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Abstract. A formalism is developed to understand better how Doppler shifts of spectrum lines as inferred 
from phase shifts in the Fourier transforms of line profiles are related to the underlying velocity structures 
which they are intended to measure. With a standard model atmosphere and a simplified, quasi-LTE 
treatment of line formation, the formalism is applied to the Ni 1 6768 & line which has been selected for use 
with a network of imaging interferometers under development by the Global Oscillations Network Group 
(GONG) for research in helioseismology. Fourier phase shifts are found to be a remarkably linear measure 
of velocity even in the presence of gradients and unresolved lateral variations in the assumed velocity field. 
An assumed outward increase in amplitude of a model oscillatory velocity is noticeably reflected in the 
center-to-limb behavior of the simulated velocity measure, and a sample model of solar granulation is found 
to have a strong influence on the formation of the Fourier phase. 

1. Introduction 

Although detection and measurement of solar velocity fields has an extensive history, 
the scientific potential of helioseismology for probing the interior of Sun has stimulated 
renewed interest in developing sensitive imaging 'tachometers' to infer line-of-sight 
velocities from Doppler shifts of line profiles. The close correspondence between 
observations and theoretical models reflects the underlying soundness of both the theory 
and measurement techniques. However, important differences between observers and 
between observation and theory remain which bear on such fundamental problems in 
physics and astrophysics as the composition of neutrinos, the internal rotation of the 
Sun, and convection zone dynamics. More accurate and extensive observations are 
planned from a ground-based netork being developed by the Global Oscillations 
Network Group (GONG), by the space-based Michelson Doppler Imager (MDI), and 
from a variety of individual ground-based instruments. These data will be analyzed to 
address a broad range of other topics (cf. Libbrecht, 1988, for a recent review of the 
discipline). The importance of the scientific issues together with the high precision which 
is required of the data in order to address them implies that the relationship between 
the velocity field in the outer solar atmosphere and its observational measurement 
should be thoroughly understood. 

Fourier detection of Doppler shifts has become an important method for measuring 
solar mass motions, and this study accordingly explores how such measurements are 
affected by non-uniform velocities. Principles of Fourier detection and measurement are 
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described by Evans (1980) and Brown (1984), are incorporated into the currently 
operating Fourier Tachometer of the High Altitude Observatory and National Solar 
Observatory, and will be used for the GONG instruments now under development. 
Doppler shifts are detected in a Fourier Tachometer by an imaging interferometer with 
fixed path difference between its arms. When solar light is filtered to isolate a single 
spectrum line and the interferometer image is properly modulated, the final detector 
output for each pixel can be used to determine the phase of the complex Fourier 
transform, evaluated at the given path difference, of the spectral profile (intensity as a 
function of wavenumber). As a consequence of the shift theorem (Bracewell, 1986) the 
Fourier phase varies linearly with Doppler shifts of the line profile over an unrestricted 
range of uniform velocities and is not sensitive to symmetric variations in line shape. 
More subtle effects resulting from velocity gradients and spatially unresolved convective 
motions will be studied here by numerical calculation of the Fourier phase and related 
transfer quantities in assumed models; no attempt is made to model an actual instrument 
and its potential sources of signal degradation. 

In the presentation to follow, a formalism is developed for a differential 'response 
function' (Beckers and Milkey, 1975) and a 'formation function' (to be defined below) 
for understanding the mapping via radiative transfer between assumed velocity struc- 
tures and the Fourier phase of the emergent profiles. These functions are computed for 
the 6767.77 A line of NiI assuming a standard solar model (VAL-C, Vemazza, Avrett, 
and Loeser, 1981) and a simple, quasi-LTE treatment of line formation. The Ni line has 
been chosen for the GONG network and may be used for other future ground-based 
and spacecraft instruments. Effects of assumed oscillatory and convective velocity 
structures will be examined, and their implications for high-precision velocity measure- 
ments will be discussed. Finally, the numerical techniques used in the computation are 
presented in the Appendix. 

2. Interpreting the Transfer Equation 

The equation of radiative transfer, 

~ (s, cr) = e(s, a) - ~(s, cr)I(s, a) , (1) 

describes the relationship at any point s along a line of sight between the specific 
intensity I at wavenumber displacement a from laboratory line-center %, the emission 
coefficient s, and the absorption coefficient ~c (per unit length). The emergent intensity 
spectrum seen by an observer at s -- oo is related to the distribution of emissivity and 
absorption coefficient along the line of sight through the well-known 'formal solution' 
of Equation (1), 

I(oo, a)= f e(s,a)exp(-z(s,a))ds- f C(s,a)ds. (2) 

- o o  - o o  
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In Equation (2), 

r(s, or) = f ~(s', G) ds' 
s 

(3) 

is the monochromatic optical path length between a given point along the line of sight 
and the observer, while C(s, a) is the contribution function for the emergent intensity. 

Following Magain (1986), it is useful to combine the transfer equation for continuum 
and line wavenumbers into a single analog of Equation (1) for line depth, 

D(s, or) = Ic(s ) -l(s, a), (4) 

where I~ is the continuum intensity. Assuming that Ir is independent of wavenumber and 
that the line is spectrally isolated, the Fourier phase shifts are formally identical for 
intensity and depth profiles. However, Fourier transforms of the latter are more 
accurately computed since, being naturally band-limited in the real domain, its discrete 
transform is subject to minimal numerical leakage from low frequency components 
(cf. Brault and White, 1971). 

To derive a transfer equation for the line depth, one notes that both absorption and 
emission coefficients may be separated into line and continuum components so that 

~(s, ~) = ~c(s) + ~,(~, ~), ~(~, ~) = ~(~)  + x,(~, a). (5) 

The transfer equation for continuum wavelengths is 

_l~d (s) = ~(s)  - x~(s)I~(s); (6) 
ds 

subtracting Equation (1) from Equation (6) and grouping terms according to Magain 
(1986) gives 

M) 
- - ( s ,  a) = eD(s, a) - to(s, a)D(s, a), (7) 
Os 

where (suppressing arguments) 

eD = tqlc -- el- (8) 

Equation (7) is the appropriate transfer equation for D with fixed/~(s), ~cc(s), and ec(s), 
in addition to many implicit constraints to be discussed below. 

The formal solution of Equation (7) is just 

D(~,o)= f ~,(s,a)exp(-~(s,o))d~= f CD(S,~)d~. (9) 
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Loosely speaking, the emergent radiation originates from, or is formed, along those 
portions of the line of sight where the contribution function is appreciable. Since the 
contribution function for the specific intensity is intrinsically positive, its normalized 
statistical moments (e.g., mean and standard deviation) can be used to describe the 
location and extent of the region of formation more compactly. Similarly, the variation 
of CD along the line of sight indicates where line depth is formed. However, since at any 
point along the line of sight a spectrum line may be either in absorption or emission with 
respect to the local continuum intensity, the contribution function for line depth may 
be positive or negative, and its description by statistical moments should be regarded 
cautiously. 

There appears to be lingering semantic controversy concerning which of many dif- 
ferent expressions for contribution functions are valid (cf. Caccin et al., 1977; Magain, 
1986). The procedure outlined by Magain is to write a 'transfer' equation of form (1) 
for the desired quantity, identify its emission and absorption terms, and proceed by 
analogy with Equations (2) and (3) to identify the 'effective' absorption coefficient, 
optical path length, and contribution function. Magain claims that proper separation of 
functions which are dependent (intensity analogues) from those which are independent 
(absorption and emission analogues) leads to a unique form for the contribution function 
for line depth. However, although that separation is used in this paper for the case of 
line depth, a different general view of the transfer equation and its constituent functions 
is taken, and subsequent derivations for functions describing formation of Fourier phase 
are not in strict accordance with this seemingly straightforward algorithm. 

In general, not even the specific intensity truly 'obeys' a transfer equation; the 
emission and absorption coefficients depend upon the specific intensity explicitly 
through stimulated emission and implicity through the equilibrium equations for the ion 
populations. Even the continuum radiation in LTE is not strictly separable from line 
formation when one considers the dynamical state and energy balance of the atmosphere 
(e.g., the effect of line blanketing on radiative equilibrium). One generally forces more 
exact statistical descriptions of quantum mechanical interactions between radiation and 
matter into the form of Equation (1) (which was originally derived on phenomenological 
grounds) by masking nonlinear and implicit dependencies through suitable definitions 
of the absorption and emission coefficients. What one calls dependent and independent 
is tantamount to specifying how these dependencies, both implicit and explicit, are to 
be constrained - a complete integration path in both geometric and function space must 
be specified. Thus the transfer equation is not viewed here as a fundamental relation 
to be solved for a dependent function in terms of known independent ones but as a 
readily computable mapping between functions which are subject to many additional 
conditions and whose dependence or independence is thus to be decided according to 
the situation at hand. In most astrophysical applications, as in this paper, a completely 
general specification of constraints is sufficiently complicated that it is established (if 
at all) by context rather than notation. 

Another tool for exploring the structure of the formal solution to the transfer equation 
is the differential 'response function'. In the present case, the line depth depends on the 
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projected line-of-sight distribution of velocity v(s), and a change aD induced by a 
distribution of changes av(s) can be expressed in the form 

8D(s, ~) - i RD: ~(s, s', ~)8v(s') ds', (10) 

- - c o o  

where R is the response function. Subsequent references will be only to response 
functions for emergent quantities, and the first spatial argument will be suppressed 
(R(s', cr)~R(oo, s', ~)). The response function is evaluated for fixed emission, absorp- 
tion, line depth, and velocity; again, a complete set of constraints must be specified, but 
contextual ambiguities are less troublesome since R describes a differential response in 
much the same way as a partial derivative. 

Since the oscillatory velocity of the Sun is the superposition of ~ 10 7 low-amplitude 
modes, the product of the response function and the line-of-sight projection of a velocity 
eigenfunction shows how the emergent quantity is sensitive to that mode. Any change 
in the response function with total velocity or position on the disk implies that the 
linearity of velocity superposition on the Sun will not be preserved in its measurement, 
and the subsequent decomposition of the data into observed eigenmodes will be cor- 
respondingly distorted. 

The absorption and emission in the observer's frame are related to that in the local 
rest frame of the gas through the Doppler shift (assuming v/c ~ 1) by 

e(s, G) = eo(S, ~ + ~oV(S)/C) 

and 

x(s ,  ~) = ~o(S, ~ + GoV(S)/C), 

( l la )  

( l lb)  

where motions away from the observer have positive velocity. If the velocity is constant 
along the line of sight, the emergent intensity is similarly Doppler-shifted, and its 
Fourier phase is simply proportional to the velocity. Note that constraints on functional 
dependencies within the model atmosphere are already implicit in Equations (11); that 
is eo and ~c o refer to the emission and absorption coefficient within an atmosphere at 
rest but with identical thermal and density structure as well as the same distribution of 
level populations even though all of these quantities are in principle interdependent. 

To derive the response function for velocity-induced changes in line depth, note that 
the differential changes in emission and absorption coefficients can be derived from 
Equations (11) as 

&~,(~r, s) = aoc &(s) ~ (,r, s), 

a~c(~r, s) = ~o &(s)  - -  & (<  s ) .  
c &r 

(12) 
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Since 

8 8/) 8~ D (~D) ~ - -  
8a 8a 8a 

the differential of the transfer equation (7) can be written as 

86D 

8s 
%c 5 V [ ~ ( e D  - XD) + ~cSD-] - j (13) 

Substitution from Equation (7) for eD -- xD in Equation (13) then leads to 

+ x (SD=--(3v +re - -  . 
c \ 8s 8a 

(14) 

If one multiplies Equation (14) by exp ( -  z(s, a)) and integrates the result along the 
line of sight, one obtains an expression in the form of Equation (10) with 

Rl):v(S' a) = a~ ~ [ e x p ( -  z(s' a))~a(s' a)l 8s[_ (15) 

Although a similar relation has been used by Jones (1985) for the case of magnetic fields, 
it is more common (see, for example, Beckers and Milkey, 1975) to express response 
functions entirely in terms of the contribution function. However, the form used here 
is in keeping with the view of the transfer equation discussed earlier, and experience has 
shown that Equation (15) leads to accurate numerical algorithms with simple 
quadratures and interpolation. 

3. Formation of Fourier Phase 

The centered transform of the line depth for interferometer path difference x may be 
written as 

7 
/~(s, x) = | exp ( -  2rtixa)D (s, a) da .  (16) 

i t /  

- - o o  

From the phase of the emergent 15 one infers the line of sight velocity to be 

~(x) = ~-o tan-  l[Im/~(oo, x)/Re/~(oo, x)] ,  (17) 

where ~o = c/(2 rc %x). It is convenient to separate the line-depth profile into symmetric 
and antisymmetric components so that the complex transform may be written in terms 
of real quantities. This is simply accomplished by the transformation 

p(s, a) = l(D(s, a) + D(s, - a)), q(s, a) = �89 a) - D(s, - a)) (18) 
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and its inverse 

D(s, ~) = p(s, ~r) + q(s, ~r) , D(s, - ~r) = p(s, ~) - q(s, ~) . 

Then the real and imaginary components of Equation (16) can be written as 

Im/~(s, x) = f - sin(2~zx~)q(s, 0 d~r -  O(s, x ) ,  
I t /  

0 

oo 

ReLY(s, x) = f cos(2rcxa)p(s, ~) d a - p ( s ,  x ) .  

0 

(19) 

(20) 

f Q(s ,  x) ds , 

- o o  

~(CD(s, ~) - C,~(s, ~)) C q ( S ,  {~) = 1 _ , 

and 

CD = e z, + iCq. (23) 

Q ,  with units of velocity per unit path length, will be called a phase 'formation' function 
to distinguish it from a contribution function to which it is in some ways analogous. Like 
a contribution function, Co indicates where Fourier phase is 'formed' along the line of 
sight and, through its dependence on Cq, is affected both by local conditions and by the 
material intervening between a local volume and the observer. It is in this sense that the 
calculations to follow will be used to gain insight into the effects of internal velocity fields 
on the emergent phase. However, no attempt has been made to force the Fourier 
transform of the transfer equation into a transfer equation for phase itself, which, after 
all, is neither emitted not absorbed by the constituent gas. Thus, the simple physical 
interpretation (the amount of specific energy emitted from a given interval on the 
line of sight which reaches the observer after absorption by intervening matter) asso- 
ciated with the ordinary contribution function does not extend to the phase formation 
function. Moreover, in keeping with our relaxed view of the transfer equation and its 
constituent functions, Q is computed for fixed p and thus 'confuses' independent and 
dependent functions in the sense of Magain. Finally, ~ is not linearly related to Q.  

(21) 

(22) 

7 
~-o tan(~/~-o) = . t  [ ~~ x)/p(oe, x)] ds ---- 

- o 0  

where, corresponding to definitions (18) and (20), 

c,,(s, ~) = �89 0 + c,:,(s, - 0 ) ,  

By taking the transform of the formal solution (9) for the transfer equation for line depth 
and interchanging order of integrations, one can use Equation (17) to write 
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From the definitions (18) for p and q, one may show that 

~[R~: o(s, ~) + R~:  o(s, - G)I, Rp : v(~, ~) = '  
(24) 

Rq : v(s, a) = ~[RD v(s, a) - RD: ~(S, - a)]. 

The response function relating changes in ~ to changes in distribution of velocity follows 
by taking the differential of Equation (17) and noting the definitions (20). The result is 

R~ : v(S, x)  = ~o(p(oo, X)~q: ~(~, x) - 0(oo, x),gp : o(~, x) ) / IZS(~,  x)l 2 , (25) 

where 

RD : ,(s, x)  = Rp : ,(s, x )  + iRq : v(s, x )  . (26) 

The numerical methods used to compute C~ and R~:~ along with related transfer 
quantities are presented in the Appendix. 

4. Emission and Absorption Coefficients 

The 6768 ]~ line is produced by transitions between the a I S 1 (lower level) and z3P ~ levels 
of Ni I and is the sole permitted transition of multiplet number 57 (of 296) in the Moore 
(1959) multiplet tables. The lower level is metastable in the sense that only dipole 
forbidden radiative transitions to lower energy states can occur; the upper level couples 
to numerous other states of both higher and lower energies. While this intricate atomic 
structure makes detailed studies difficult, numerical techniques are now available for 
multi-level, non-LTE analyses of appropriate complexity. However, applying the 
methods is still non-trivial, and simply collecting the best available atomic data to begin 
such a venture is a major task. In fact, non-LTE calculations are now being made by 
Rutten et al. (1989), and it is hoped that these will improve the realism of the modeling. 
However, to provide early input for instrumental considerations (including line selec- 
tion) a quasi-LTE interim method for synthetically modeling observed spectra was 
developed (Jones, 1987) and is used for computing the response and phase-formation 
functions reported here. 

Pressure, density (electron, neutral hydrogen, total), electron temperature, micro- 
turbulent velocity, and H -  departure coefficients are taken from the VAL-C model 
atmosphere (Vernazza, Avrett, and Loeser, 1981). Needed oscillator strengths are taken 
from Wiese and Martin (1980) and Corliss and Bozman (1962), a standard solar Ni 
abundance from Allen (1974) is used, and the usual approximations are made for Van 
der Waals and Stark broadening in determining the Voigt damping parameter (Mihalas, 
1978). 

To improve the fit of computed profiles to observations made with the National Solar 
Observatory's Fourier Transform Spectrometer on Kitt Peak (Hubbard, 1987; private 
communication) several additional approximations are made. The proportionality con- 
stant for the line center absorption coefficient (i.e., the product of the oscillator strength, 
the Ni abundance, and the departure coefficient of the lower level relative to Nin) are 
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reduced by a factor of ~ 2 - an approximation qualitatively consistent with non-LTE 
'overionization' of Nil as reported by Rutten et al. (1989). The variation of the line 
source function with height, h, is specified in terms of the Planck function, B~, by 

St(h ) = (,{By(h*), h > h*, (27) 
(B~(h), h < h*, 

where ~l is the monochromatic optical depth at line center and ~l(h*) - 1. 
The above form for the line source function (here for intensity, not line depth) 

improves the fit of the computed center-to-limb behavior to observation and can be 
regarded as a crude scaling-law approximation to represent mild non-LTE excitation 
effects in the outer layers of formation. These are qualitatively suggested by the compara- 
tively featureless appearance of spectroheliograms taken in the Ni line (Duvall, 1987; 
private communication) which implies that the line formation is partially decoupled from 
spatial variations in the thermodynamic state of the atmosphere. 

The above model of line formation for the Ni line is far from definitive and was 
intended to be an interim procedure for early and timely investigations associated with 
the GONG project. It has the virtue of being in reasonable accord with observation and 
is simple enough to allow efficient experimentation with velocity fields which affect the 
emergent intensity primarily through the influence of Doppler shifts on optical depth and 
relative weighting between line and continuum emission coefficients. In any case, the 
formalism for investigating phase formation can equally well be applied to non-LTE 
calculations and this will presumably be accomplished as the results of Rutten et al. 
(1989) and perhaps others become available. 

5. Results 

Phase formation and response functions have been calculated using the VAL-C 
atmosphere and the preliminary model of line formation discussed in the previous 
section. All the calculations reported here are for an interferometer path difference of 
x = 1.5 cm (see Equation (16)), the value expected to be incorporated in the GONG 
instruments. 

5.1. OSCILLATORY VELOCITY STRATIFICATION 

To represent the total velocity in a typical five-minute oscillation, an instantaneous 
stratification is introduced which varies as the reciprocal 0.3 power of density (Mein, 
1966). The amplitude of this velocity field is carried as a parameter which can be varied, 
for example, as a function of time to simulate an oscillation period; the velocity is 
normalized to a value at %000 = 1 of Vo = 0.33 km s-  1 for most of the results reported 
here. As shown in Figure 1, this oscillatory velocity is of the same order as, but less than, 
both the total and thermal Doppler broadening velocities of the model except in its outer 
layers. Since the rapid outward decrease of line absorption coefficient limits the height 
where velocity fields appreciably affect phase formation, no attempt has been made to 
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model the eventual saturation of amplitude growth with height. In the absence of other 
information, one would expect from Figure 1 that results based on Taylor expansions 
in oscillatory over Doppler broadening velocities should be qualitatively correct but 
might show appreciable quantitative differences compared to more precise compu- 
tations. In fact, as discussed below, a number of approximate expectations are fulfilled 
in more accurate computations with unexpected quantitative precision. 

Figure 2 shows for reference the variation of the line-depth contribution function with 
height at disk center for several values of wavenumber and zero oscillatory velocity. 
Note the rather broad height distribution, particularly at line center. Figures 3(a) and 
3(b) show the computed response and phase formation functions for the above model 
at several values of heliocentric angle 0 = cos - 1/~ with a downward (positive) oscillatory 
velocity at the nominal amplitude. 

Recall that the response function, R~: v (here expressed per unit height interval rather 
than path length) describes the change in Fourier phase shift (in velocity units) induced 
by a unit change in line-of-sight velocity. An important result to emerge from these 
calculation (see below for further discussion) is that R~: v depends only weakly on the 
actual velocity in the model. Thus, in Figure 3(a), one sees primarily the effects of the 
outward shift in the mapping between optical path length and height as one proceeds 
from center to limb. The amplitude of the response function does not change much, and 
the changes which are apparent reflect the concentration of R~:~ into narrower height 
domains toward the limb, 

On the other hand, the phase formation function (roughly the product of the response 
function and the oscillatory velocity) as shown in Figure 3(b) depends directly on the 
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Fig. 2. Monochromatic contribution functions for line depth in the VAL-C atmosphere at disk center for 
severa l  pos i t ions  in the  line. Line  cen te r  ( a  = 0), solid;  a = 0.09 e m -  1, do t s ;  a = 0.18 c m -  i, s h o r t  da shes ;  

a = 0.27 c m  1, long da shes ;  a = 0.36 c m -  i, d o t - d a s h .  

total projected line-of-sight velocity in the model and thus decreases in amplitude from 
center to limb for vertical motions. The response function peaks occur lower in the 
atmosphere than the phase formation function because the assumed oscillatory velocity 
increases outward. When compared to the monochromatic contribution function at disk 
center as shown in Figure 2, the response function varies with height in much the same 
way as the contribution function as a wavenumber displacement of 0.09 cm - l, presuma- 
bly reflecting the frequency weighting in the Fourier transform. The phase formation 
function at disk center, however, peaks slightly higher than the line-center contribution 
function, again showing the effect of the outward increase in oscillatory velocity. 

For a given temperature-density structure, the response function is remarkably 
independent of the assumed oscillatory velocity amplitude over a range of velocities far 
exceeding measured solar values. The precision of this independence, which was suf- 
ficiently unexpected to prompt several checks for software errors, is compactly viewed 
in Figure 4 where the final Fourier-phase velocity, ~_, is shown as a function of oscillatory 
velocity amplitude, Vo, at ~5ooo = 1 for several values of #. The fractional variation of 

is less than about one part in a thousand over a range of Vo exceeding expected solar 
amplitudes by a factor of four. The linear dependence of Fourier phase shift with uniform 
velocity along the line of sight is an important reason for selecting Fourier phase 
detection as a means for measuring Doppler shifts. It is satisfying that this linearity 
extends to non-uniform velocities with high enough precision that resultant waveform 
distortions introduced into helioseismology observations are negligible for an error 
budget well below the 1 m s - 1 level. 
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Fig. 3. (a) Response function as a function of height at several disk positions: # = 1.0, solid;/t = 0.8, dots; 
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several disk positions. Currents labeled as in (a). 
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Fig. 4. Relative variation of Fourier-shift velocity (~) vs. oscillatory velocity amplitude at %000 = 1 for 
several values of#.  Dashed patterns as in Figure 3(a). 

On the other hand, there is a slight but noticeable dependence of Fourier phase shift 
with center-to-limb position, in the sense that velocities near the limb are overestimated. 

This effect can be seen in Figure 5, where the ratio of ~ to the projected line-of-sight 

velocity at Zsooo = 1 is plotted as a function of #, and is a natural consequence of the 
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outwardly increasing oscillatory velocity and the shifting of velocity sensitivity to greater 
heights near the limb as shown in Figure 3(a). For the model used here, one can see from 
Figure 5 that 

_ _ ~ . , ~ - 0 - 0 9  . 

#Vo 

Presuming that the model of oscillatory velocity used here is representative of solar 
conditions, this center-to-limb dependence, if uncorrected, will be convolved with the 
true spatial variation in the projection of the observed velocities onto spherical 
harmonics. How seriously this affects the spherical harmonic decomposition is not 
known but is being investigated in the GONG-sponsored 'artificial data project' which 
seeks to test reduction and analysis algorithms with simulated data. 

5.2. GRANULATION 

It is well known that solar granulation affects the shape of solar Fraunhofer lines (see, 
for example, Keil, 1980a, b; Dravins, Lindegren, and Nordlund, 1981; Marmalino, 
Roberti, and Severino, 1987). The velocities of rising and sinking convective granular 
elements are similar in amplitude to the oscillatory velocities examined here but tend 
to be confined to low photospheric heights. However, when spatially averaged as in the 
projected GONG instrumentation, the fact that rising elements are hotter and brighter 
causes both a line asymmetry and a blueward shift of the average profile whose 
amplitude decreases towards the limb. Although the quasi-LTE model of line formation 
is not sufficient for a definitive study, an attempt is made here to gain some qualitative 
insight into the effects of granular convection on the Fourier phase shift of the Ni 6768 
line. 

To this end, spatially averaged response and phase formation functions have been 
calculated using granular velocity, temperature, and pressure fluctuations from a recent 
numerical simulation by Steffen (1988, private communication) using techniques 
reported by Steffen, Ludwig, and Krtiss (1989) and Steffen and Muchmore (1988). The 
granular model is cylindrically symmetric about the vertical axis. To simulate spatial 
averaging, it is assumed that an infinite number of identical cylinders of radius r 
(= 875 km) are arranged periodically in a closely packed planar geometry whose 
horizontal planform is shown in Figure 6. In the interstices between cylinders, the 
average (VAL-C) model is assumed. The geometry of Figure 6 has rectangular 
periodicity of length 2r in the x-direction and 2r x/~ in the y-direction. For simplicity 
in the following caculations it is assumed that the azimuthal projection of lines of sight 
through this geometry lie along the x-axis. 

At each horizontal position within the cylinder, the vertical distribution of source 
function is computed from Equation (27) with the vertical optical depth from Equation 
(3) using the thermodynamic fluctuations from Steffen's model. Rays with a given 
heliocentric angle are passed through a rectangular grid at h = 0 spanning one period 
in x and y. The horizontal coordinates at the intersections of a given ray with the 
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Z) 

Fig. 6. Section of infinitely repeating horizontal planform for model granulation pattern. Within each circle, 
the thermodynamic fluctuations and granular velocity fields are taken from Steffen, Ludwig, and Krt~ss 
(1989). Between circles, the VAL-C model is assumed. The rectangular box delimits a single two-dimensional 

period in Cartesian coordinates. 

horizontal planes at each height in the model atmosphere grid are determined and values 
of absorption and emission coefficients are interpolated from Steffen's model and the 

1 - D '  above 1~ line source function. Using the development of the previous sections, 
the response and phase formation functions for each ray are calculated and their 
horizontal averages over one spatial period are reported here. 

Spatially-averaged phase formation functions, using laboratory line center as a 
reference wavenumber and assuming no oscillatory component of velocity, are shown 

in Figure 7(a) for several values of #. Within the formation envelope of the Ni line, 
Figure 7 shows in an average sense the velocity character of Steffen's model, and the 
decidedly negative (blue-shifted) imbalance in the height distribution shows how the 
convective limb-shift phenomenon discused above is reflected in the formation of 
Fourier phase shift. The final shift of the average profile is shown as a function of # in 
Figure 7(b) and is compared to recent preliminary measurements by Pierce (1988, 

private communication). Spectra, averaged over five minutes, were obtained with the 
Main Spectrograph at the McMath Telescope (NSO/Kitt Peak) with an entrance slit 
of ~ 0.5 x 20 arc sec; limb shifts were determined from the wavelength position of the 
central minimum of the line profile. Note that the observations, which were not 
referenced to an absolute wavelength scale, have been shifted to compare with the 

calculations at disk center. The rough agreement between the observed and calculated 
shifts may be fortuitous given the preliminary nature of the data and the many approxi- 
mations and assumptions inherent in the computations and granulation model but is 
nonetheless an encouraging sign that the results reported here are reasonably realistic. 
In any case, Figures 7(a) and 7(b) clearly show that phase formation in the Ni line is 
sensitive to velocities in height domains where the model granulation cells are quite 
vigorous and that the limb-shift is a dominant systematic effect in measuring oscillatory 
velocity fields. 
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Fig. 7. (a) Horizontally averaged phase formation functions at several values of # for granulation model 
with no oscillatory velocity. Line center is referenced to the laboratory frame and dashed patterns are as 
in Figure 3(a). (b) Model calculations of convective blue shift (solid circles) compared with center-to-limb 
observations of relative limb shift by Pierce (1988, private communication) in the E-W (open squares) and 

N-S (open triangles) directions. 
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In contrast with the dramatic effects of granulation on the phase formation functions, 
the spatially averaged response functions differ only by ~ 2 70 from their non-convective 
counterparts. This appears to be another consequence of the fact that the response 
function is nearly independent of total velocity (behavior that extends to the granulation 
model); the small differences that are present result from the thermodynamic variations 
across the assumed granulation pattern. 

The convectively induced limb-shift phenomenon is of course qualitatively well 
known and will be 'removed' from helioseismology observations by subtracting a 
p-dependent wavelength reference as determined, for example, by time-averages of raw 
data. To simulate this reduction procedure, phase formation functions including model 
oscillatory velocities have been computed using the phase shift of the emergent depth 
profiles for the convective model atmosphere with no oscillatory motion as a 
/~-dependent wavenumber zero-point. The result for zero, upward, and downward 
oscillatory motions are shown in Figures 8 and 9. The computed values of ~ differ by 

27o from the non-convective results over the domain of vo and # spanned by the 
calculations in exactly the same way as the response functions shown above. The 
differences are apparently now due simply to differences in the average thermodynamic 
properties of the model atmospheres. Fortunately, the average of the upward and 
downward shifts (measured with respect to either laboratory or #-dependent line center) 
is nearly identical to the result for an atmosphere with zero oscillatory velocity. Thus, 
in simulation, the effects of the model granulation on measuring the oscillatory velocity 
can be effectively removed by appropriately referencing the line shifts. 

However, Figures 8 and 9 show that this seemingly satisfactory situation is achieved 

Fig. 8. 
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Horizontally averaged phase formation function for granulation model with no oscillatory velocity, 
corrected for limb shift (see text). Dashed patterns as in Figure 3(a). 
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Horizontally averaged phase formation function for granulation model with upward and downward 
oscillatory motions, corrected for limb shift. Dashed patterns as in Figure 3(a). 

only by a delicate balance between height domains with opposing average senses of 
convective motion. Moreover, these domains are distributed differently for upward and 
downward oscillatory motion. Net fluctuations of order one percent in the horizontally 
averaged flow properties of the granulation model, if uniformly distributed over height, 
would be sufficient to alter the #-dependent reference wavelengths by one meter per 
second. 

Granulation on the Sun is a dynamic phenomenon, and both statistical and systematic 
changes in its thermodynamic and velocity structure with both space and time are either 
observed or are expected. For example, Miller, Foukal, and Keil (1984) discuss how 
velocity measurements in selected neutral iron lines are affected by magnetic suppression 
of convection in supergranule boundaries and suggest that measurements of Doppler 
wavelength shifts near line center are less subject to confusion from variations in 
granulation properties. For intermediate-degree helioseismology experiments such as 
GONG, the most important complication is probably in searching the data for large- 
scale, quasi-steady flows such as might be associated with 'giant' convective cells. The 
problem lies less in identifying large-scale convective patterns than with interpreting the 
results since the thermodynamic and velocity properties of granulation are irrecoverably 
intermixed in the spatially-averaged Fourier velocity signal. 

The interferometric measurement of the phase shift of one component of the Fourier 
transform of a spectrum line weights intensities at all frequencies in such a way as to 
produce the highly linear velocity response simulated above. At the same time, it also 
precludes isolating the core of the line as suggested by Miller et al., although some tuning 
is theoretically possible by varying the path difference. On these grounds, an ideal line 
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for Fourier measurements of moderate degree oscillatory modes would be formed higher 
in the atmosphere than the Ni line. However, many competing instrumental and solar 
requirements (e.g., the line should be free from telluric blends under a wide variety of 
atmospheric conditions and from solar blends even in sunspots and near the limb) make 
the list of possible candidates surprisingly short. Moreover, it is unlikely that any line 
can be found where the Fourier measurement of velocity fields is entirely free from the 
influence of granulation. Thus, for the GONG program, the appropriate course is to 
better understand how to isolate the influence of granulation on velocities inferred from 
Ni-line data taken with moderate spatial resolution through independent high-resolution 
observations and further modeling. 

6. Summary 

In this paper some interpretive tools have been developed for understanding the height- 
dependence of the formation of Doppler-induced Fourier phase shifts in solar line 
profiles. In applying the techniques to a simple model of the formation of the Ni 1 6768 
line, three results emerged. First, the Fourier phase is a highly linear measure of velocity 
even in the presence of velocity gradients and unresolved granular structure. Second, 
outward increases in oscillatory velocity resulting from the rapidly decreasing density 
in the photosphere are manifest in a center-to-limb dependence of the corresponding 
Fourier shifts; higher velocities are inferred near the limb. Finally, the presence of 
granulation has a profound effect on the formation of the phase shift. Although the 
simulations reported here suggest that referencing velocity measurements to a 
#-dependent zero point determined from time-averaged measurements of the solar 
'limb-shift' can accurately compensate for the effects of unresolved steady state con- 
vection, further observations and more accurate modeling will be needed to separate 
systematic spatial and temporal variations of granulation from the desired measure- 
ments of mass motions. 

Qualitatively, the above results are only weakly dependent on the assumed models. 
However, more accurate modeling is clearly needed, particularly with respect to effects 
of convection. An important next step is to consider the non-LTE formation of the 
Ni line more carefully, and the results of Rutten et al. (1989) appear promising in this 
regard. Moreover, more realistic models of the atmosphere, its associated motions, and 
related spatial and temporal variations need to be included. For example, the possibly 
important effects of velocity-thermodynamic correlations in the oscillatory motions 
themselves (see, e.g., Cavallini et al., 1987) have been entirely neglected in this work. 
Many of the above improvements are planned or are in progress as part of a GONG- 
sponsored simulation project whose purpose is to study in advance and in as much 
depth as possible operational and interpretational problems associated with reducing 
and analyzing future helioseismology data. This study is presented as a step towards 
that goal. 
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Appendix. Numerical Methods 

Given a suitable model atmosphere (including macroscopic velocity) and distributions 
of population numbers sufficient to compute sD and ~: along any desired line of sight, 
one can in principle compute the line depth from Equation (9), the phase formation 
function from Equation (20), and the velocity response function from Equation (25). The 
development has been deliberately cast in a form amenable to simple numerical 
techniques which are discussed in this section. 

A I .  OPTICAL PATH LENGTH AND LINE PROFILES 

The line-of-sight integration for the formal solution of a transfer equation is effectively 
performed on an optical path-length scale. In this paper, the absorption coefficient is 
assumed to have a piecewise exponential variation on a path grid {Sl > s2 > ... > sL}. 
From Equation (3), the corresponding optical path position evaluated at 2M + 1 wave- 

numbers {a o = 0 < ~1 = - a i < o'2 = - 0"-2 < " ' "  < r = - O'-M} are 

"~l,m= O, 
(A-l) 

"~l, rn= "Cl_ l,m q- Hl, m[b~l, rn-- l~l_l,m], l =  2 . . . L ,  

where, for example, ~.  m .7- K ( S l  ' CTm) and 

Ht, m = [ s l - 1  - s l ] / l n [ ~ l , , ~ / ~ l -  1,m]" 

By rewriting Equation (9) in terms of an equivalent source function 5 ~ = sD/~ which 
is assumed to have a piecewise linear variation with z, one finds (temporarily suppressing 
wavenumber dependence) 

D L = 0,  

Dt = etDl+ 1 + [1 - dl]Se l + [ 4 -  et]SPt+ 1, 

where e l = exp(~l - zl+ 1) and d l = (1 - el)/(zt+ 1 - rl). 

(A-2) 
l = L - 1 . . . 1 ,  

Series expansions for the 
coefficients of 5el and 5e I + 1 are used for small optical intervals. For the models in this 
paper z L is sufficiently large even in the continuum that beginning the calculation with 
D r = 0 in Equation (A-2) rather than some value based on asymptotic behavior of the 
source function is of little practical consequence. More sophisticated assumptions (e.g., 
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see Jones, 1977) about the functional forms of n and ~ can be used to improve 
smoothness and absolute accuracy, but these make little difference for the present 
calculations. 

A2. F O U R I E R  T R A N S F O R M S  

To compute the single component of the complex transform for a function f, we simply 
use the finite Fourier transform, i.e., 

M 

f = Z w,,, exp(-2~iar, ,X)f(am)A~ (A-3) 
M 

for a uniform wavenumber separation Aa; Wm are apodizing weights (cosine bell) to 
remove residual leakage. For the present computations, there is no compelling need to 
adopt the more sophisticated time-saving procedures used in fast Fourier transforms. 

A3. C O N T R I B U T I O N  F U N C T I O N S  

Discrete quadratures approximating the formal solution of the transfer equation are 
more accurately accomplished when the integration variable is first transformed to 
optical path length and the exponential factor is included specifically as a weight, as in 
Equation (A-2). On the other hand, geometric path length is the appropriate variable 
of integration for quadrature representations of integrals of the phase formation 
function, C o (Equation (21)) and for interpreting contribution functions as 'density' 
distributions showing the contribution per unit height of a given differential height 
domain to the formation of the desired quantity. To allow consistent geometric inter- 
pretation of the more accurate quadrature weights of the optical depth representation 
and to insure consistency of all the internal summation processes in the computations, 
the following discrete 'change of variables' is employed. 

With the same interpolatory approximation for source function with optical depth 
which was used in Equation (A-2) above, one can write the quadrature approximation 
for the emergent line depth as 

L 

D(oo, a) ~ Z 7,Co, , (A-4) 
l = 1  

where 

( 1  - d l ) / ~ 1 ,  l --- 1 ,  

7l = (d 1 1 / e t _ l - d t ) / K l ,  / = 2  .. . .  , L -  1, 

(dL-  i / e L - 1 - -  1)/~r, l= L .  

The corresponding integration in geometric depth is written here as 

D(oo, ~) = CD(s , ~r) ds ~- ~ -CD,Asl , 
l = 1  

--oo 

(A-5) 

(A-6) 
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where J 1 " 
~(Sl  - s2 ) ,  

A s  l = 1 ~ ( s l _  1 - s l  + 1 ) ,  

~( ,L  - 1  - ~L) ,  

I = - 1 ,  

/ = 2 , . . . , L -  1, 

l = L .  

(A-7) 

CD, in Equation (A-4) are evaluated as implied by Equation (9). One can obtain the result 
of Equation (A-4) using the geometric quadrature (A-6) by defining 

CD, = 7,CDJAs,. (A-S) 

The quantities CD, are plotted vs height in Figure 2 and are also used to compute the 
discrete transforms needed in Equation (20) to evaluate the phase formation function, 
Q.  In this way simple geometric depth quadratures of form (A-6) give the same accuracy 
as optical depth quadratures of form (A-4) and retain their geometric interpretation and 
normalization. 

A4. RESPONSE FUNCTIONS 

Similarly, the simplest and most accurate quadratures for integrating the transformed 
response functions needed in Equation (25) to evaluate R~: v involve a change of 
integration variable which lead to approximations of form 

oo 

f L RD : ~(s, x)~Sv(s) ds ,~ ~ ~Sv z . (1-9) 
/ = 1  

- - c o  

In particular, if one regards the quantity (see Equation (15)) 

i ~D e(s) = Cro/C exp - [2~ ix~  + z(s, r ~)d~ (A-10) 

- o o  

as the variable of integration in the left-hand side of Equation (A-9), then 

RD: v( s, X)~SV(S) ds ; ~v(e) de.  (A-11) 

- co ~(-  co) 

If by is a piecewise linear function of e, the required quadrature coefficients become 

(e,+l - ez)/2, l=  1, 

~l= ( e l + l - e l - i ) / 2  , I = 2 . . . L -  1,  (1-12)  

( e ,  - ~ , _  1 ) / 2 ,  l = L .  

A similar trick is used to evaluate e z -- e(sz). First, however, note that exp( - r(s, a)) can 
be a very rapid function of wavenumber while all the other functions in the integrand 
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of Equation (A-10) are comparatively well behaved. A better posed arrangement of 

terms is thus obtained if one first integrates Equation (A-10) by parts so that 

exp( - z(o-, s)) can be incorporated into a variable of integration 

ll(o') = w(er)exp - [2rc iax  + z(sl, a)],  (A-13) 

where w is the apodizing function. In analogy with the steps leading to Equation (A-12), 
one eventually finds quadrature approximations for a t of form 

/- 

at  ~ �89 t [ l , ,  - M  + i , .1  - M]D, ,  _ ~  - [fit, M - 1  + f l , ,~ ]Dt ,  ~ + 

)14--1 } 

-]- ~ [ill, m 1 -- ill, m + 1  ]Dz, m , ( 1 - 1 4 )  
m = l - M  

where ~,  m ~ f l l ( 6 m ) "  For actual computation, the real and imaginary parts of fit, m and 
are computed separately using the appropriate trigonometric expansion for 

e x p ( -  2 zci ax). Before changing variables, one needs, in principle, to divide the above 
integrals over path length and wavenumber into intervals over which the real and 
imaginary parts of c~ and fi are monotonic so that the relevant functional relationships 
are single valued. However, so long as the endopoints of each subinterval lie on a grid 
point, the quadrature formulae are unchanged, and, in practice, the grids used here are 
fine enough to resolve this segmentation without serious error. 

The explicit formulae for the quadrature equivalents of the response function were 
derived without recourse to sophisticated representation of integrands. Experience has 
shown that the seeming indirection leading to Equations (A-12)-(A-14) is well justified 
by the resulting efficiency and stability which allow meaningful computations with quite 

modest grids. As in the preceeding section, the real and imaginary parts of~ t /As  l are used 
in Equation (25) in place of/~D: v(s~, x) so that the resulting quantities R c(sl, x) which 
are plotted in Figure 3(a) are normalized to unit geometric length while sums of form 

L 
R~(sl, x)avlAs~. 

1 = 1  

are numerically identical to Equation (A-9). 
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