct such absorption analyses together with site-directed mutagenesis at specific nucleotide sites (Sakmar et al. 1989, 1991; Zhukovsky and Oprian 1989; Nathans 1990; Chan et al. 1992). Both of these analyses will reveal the evolutionary processes of the red and green opsin genes and the molecular mechanisms involved in achieving the red and green sensitivities in fish and other vertebrates.

Acknowledgments. Comments by two anonymous reviewers were greatly appreciated. We also thank Shoji Kawamura and Tom Starmer for their help in preparing the manuscript. This work was supported by NIH grant GM42379. Part of this work was done while the authors were affiliated with University of Illinois at Urbana-Champaign.

References

- Blin N, Stafford DW (1976) A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res 3:2303-2308
- Bownds D (1967) Site of attachment of retinal in rhodopsin. Nature 216:1178–1181
- Chan T, Lee M, Sakmar TP (1992) Introduction of hydroxyl-bearing amino acids causes bathochromic spectral shifts in rhodopsin. J Biol Chem 267:9478–9480
- Cowman A, Zuker CS, Rubin GM (1986) An opsin gene expressed in only one photoreceptor cell type of the Drosophila eye. Cell 44:705-710
- Dartnall HJA, Lythgoe JN (1965) The spectral clustering of visual pigments. Vision Res 5:45-60
- Hall MD, Hoon MA, Ryba NJP, Pottinger JDD, Keen JN, Saibil HR, Findlay JBC (1991) Molecular cloning and primary structure of squid (Loligo forbesi) rhodopsin, a phospholipase C-directed Gprotein linked receptor. Biochem J 274:35–40
- Hariyama T, Ozaki K, Tokunaga F, Tsukahara Y (1993) Primary structure of crayfish visual pigment deduced from cDNA. FEBS Lett 315:287–292
- Hashimoto Y, Harosi FI, Ueki K, Fukurotani K (1988) Ultra-violet-

sensitive cones in the color-coding systems of cyprinid retinas. Neurosci Res Suppl 8:81–96

- Hattori M, Hidaka S, Sakaki Y (1985) Sequence analysis of a Kpn I family member near the 3' end of human β -globin gene. Nucleic Acids Res 13:7813–7827
- Higgins DG, Bleasby AJ, Fuchs R (1992) CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci 8:189-191
- Hisatomi O, Iwasa T, Tokunaga F, Yasui A (1991) Isolation and characterization of lamprey rhodopsin cDNA. Biochem Biophys Res Commun 174:1125–1132
- Johnson RL, Grant KB, Zankel TC, Boehm MF, Merbs SL, Nathans J, Nakanishi K (1993) Cloning and expression of goldfish opsin sequences. Biochemistry 32:208–214
- Karnik SS, Khorana HG (1990) Assembly of functional rhodopsin requires a disulfide bond between cysteine residues 110 and 187. J Biol Chem 265:17520–17524
- Karnik SS, Ridge KD, Bhattacharya S, Khorana HG (1993) Palmitoylation of bovine opsin and its cysteine mutants in COS cells. Proc Natl Acad Sci USA 90:40–44
- Kawamura S, Yokoyama S (1993) Molecular characterization of the red visual pigment gene of the American chameleon (*Anolis carolinensis*). FEBS Lett 323:247–251
- Kleinschmidt J, Harosi FI (1992) Anion sensitivity and spectral tuning of cone visual pigments in situ. Proc Natl Acad Sci USA 89:9181–9185
- Kojima D, Okano T, Fukada Y, Shichida Y, Yoshizawa T, Ebrey TG (1992) Cone visual pigments are present in gecko rod cells. Proc Natl Acad Sci USA 89:6841–6845
- Kuwata O, Imamoto Y, Okano T, Kokame K, Kojima D, Matsumoto H, Morodome A, Fukada Y, Shichida Y, Yasuda K, Shimura Y, Yoshizawa T (1980) The primary structure of iodopsin, a chicken red-sensitive cone pigment. FEBS Lett 272:128-132
- Marc RE, Sperling HG (1976a) The chromatic organization of the goldfish cone mosaic. Vision Res 16:1211–1224
- Marc RE, Sperling HG (1976b) Color receptor identities of goldfish cones. Science 191:487–488
- Montell C, Jones K, Zuker C, Rubin G (1987) A second opsin gene expressed in the ultraviolet-sensitive R7 photoreceptor cells of Drosophila melanogaster. J Neurosci 7:1558–1566
- Nathans J (1990) Determinants of visual pigment absorbance: role of charged amino acids in the putative transmembrane segments. Biochemistry 29:937–942
- Nathans J, Hogness DS (1983) Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin. Cell 34:807–814
- Nathans J, Hogness DS (1984) Isolation and nucleotide sequence of the gene encoding human rhodopsin. Proc Natl Acad Sci USA 81:4851–4855
- Nathans J, Thomas D, Hogness DS (1986) Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science 232:193–202
- Okano T, Kojima D, Fukada Y, Shichida Y, Yoshizawa T (1992) Primary structures of chicken cone visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments. Proc Natl Acad Sci USA 89:5932-5936
- O'Tousa JE, Bear W, Martin RL, Hirsh J, Pak WL, Appleberry ML (1985) The Drosophila ninaE gene encodes an opsin. Cell 40:839-850
- Ovchinnikov YA, Abdulaev NG, Zolotarev AS, Artamonov IV, Bespalov IA, Dergachev AE, Tsuda M (1988) Octopus rhodopsin: amino acid sequence deduced from cDNA. FEBS Lett 322:69–72
- Palczewski K, McDowell JH, Hargrave PA (1988) Purification and characterization of rhodopsin kinase. J Biol Chem 263:14067– 14073
- Raymond PA, Barthel LK, Rounsifer ME, Sullivan SA, Knight JK (1993) Expression of rod and cone visual pigments in goldfish and

zebrafish: a rhodopsin-like gene is expressed in cones. Neuron 10:1161-1174

- Robinson J, Schmitt EA, Harosi FI, Reece RJ, Dowling JE (1993) Zebrafish ultraviolet visual pigment: absorption spectrum, sequence, and localization. Proc Natl Acad Sci USA 90:6009–6012
- Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
- Sakmar TP, Franke RR, Khorana HG (1989) Glutamic acid-113 serves as the retinylidine Schiff base counterion in bovine rhodopsin. Proc Natl Acad Sci USA 86:8309–8313
- Sakmar TP, Franke RR, Khorana HG (1991) The role of the retinylidene Schiff base counterion in rhodopsin in determining wavelength absorbance and Schiff base pKa. Proc Natl Acad Sci USA 88:3079–3083
- Sanger F, Nicklens S, Coulson AR (1977) DNA sequencing with chainterminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467
- Stell WK, Harosi FI (1975) Cone structure and visual pigment content in the retina of the goldfish. Vision Res 16:647–657
- Takao M, Yasui A, Tokunaga F (1988) Isolation and sequence determination of the chicken rhodopsin gene. Vision Res 28:471–480
- Tokunaga F, Iwasa T, Miyagishi M, Kayada S (1990) Cloning of cDNA and amino acid sequence of one of chicken cone visual pigments. Biochem Biophys Res Commun 173:1212–1217
- Tsin ATC, Liebman PA, Beatty DD, Drzymala R (1981) Rod and cone visual pigments in the goldfish. Vision Res 21:943–946
- Wang JK, McDowell JH, Hargrave PA (1980) Site of attachment of 11-cis retinal in bovine rhodopsin. Biochemistry 19:5111–5117

- Wang S-Z, Alder R, Nathans J (1992) A visual pigment from chicken that resembles rhodopsin: amino acid sequence, gene structure, and functional expression. Biochemistry 31:3309–3315
- Yokoyama R, Yokoyama S. (1990a) Isolation, DNA sequence and evolution of a color visual pigment gene of the blind cave fish *Astyanax fasciatus*. Vision Res 30:807–816
- Yokoyama R, Yokoyama S (1990b) Convergent evolution of the redand green-like visual pigment genes in fish, *Astyanax fasciatus*, and human. Proc Natl Acad Sci USA 87:9315–9318
- Yokoyama R, Yokoyama S (1993) Molecular characterization of a blue visual pigment gene in the fish (Astyanax fasciatus). FEBS Lett 334:27–31
- Yokoyama S (1994) Gene duplications and evolution of the short wavelength-sensitive visual pigments in vertebrates. Mol Biol Evol 11:32–39
- Yokoyama S, Starmer WT, Yokoyama R (1993) Paralogous origin of the red- and green-sensitive visual pigment genes in vertebrates. Mol Biol Evol 10:527–538
- Zhukovsky EA, Oprian DD (1989) Effect of carboxylic acid side chains on the absorption maximum of visual pigments. Science 246:928–930
- Zuker CS, Cowman AF, Rubin GM (1985) Isolation and structure of a rhodopsin gene from *D. melanogaster*. Cell 40:851-858
- Zuker CS, Montell C, Jones K, Laverty T, Rubin GM (1987) A rhodopsin gene expressed in photoreceptor cell R7 of the Drosophila eye: homologies with other signal-transducing molecules. J Neurosci 7:1550–1557