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Abstract.  In this paper we compare grammatical inference in the context of simple and of mixed 
Lambek systems. Simple Lambek systems are obtained by taking the logic of residuation for a family 
of multiplicative connectives/, o, \ ,  together with a package of structural postulates characterizing 
the resource management properties of the �9 connective. Different choices for Associativity and 
Commutativity yield the familiar logics NL, L, NLP, LP. Semantically, a simple Lambek system 
is a unimodal logic: the connectives get a Kripke style interpretation in terms of a single ternary 
accessibility relation modeling the notion of linguistic composition for each individual system. 

The simple systems each have their virtues in linguistic analysis. But none of them in isolation 
provides a basis for a full theory of grammar. In the second part of the paper, we consider two types 
of mixed Lambek systems. 

The first type is obtained by combining a number of unimodal systems into one multimodal logic. 
The combined multimodal logic is set up in such a way that the individual resource management 
properties of the constituting logics are preserved. But the inferential capacity of the mixed logic is 
greater than the sum of its component parts through the addition of interaction postulates, together 
with the corresponding interpretive constraints on frames, regulating the communication between the 
component logics. 

The second type of mixed system is obtained by generalizing the residuation scheme for binary 
connectives to families of n-ary connectives, and by putting together families of different arities in 
one logic. We focus on residuation for unary connectives, and their combination with the standard 
binary vocabulary. The unary connectives play the role of control devices, both with respect to the 
static aspects of linguistic structure, and the dynamic aspects of putting this structure together. We 
prove a number of elementary logical results for unary families of residuated connectives and their 
combination with binary families, and situate existing proposals for 'structural modalities' within a 
more general framework. 
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1. Linguistic inference: simple Lambek systems 

In this paper, we present categorial grammar as a system of linguistic inference - 
a logic for reasoning about linguistic resources. The logic has a language of type 
formulae: atomic formulae, or complex ones, constructed in terms of type-forming 
connectives - our logical constants. We study the categorial language from a 
modeltheoretic and a prooftheoretic point of view. The language of type formulae is 
used to talk about the linguistic reality that forms the object of grammatical analysis: 
a reality of structured linguistic expressions. The models for the type language are 
abstract mathematical structures that capture the relevant aspects of the linguistic 
reality we are interested in. Moving to the prooftheoretic perspective, we want to 
know how to perform valid inferences on the basis of our interpreted type language. 
We are not interested in syntax as the manipulation of meaningless symbols: we 
want our grammatical proof theory to be sound and complete with respect to the 
intended models of the linguistic reality. And, from a more computational point of 
view, we are interested in decidabilty and tractability as well. 

1.1. BINARY MULTIPLICATIVES 

To prepare the ground for the exploration of multimodal architectures in Section 
2.1 and Section 2.2, let us briefly review the essentials (modeltheoreticaUy and 
prooftheoretically) of the more familiar inhabitants of the categorial landscape. 

Consider the language 9 r of category formulae of a simple Lambek system. ~" 
is obtained by closing a set ,,4 of atomic formulae (or: basic types, prime formulae, 
e.g. s, np, n, . . .  ) under binary connectives (or: type forming operators)/ ,  e, \ .  

m ::= ,41 mira I m �9 m I m\m 

Type formulae have a quite general interpretation in the power set algebra of 
Kripke style relational structures - ternary relational structures in the case of the 
binary connectives (Do~en, 1992). A ternary frame is a structure (W, R3). In the 
application to formal grammar envisaged here, the domain W is to be thought of 
as a set of  linguistic resources (or: signs, pieces of multidimensional linguistic 
information). The accessibility relation R can be understood as representing lin- 
guistic composition: R x y z  holds in case one can fuse together the information of 
signs y and z into a sign x. We obtain a model by adding a valuation v sending 
prime formulae to subsets of W and satisfying the clauses below for compound 
formulae. 

v(A �9 B) 
v (C/B)  
v(A\C)  

= { x  13y3z [Rxyz  & y 6 v (A )  & z �9 v(B)]} 
= {y Iv~w[ (n~yz  ~ z e , ( B ) )  ~ ~ e ~(C)]} 
= { z  I V x V y [ ( R x y z  & y �9 v ( A ) )  ~ x e v(C)]} 

We are interested in characterizing a relation of derivability between formulae 
such that A --+ B is provable iff v(A) C_ v(B).  It is not difficult to check that 
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given the above interpretation of compound formulae, the Residuation laws below 
determine the properties of �9 vis h v i s / ,  \ with respect to derivability. 

(RES) A -~ C / B  z, ~ A �9 B -+ C ~ B -~ A \ C  

Putting things together, we see that the anatomy of the most elementary Lambek 
type logic is given by the basic properties of the derivability relation (Reflexivity, 
Transitivity) plus the Residuation Laws establishing the relation between �9 and 
the two implications/,  \. Below we give the axiomatic presentation of the system 
known as NL. Following Lambek (1988), we add combinator proof terms: they 
will provide a compact way of referring to complete deductions later on. Via a 
canonical model construction Dogen (1992) obtains the elementary soundness and 
completeness result: in NL provability coincides with semantic inclusion for all 
ternary frames and all interpretations v. 

1.2. NL: THE PURE LOGIC OF RESIDUATION 

Combinator proof terms. We write f : A --+ B for a proof of the inclusion v ( A )  C_ 

idA : A --r A 
f : A - +  B g : B - + C  

go  f : A - + C  

f : A * B - + C  
/3(f) : A --+ C / B  

g : A -+ C / B  
l~-l(g) : A o B -+ C 

f : A o B - - r  
7 ( f )  : B -+ A \ C  

g : B --r A \ C  
7-1(g) : A o B --r C 

1.3. STRUCTURAL POSTULATES, CONSTRAINTS ON FRAMES 

Starting from the pure logic of residuation NL one can unfold a landscape of catego- 
rial type logics by gradually relaxing structure sensitivity in a number linguistically 
relevant dimensions. Below we consider the dimensions of linear precedence (order 
sensitivity) and immediate dominance (constituent sensitivity). Adding the struc- 
tural postulates for Associativity or Commutativity (or both) to the pure logic of 
residuation, one obtains the systems L, NLP, LP. Using Correspondence Theory 
(van Benthem, 1984) one computes frame conditions restricting the interpretation 
of R 3 for the different structural postulates. Do~en's completeness result for NL is 
then extended to the stronger logics by restricting the attention to ASS (L), COMM 
(NLP) or ASS+COMM frames (LP). 

STRUCTURAL POSTULATE FRAME CONDITION 

ASS A �9 (B �9 C) ( ~ (A �9 B)  �9 C 3 t .Rtxy  & R u t z  r 3v .Rvyz  & R u x v  
COMM A �9 B --~ B �9 A R z x y  r R z y x  
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1.4. GENTZEN CALCULUS 

The axiomatic presentation is the proper vehicle for model-theoretic investigation 
of the logics we have considered: it closely follows the semantics, thus provid- 
ing a suitable basis for 'easy' completeness results. But proof-theoretically the 
axiomatic presentation has a serious drawback: because it is essentially based on 
Transitivity, it does not offer an appropriate basis for proof search. For proof- 
theoretic investigation of the categorial type logics one introduces a Gentzen 
presentation, and proves a Cut Elimination result, with its corollaries of decid- 
ability and the subformula property. Of course, one has to establish the equiva- 
lence between the axiomatic and the Gentzen presentations of the logic for all 
this to make sense. For L Lambek (1958) has established the essential results. 
They have been extended to the full landscape of type logics in (Kandulski, 1988; 
Dogen, 1988, 1989). 

In the axiomatic presentation, we consider arrows A --4/3 with A, B E ~-. In 
Gentzen presentation, the derivability relation is stated to hold between a term 7- 
(the antecedent) and a type formula (the succedent). A Gentzen term is a structured 
configuration of formulae - a structured database, in the terminology of Gabbay 
(1991). The term language is defined inductively as 7- ::= ~- I (7-, 7-). The binary 
structural connective (-,-) in the term language tells you how to put together 
structured databases Al and A2 into a structured database (A1, A2). The structural 
connective mimics the logical connective �9 in the type language. A sequent is 
a pair (I', A) with 1-" E 7- and A E .T, written as I" ==~ A. To compare the two 
presentations, we define the formula equivalent A ~ of a structured database A. 

Let (A1, A2) ~ = A~ �9 A~, and A ~ = A for A E ~'. The Gentzen presentation 
can be shown to be equivalent to the combinator axiomatization in the sense of the 
following proposition from (Lambek, 1958). 

Every combinator f : A --4/3 gives a proof of A ~ B, and every proof of a 
sequent F ~ B gives a combinator f : F ~ --4 B. 

As was the case for the combinator presentation, the sequent architecture con- 
sists of  three components: (i) [Ax] and [Cut] capture the basic properties of the 
derivability relation ' ~ ' :  reflexivity and contextualized transitivity for the 'surgi- 
cal' Cut, (ii) each connective comes with two logical rules: a rule of use introducing 
the connective to the left of '=~' and a rule of proof introducing it on the right of 
' ~ ' ,  finally (iii) there is a block of structural rules, possibly empty, with different 
packages of structural rules resulting in systems with different resource manage- 
ment properties. 
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1.5. GENTZEN PRESENTATION: STRUCTURED DATABASES 

Sequents 7" ~ .T where 7- ::= 9 r I (7-, 7-). Notation: F[A] for an antecedent term 
P containing a distinguished occurrence of the subterm A. 

[Ax]-~---~ A 

[/R] (F, B) ~ A 
F ~ A/B 

(B, F) =~ A 
[\R] F ~ B\A 

r[(A, B)] ~ C 
I.L] r[A �9 B] ~ C 

A ~ A F[A] =~ C [Cut] 
r[A] ~ c 

A = ~ B  F[A] ~ C 
F[(A/B, A)] ~ C I/L] 

A ~ B  F[A] ~ C 
F[(A, B\A)] ::ez C [\L] 

F==~A A:::>B[,R] 
( r ,A)  ~ A e B  

1.6. STRUCTURAL RULES 

Adding the structural rules of Permutation and/or Associativity one obtains coarser 
notions of linguistic inference, where structural discrimination with respect to the 
dimensions of precedence and/or dominance is destroyed. 

r[(A2,  A1) ] :=~ A 
F[(A~, A2)] ~ A [P1 

F[((A1, A2), A3)] ~ A 
[A] 

F[(A1, (A2, A3))] ~ A 

For the logics L and LP where �9 is associative, resp. associative and commu- 
tative, explicit application of the structural rules is generally compiled away by 
means of syntactic sugaring of the sequent language. Antecendent terms then take 
the form of sequences of formulae ~ , . . . ,  ~ where the comma is now of variable 
arity, rather than a binary connective. Reading these antecedents as sequences, one 
avoids explicit reference to the Associativity rule; reading them as multisets, one 
also makes Permutation implicit. 

1.7. CHARACTERISTIC THEOREMS, DERIVED RULES OF INFERENCE 

We close this overview with an inventory of theorems and derived inference rules 
for the various logics. 

1. Application: A / B  �9 B --4 A, B �9 B \ A  --+ A 
2. Co-application: A -+ (A * B) /B ,  A --+ B \ ( B  �9 A) 
3. Monotonicity �9 if A --+ B and C --+ D, then A �9 C --+ B �9 D 
4. Isotonicity ./C, C\.: i f A  --+ B, then A / C  --+ B / C  and C\A  --+ C \ B  
5. Antitonicity C/., .\C: if A --+/3, then C/B  ---r C/A and B \ C  --+ A \ C  
6. Lifting: A ~ B / ( A \ B ) ,  A --+ (B /A) \B  
7. Geach (main functor): A / B  --4 (A/C) / (B/C) ,  B \ A  --+ (C\B) \ (C\A)  
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8. Geach (secondary functor): B / C  --~ (A/B)\ (A/C) ,  C \B  -+ (C\A) / (B\A)  
9. Composition: A / B  �9 B / C  -+ A/C, C\B  �9 B \ A  --~ C\A 

10. Restructuring: (A\B) /C ~ ~ A\ (B/C)  
l l .  (De)Currying: A/(B  �9 C) ( ~ (A/C)/B,  (A �9 B) \C ( ~ B\ (A\C)  
12. Permutation: if A --+ B \ C  then B --+ A\C 
13. Exchange: A / B  ~ ~ B \ A  
14. Preposing/Postposing: A --+ B/(B/A) ,  A -+ (A \B) \B  
15. Mixed Composition: A/B  �9 C\B  --+ C\A, B /C  �9 B \ A  --.+ A/C 

Items (1) to (5) are valid in the weakest logic NL. Together they provide an 
alternative way of characterizing ( �9 and ( �9 as residuated pairs, i.e. one can 
replace the RES inferences by (1)-(5). See (Do~en, 1988, 1989) and Section 2.2 
below. Lifting is the closest one can get to (2) in 'product-free' type languages, 
i.e. type languages where the role of the product operator (generally left implicit) 
is restricted to glue together types on the left-hand side of the arrow. Items (7) to 
(1 l) mark the transition to L: their derivation involves the structural postulate of 
associativity for �9 Rule (12) is characteristic for systems with a commutative �9 
NLP and LP. From (12) one immediately derives the collapse of the implications 
/ and \ ,  (13). As a result of this collapse, one gets variants of the earlier theorems 
obtained by substituting subtypes of the form A/B  by B \ A  or vice versa. Examples 
are (14), an NLP variant of Lifting, or (15), an LP variant of Composition. 

1.8. DISCUSSION: RULE-BASED VERSUS LOGIC BASED APPROACHES 

The simple Lambek systems each have their merits and their limitations when it 
comes to grammatical analysis. As a grammar writer, one would like to exploit the 
inferential capacities of a combination of different systems. In rule-based frame- 
works, such as Combinatory Categorial Grammar (CCG, cf (Steedman, 1993)), 
instances of the full scala of type transitions illustrated in (1)-(15) above indeed 
live together. In the logical setup adopted in this paper, such promiscuity has 
unpleasant consequences. As we have seen above, the Residuation laws capture the 
basic properties of the interpretation of the type-forming connectives. In the pres- 
ence of Residuation, the introduction of theorems from a system with more relaxed 
resource management into a logic with a higher degree of structural discrimination 
instantly destroys sensitivity for the relevant structural parameter of the more dis- 
criminating logic. For example: NL has a hierarchically structured database which 
respects constituent structure. For cases of so-called non-constituent coordination, 
one would like to relax constituent structure. One could try to achieve this by adding 
Composition (or the Geach laws) to NL. But the addition of such postulates makes 
NL collapse into L: from Geach one easily obtains the unconditional Associativity 
postulate for �9 via Residuation. We leave this as an exercise for the reader. Simi- 
larly, it has been argued that an analysis of Dutch crossed dependencies requires 
the Mixed Composition laws. Again, the introduction of this LP theorem within 
an order-sensitive system such as L causes permutation collapse. 
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CCG avoids these problems by restricting the attention to a database of  rule 
schemata without facing the semantic consequences of their combination. This 
route is not open to us if we want to leave intact the idea of a grammar logic, i.e. a 
semantically interpreted grammar formalism. In the following sections we develop 
a logical framework supporting mixed styles of categorial inference. Structural 
collapse is avoided by moving to a multimodal architecture which is better adapted 
to deal with the fine-structure of  linguistic composition. 

2. Residuation in mixed logics 

2.1. MIXED INFERENCE: MULTIMODAL SYSTEMS 

Our first generalizing move is from a unimodal setup, where the type-forming 
connectives are interpreted in terms of a single notion of linguistic composition, 
to a multimodal architecture.* The objective here is to combine the virtues of the 
distinct logics we have discussed before in one multimodal system, and at the same 
time to overcome the limitations of the individual systems in isolation. Each of  
the component logics has its own specific resource management properties: when 
combining the different logics, we have to take care that these individual charac- 
teristics are left intact. We do this by relativizing linguistic composition to specific 
resource management modes. But also, we want the inferential capacity of  the 
combined logic to be more than the sum of the parts. The extra expressivity comes 
from interaction postulates that hold when different modes are in construction with 
one another. 

On the syntactic level, the category formulae for the multimodal system are 
defined inductively on the basis of a set of category atoms ,4 and a set of indices I 
as shown below. We refer to the i C I as resource management modes, or modes 
for short. 

7 ::= A I F / , ~  I >--~ 71  7\~.T 

The semantics for the mixed language is a straightforward generalization of 
frame semantics for the simple systems. Rather than interpret multiplicative con- 
nectives in terms of  one privileged notion of linguistic composition, we throw dif- 
ferent forms of  linguistic composition together and interpret in multimodal frames 
(IV, {R3}iEI). A valuation on a frame respects the structure of the complex types 
in the familiar way, interpreting each of  the modes i E I with its own accessibility 
relation. 

v(A *~ B) 
v(C/~B) 
v(A\iC) 

= { x  1 3 y 3 z [ n i x y z  & y e v ( A )  & z e v(B)]} 
= {y I W W [ ( / ~ y z  & ~ ~ ~(B)) ~ ~ ~ ~(C)]} 
= { z  IVxVy[ (R i xy z  & y e v ( A ) )  =~ x e v(C)]) 

* See (Moortgat and Oehrle, 1993, 1994; Moortgat and Morrill, 1991) for linguistic applications 
of the multimodal style of inference. 
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We can present the multimodal logic axiomatically or in Gentzen style. In the 
axiomatic presentation, we have the familiar residuation pattern now relativized to 
resource management modes: 

A ~ C / i B  iff A . i  B -~ C iff B ~ A \ iC  

In sequent presentation, each residuated family of multiplicatives {/ i ,  *i, \ i }  
has a matching structural connective, again relativized to resource management 
modes. Antecedent terms are inductively defined as 7- ::= .T I (7-, T )  i. Logical 
rules insist that use and proof of connectives respect the resource management 
modes. The explicit construction of the antecedent database in terms of structural 
connectives derives directly from Belnap's (1982) work on Display Logic, where 
it serves exactly the same purpose as it does here, viz. to combine logics with 
different resource management regimes. * In addition, the mode information makes 
it possible to distinguish distinct forms of linguistic composition with the same 
resource management properties. For an example, see (Moortgat and Morrill, 1991) 
where the product is split up in a left-headed *t and a right-headed "r, introducing 
a dimension of dependency structure next to the dimensions of precedence and 
dominance. 

The multimodal Gentzen rules for the connectives are presented below. The 
Axiom sequent and Cut rule remain unchanged- they have no mode restrictions. 

[R/i] (r, B) i => A 
F :::> A / , B  

F :::> B A[A] :::> C 
A[(A/ iB,  F) ~] ~ C [L/d 

(B, F) i ~ A 
[R\i] r ~ B \ i A  

r o b  A[A]=>C 
A[(F, B\iA) ~] :=> C [L\i] 

[L-i] F[(A, B)'] ~ C 
F[A -i B] ~ C 

F ~ A  A ~ B  
(F, A) ~ ~ A oi B [R*/] 

In addition to the residuation inferences which are shared by all resource man- 
agement modes, we now have mode-specific structural options. In axiomatic style, 
they take the form of structural postulates; in sequent presentation, we have the 
corresponding structural rules. As an illustration, see the structural postulates/rules 
for a commutative mode c. In the semantics the Re interpreting this connective will 
be constrained to satisfy (Vx, y, z E W) Rcxyz  ~ Rcxzy .  

AocB < >BocA 
F[(A2, A1) c] =~ A 
F[(A1, m2)c ] :z~ A[P] 

* See (Kracht, 1993; Wansing, 1992) for recent applications in a modal setting. More recently, the 
same idea has been introduced in Linear Logic in (Girard, 1993). 
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2.1.1. Multimodal communication 

What we have done so far is simply put together the individual systems discussed 
before in isolation. This is enough to gain combined access to the inferential capac- 
ities of the component logics, and one avoids the unpleasant collapse into the least 
discriminating logic that results from combining logics without taking into account 
the mode specifications, cf our discussion of CCG in w 1. But as things are, the bor- 
ders between the constituting logics in our multimodal setting are still hermetically 
closed. Let us turn then to the question of multimodal communication. 

Communication between modes i, j is obtained via interaction postulates with 
the corresponding frame conditions linking the interpretation of the composition 
relations R / a n d  Rj. Frame conditions 'mixing', distinct modes i, j allow for the 
statement of distributivity principles regulating the interaction between R/, Rj.  

Among the multimodal interaction principles, we distinguish cases of weak and 
strong distributivity. The weak distributivity principles do not affect the multiplicity 
of the linguistic resources. They allow for the realization of mixed associativity 
or commutativity laws as the multimodal counterparts of the unimodal versions 
discussed above. Interaction principles of the strong distributivity type duplicate 
resources, thus giving access to mode-restricted forms of Contraction. 

2.1.2. Weak distributivity 

Consider first interaction of the weak distributivity type. Below one finds princi- 
ples of mixed associativity and commutativity. Instead of the global associativity 
and commutativity options characterizing L, NLP, LP, we can now formulate 
constrained forms of associativity/commutativity, restricted to the situation where 
modes / and j are in construction. (Symmetric duals can be added with the / mode 
distributing from the right, and one can split up the two-directional inferences in 
their one-directional components, if so required.) 

M P :  A o i ( B o ~ C )  ( ~ B o  3 ( A o i C )  
M A :  A o i ( B o j C )  ( ) ( A o i B )  o jC  

The interaction postulates correspond to the frame conditions one finds below 
(Vxyzu  E W): 

M P  : 3t(Riuxt & Rjtyz)  r 3t'(Rjuyt' & Rit'xz) 
M A : 3t( Riuxt  & Rj tyz  ) r 3t' ( R~ut' z & Rit' xy ) 

And they manifest themselves in structural rules in Gentzen presentation. 

F[(A2, (A1, A3)i)~] ~ A F[((A1, A2)i, A3)J] ~ A 
[MC] [MA] 

F[(A1, (A2, A3)J)~] ~ A F[(A1, (A2, A3)a) ~] => A 

For linguistic application of these general postulates, we refer to the analysis of 
Dutch Verb Raising in (Moortgat and Oehrle, 1994; Moortgat and Morrill, 1991), 
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where it is shown that a multimodal variant of the CCG 'mixed composition' law 
- which in the absence of mode constraints causes collapse of L into LP, as we 
saw above - is in fact a theorem in combined logics with the MP/MA interaction 
principles. An example is given below. The verb cluster wil lezen is obtained in 
terms of a bimodal interaction principle relating, in this particular case, the right- 
headed dependency mode *r and the pre-head Dutch head adjunction mode *w- 
The former characterizes the head-final clausal structure of Dutch, and is used in 
the typing of the verb lezen as np\riV. The latter allows the verb-raising trigger 
wil, typed vp/wiv,  to form a verb cluster together with the head of its iv infinitival 
complement. 

(dat Marie) boeken (wil lezen) 
(that Mary) books (wants read)/that M. wants to read books 
Vp/wiV ~ (np\rvp)/w(np\riv) 

Schematically, in 'Geach' version, we have the following derivation. Notice 
that the order sensitivity of the individual modes *r and *w is respected: the valid 
forms of mixed composition form a subset of the composition laws derivable 
within unimodal LP. The principles of Directional Consistency and Directional 
Inheritance, introduced as theoretical primitives in the role-based setting of CCG, 
can be seen here to follow automatically from the individual resource management 
properties of the modes involved and the distributivity principle governing their 
communication. 

C ~ C  B = ~ B  \rL 
(C, C\rB) ~ =~ B A ~ A 

/ , ,L 
(A/wB, (C, C\~B)~) ~ ~ d 

M P  
(C, (A/wB, C\rB)~') ~ ~ A 
(A/wB, C\rB) TM ~ C\~A \ rR  

AAoB =~ (C\~A)/,~(C\~B) /wR 

2.1.3. Interaction principles: strong distributivity 

As remarked above, the weak distributivity principles MP, MA keep us within the 
family of resource neutral logics: they do not affect the multiplicity of the resources 
in a configuration. Strong distributivity principles are not resource neutral: they 
duplicate resources. As an example, consider the interaction principle MC below, 
which strongly distributes mode j over mode i thus copying a C datum. Rather than 
introducing global Contraction, this interaction principle allows for a constrained 
form of copying, restricted to the case where modes i and j are in construction. 
The computation of the relevant frame condition and structural rule will be familiar 
by now. (As with the Mixed Associativity/Commutativity principles, a symmetric 
case for distributivity from the left can be added straightforwardly.) 

MC : (A *i B) % C -+ (A , j  C) *i (B , j  C) 
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(R#xy & Rjutz) =--# 3t'3t"(Rjt' xz & Rjt"yz & Riut't") 

P[((AI, A3) j, (A2, A3)J)i ] ~ A 
MC 

r[((Al,  Au)i, A3)J] =~ A 

Grammatical inference requires restricted access to Contraction for the analysis 
of  parasitic gap constructions (]-) and coordination of incomplete material (~:). In the 
former case, one would like the abstractor associated with the wh element to bind 
multiple occurrences of  the same variable. Such multiple binding is beyond the 
scope of  resource sensitive inference. In the (~c) example, sentential coordination is 
generalized to the coordination of  sentences missing an object - a process which 
again requires the copying of  resources. 

(t) Which books did John (file _ without reading _) 
($) John loves but Mary hates beans 

In the rule-based framework of CCG, parasitic gaps are handled by means of 
the combinator S which is introduced as a primitive for this purpose, cf. (Szabolcsi, 
1987). 

S: A/C,(A\B)/C =~ B/C 

In a unimodal setting the S combinator in combination with Residuation causes 
disaster. In the multimodal framework presented here, a mode-restricted form of 
the S combinator can be derived from the strong distributivity principle discussed 
above. In the Gentzen proof below, we give the relevant instance for the derivation 
of the example sentence (instantiate A / j C  as vp/jnp forfile, and ( A \ i B ) / j C  as 
(vp\ivp)/ jnp for without reading). Mode j here would be the default mode by 
which the transitive verbsfile and read consume their direct objects; the combina- 
tion of  the vp adjunct without reading _ with the vp it modifies is given in terms of 
mode i, the 'parasitic' mode which licenses the secondary gap depending on the 
primary one, the argument of file. 

&c 
((A/~C, C) j, (A\iB)/jC, C)J) i ~ B 

MC 
((A/jC, (A\iB)/jC) i, C) j ~ B 

/jR 
(A/jC, (A\iB)/jC) i ~ B / jC  

Notice that in the case of Right-Node Raising (~:), we can appeal to the same 
interaction principle to derive the non-constituent coordination from sentential 
coordination, provided the incomplete conjuncts are put together in the duplicating 
mode i - structural information that can be projected straightforwardly from the 
type assignment to the conjunction particle, e.g. (s\is)/s.  This suggests a multi- 
modal treatment of generalized coordination in terms of restricted Contraction - a 
topic that must be left for future research. 
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2.2. MIXED INFERENCE: COMBINING 1-ARY AND 2-ARY FAMILIES 

What we have studied so far is the language of binary connect ives-  a language well 
adapted to talk about forms of linguistic composition where two resources are put 
together. But sometimes one would like to attribute particular resource management 
properties to individual resources, rather than to configurations of resources. The 
required expressivity can be introduced by extending the type language with unary 
connectives decorating individual formulae. 

Unary connectives entered the linguistic discussion in 1990 in the work of 
a number of Edinburgh researchers, cf. (Barry and Morrill, 1990). Taking their 
inspiration from the ' !' operator of Linear Logic which licenses Contraction and 
Weakening for '! '  decorated formulae, these authors have introduced structural 
modalities - unary operators providing controlled access to linguistically relevant 
structural options, such as Permutation. In the recent literature one finds a panoply 
of unary operators in addition to the binary multiplicatives. Apart from the structural 
modalities, we can mention the 'domain modalities' of Morrill and Hepple, identi- 
fying semantic intensionality domains (Morrill, 1990) or purely syntactic domains 
of locality (Hepple, 1990), the 'bracket operators' ~, ~-  1 of Morrill (1992, 1994), 
implementing locality domains in a different way, or the ~ operator of Morrill 
(1992), declaring argument positions as licensing extraction. 

Our aim in this section is to develop a general framework that will naturally 
accommodate the different proposals for unary operators while at the same time 
providing more fine-grained notions of resource control. The key concept, again, 
is residuation. We extend the language of binary multiplicatives with a unary pair 
of residual operators ~ ,  [] and establish a number of elementary logical results for 
the extended language. Parallel to our treatment of the binary multiplicatives/,  o, \ 
in the previous section, we start from the most discriminating system, i.e. the pure 
logic of residuation for 0 ,  []. By gradually adding structural postulates, we obtain 
versions of these unary operators with a coarser resource management regime. And 
where the linguistic applications require this, we can put together different variants 
in a multimodal logic (i), [i]. 

Our agenda for this section is given below. Items (1) and (3), (4) closely follow 
Lambek's  (1958) treatment of the binary multiplicatives. 

1. Axiomatic ( 'combinator ')  presentations of the pure logic of residuation for <), 
[3. 

2. Soundness and completeness via the Do~en canonical model construction. 
3. Gentzen presentation, equivalence between the axiomatic and the Gentzen 

presentation. 
4. Cut elimination for the Gentzen presentation. Decidability, subformula prop- 

erty. 
5. Structural postulates T, 4, K.  Items (1)-(4) for the systems with a choice from 

T'({T, 4, K}) .  
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2.2.1. Residuation: n-ary generalization 

The concept of  residuation, which as we saw above lies at the heart of categorial 
type logic, arises in the study of order-preserving mappings. In order to widen our 
framework from binary to n-ary families of residuated connectives, we first have 
a brief look at the general algebraic concept. (In (Moortgat and Oehrle, 1993) the 
reader can find a more thorough treatment with reference to the source material, 
such as (Fuch, 1963; Blyth-Janowitz, 1972).) 

Let A = (A, ~A) and B = (B, _<B) be partially ordered sets. Consider a pair 
of  functions f : A ~ B and 9 : B ~-r A. The pair (f ,  g) is called residuated if the 
inequalities of  (,~) hold. Alternatively, a pair of  functions (f ,  9) is characterized as 
residuated by requiring f and g to be is�9 (t), and by having the composition 
of the functions satisfy the inequalities of  (:~). 

(*) f x < B y  iff x < A g y  

(t) if x <A Y (x <B Y) then f x  ~_B fY (gX ~A gY) 
(~) f g x  ~_B X, X ~_A g f x  

Dunn's papers on 'gaggle theory' (Dunn 1991, 1993) provide an excellent survey 
of the many guises under which Residuation presents itself in (intuitionistic, modal, 
relevance, dynamic, temporal, linear . . . .  ) logic, and in Lambek style type logics. 
Indeed, the pairs of  connectives ( . , / )  and (. ,  \ )  are easily recognized as the binary 
incarnations of the notion of residuation just defined for the case of unary operations 
f ,  g. Interpret the partially ordered set A (=  B) as the set of type formulae .T', 
ordered by derivability ~ (i.e. set-theoretic inclusion, semantically). For the right 
residual pair ( . , / )  we can read f as - �9 B and 9 as - / B ,  i.e. the product and 
division operations indexed by some fixed type B. The defining biconditional 
f x  < y iff x < gy then becomes A �9 B --r C iff A --+ C /B .  Similarly for the left 
residualpair (�9 \), where we read f as A �9  - and g as A \ - ,  and obtain A �9 B --~ C 
iff B --4 A \C .  

The concept of  residuation can be readily generalized to the case of n-ary 
connectives, as is shown in (Dunn, 1991) in the general logical setting, Discussion 
of such generalizations for categorial type logics can be found in (Buszkowski, 
1988) and (Moortgat and Oehrle, 1993). In the context of our Kripke style frame 
semantics, we now find n-ary products interpreted via n + 1-ary accessibility 
relations. These products have a residual implication for each of their n factors. 
Let us write f �9  (A1,. �9 An) for the product and f/_+ (A1 , . . . ,  An) for the i-th place 
residual. And define R - i y i y l , . . . ,  x , . . . ,  Yn iff R x y l , . . . ,  Y i , . . . ,  Yn to facilitate 
the statement of the interpretation clauses. We require the valuation for the n-ary 
families to exhibit the familiar pattern: existential closure of a conjunctive statement 
for the product, universal closure of disjunctions for the residual implications. 

V(fo(A1, . . .  , A,~)) 

= {x I 3 y l . . . y n ( R X y l . . . y n  & Yl E v(A1) & . . .  & Yn E v(An)} 
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v(fi_+(A1,.. .  ,A~))  

= {x I V y l . . .  y n ( ( R - i x y l . . .  Yn & YJ(Jr E v(Aj) )  =~ Yi E v(Ai)} 

Given such an interpretation for the compound formulae, the residuation laws are 
realized in the form shown below. 

f . (A1 , . . .  ,A,0 ~ B ~ Ai --+ f ~ ( A l , . . .  ,A i -1 ,B ,  Ai+l , . . .  ,An) 

2.2.2. Unary residuated pairs 

Let us focus now on the case of  unary connectives. Consider a residuated pair of 
connectives 0 ,  [] for which the defining residuation inference f x  < y iff x <<_ gY 
takes the form (t), given the interpretation clauses shown below. 

(t) ~,A-~ B .~ ".. A ~ u B  

v(~,A) = {x l 3y(Rxy A y e v(A)} 
v(oA) = {x I Vy(Ryx ~ y e v(A)} 

The valuation for the 0 ,  [] formulae has the required properties for residuation 
to arise: existential closure of a conjunctive statement for 0 ,  universal closure of 
a disjunction for the residual •. Note carefully that the interpretation of 0 and 
O moves you in opposite directions along the R 2 accessibility relation. The typo- 
graphically non-standard choice for the diamond operator is there to remind you 
of  this fact. 

Figure 1 may clarify the relation between the unary and the binary residuated 
pairs of connectives. In the case of �9 we make an existential move along the 
branching accessibility relation R 3. In the case of 0 we make an existential move 
in the same direction, this time for a non-branching accessibility relation. In both 
cases, universal moves in the opposite direction bring you back to the point of 
origin. 

How shall we interpret R 2 in this case? If we were talking about temporal 
organization, 0 and [] could be interpreted as future possibility and past necessity, 
respectively. But in our grammatical application, R 2 just like R 3 is to be interpret- 
ed in terms of structural composition. Where a ternary configuration (xyz) E R 3 
interpreting the product connective abstractly represents putting together the com- 
ponents y and z into a structured configuration x in the manner indicated by R 3, 
a binary configuration (xy) C R 2 interpreting the unary () can be seen as the 
construction of  the sign x out of a structural component y in terms of the building 
instructions referred to by R 2.* 

* For an 'additive' alternative to our 'mulfiplicative' view on unary operators, see (Venema, 1993), 
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A \ C  

B 
2 

C / B  

A 

Y 

x 

A . B  

C 

A----r C I B  c~ A . B --+ C 
A . B ---+ C C:~ B -+ A \ C 

A y o,~B 

R 2 x y  

(>A x B 

~ A ~ B ~ A ~ Q B  

Fig. 1. Kripke graphs: binary and unary multiplicatives 

2.2.3. Axiomat ic  presentat ions 

Putting together the binary and the unary families of  connectives we can now 
consider  the mixed language 

m : :=  A I mlm I m .  m I m\m I <)m I mm 

idA : A -+ A f : A---~ B g : B ---r C 
g o f : A ~ C  

f : ~ A - ~  B g : A---~ r~ B 
Iz(f) : A --+ [3B 

f : A * B ~ C  
l~(f) : A --+ C / B  

f : A * B ~ C  

# - l ( g )  : ~ A  ~ B 

g : A --~ C / B  
3-1(g)  : A * B -+ C 

g : B -+ A \ C  
~y(f) : B --+ A \ C  'T-l(g) : A �9 B -+ C 

Fig. 2. Axiomatization: Lambek style 

In Figures 2 and 3 we juxtapose two equivalent axiomatic presentations of  the 
pure logic of  residuation for the extended language. The Lambek  style presentation 
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idA : A --r A 
f :A-+ B g : B - ~ C  

go f :A---~C 

unito : ~>DA -~ A 
unit/  : A / B  * B -~ A 
unit\  : B �9 B \ A  ~ A 

co-unitu : A -+ D(>A 
co-unit/ : A -~ ( A * B ) / B 
co-unit\ : A -~ B \ ( B  * A) 

f : A - - + B  
(f)o : r ~ r 

f : A - +  B 
(f)m : DA --~ DB 

f : A - - + B  g:C--+D 
f . g : A � 9  B . D  

f : A - - + B  g : C - + D  
f l y : A I D  ~ B /C  

f : A - +  B g : C - - +  D 
g\ f  : D\A -+ C\B  

Fig. 3. Axiomatization: Dogen style 

of Figure 2 is based on the residuation inferences. The Dogen style presentation 
of Figure 3 uses the alternative way of characterizing a pair of residual operations 
f ,  g in terms of Isotonicity ( ,)  and the inequalities (**) for the compositions fg ,  

gf. 

(*) x < y ~ f x < _ f y , g x < g y  (**) f g x < x ,  x < g f x  

In this presentation, the unit,  co-uni t  combinators are primitive type transitions, 
recursively generalized via the Isotonicity rules of inference (Antitonicity for the 
negative subtype of implications/,  \).  

For the / ,  �9 \ fragment, we know the two deductive presentations are equivalent, 
cf. Lambek (1958) for one direction, Dogen (1988, 1989) for the other. We take the 
Lambek presentation as our starting point here, and show for the extended system 
how from #, #-1 we obtain the alternative axiomatization in terms of Isotonicity 
and the inequalities for the compositions Q[3 and D~ (Term decoration for the 
right column left to the reader.) 

idoA : ~ A  -+ DA 
~--l(idDA) : ~>DA --+ A 

0A --+ 0A 
A ~ D(>A 

id<>B : ~ B  --+ ~ B  
f : A ~ B  #( id0B ) : B - ~ t 3 ~ B  

#(id<>B) o f : A -+ D(>B 

oA --+ DA 
(>[~A --+ A A --+ B 

r --~ B 
/~-l(/z(id<>B) o f )  : ~ A  ~ q B  DA --+ DB 
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2.2.4. Completeness 

For the U ( / ,  e, \ )  fragment, (Do~en, 1992) shows that NL is complete with respect 
to the class of all ternary models, and L, NLP, LP with respects to the classes 
of models satisfying the frame constraints for the relevant packages of structural 
postulates. The completeness result extends unproblematically to the language 
enriched with ~ ,  [] as soon as one realizes that ~ can be seen as a 'truncated' 
product and [] its residual implication. 

Define the canonical model for mixed (2,3) frames as M = (W, R z, R 3, v), 
where 

- W is the set of  formulae ) r ( / , . ,  \ ,  ~ ,  [3) 
- R 3 ( A , B , C )  ifft-  A - +  B .  C, R2(A,B)  iffF- A - +  0 B  
- A E v ( p ) i f f ~ - A ~ p .  
The Truth Lemma then states that, for any formula ~b, .hA, A ~ gb iff t- A -+ r 

Now suppose v(A) C_ v(B) but [/ A --~ B. If [/ A -+ B with the canonical 
valuation on the canonical frame, A E v(A) but A ~ v(B) so v(A) ~ v(B). 
Contradiction. 

We have to check the Truth Lemma for the new compound formulae ~A,  oA.  
Below the direction that requires a little thinking. 

((~) Assume A E v(OB).  We have to show t- A -+ OB. A E v ( ~ B )  implies 
3A ~ such that RZAA ~ and A ~ E v(B). By inductive hypothesis, t- A ~ -+ B. By 
Isotonicity for 0 this implies t- 0 A  ~ --+ 0 B .  We have t- A -+ 0 A  ~ by (Def R z) in 
the canonical frame. By Transitivity, ~- A -+ 0 B .  

(D) Assume A E v(DB). We have to show ~- A -+ E3B. A E v(DB) implies 
that VA ~ such that R 2 X A  we have A ~ E v(B).  Let A ~ be OA. R2A~A holds in the 
canonical frame since t- ~ A  -+ 0A.  By inductive hypothesis we have t- A ~ -+ B, 
i.e. F- ~ A  -+ B. By Residuation this gives t- A -+ DB. 

2.2.5. Gentzen calculus 

Following the agenda set out in Section 1 for the binary connectives, we now 
introduce Gentzen sequent rules for the connectives ~,  D. In the Appendix, we 
show that the Genzten rules are equivalent to the deductive presentation, and that 
the Gentzen presentation allows Cut Elimination, with its pleasant corollaries of 
Decidability and the Subformula property. 

In order to present Gentzen calculus for the extended type language, we need an 
n-ary structural operator for every family of n-ary logical operators: binary (-,-) 
for the family / ,  *, \ ,  and unary (.)0 for the family ~ ,  Q. Corresponding to the 
formula language U we have a language of terms 7- (structured configurations of 
formulae). 

~ ::= ~ I ~-/~- I ~- �9 ~- i 7 \ 7  i ~ "  I D~" 

T ::= .TI (T, T) I (T) ~ 
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As before, sequents are pairs (F, A), F E T,  A E .T, written F ~ A. We have 
Belnap-style antecedent punctuation, with for ~ ,  [] the unary structural connective 
(.)o matching the unary logical connectives. Below the rules of use [~L],  [DL] 
and the rules of proof [(>R], [[~R] for the new connectives. 

F =~ A r[(A) o] =~ B 0 L  
(F) 0 =~ 0A OR r[~>A] ~ B 

(F) 0 =~ A r[A] ~ B 
F =~ DA DR r[(oA)O] ~ B DL 

Fig. 4. ~ ,  D: Gentzen rules 

As we remarked above, ~ and [] can be seen as truncated forms of product and 
implication. It may be helpful to compare the ~ rules with the rules for e, and the 
[] roles with the rules for an implication, s ay / .  

F=~ A A=~ B F[(A,B)] ~ C 
�9 R .L  

(F, A) ::~ A �9 B r[A �9 B] ~ C 

(r ,B)  ~ A A ~ B  r[A] ~ C 
r ~ A/B /R r[(A/B,A)] ~ C /L 

2.2.6. Illustration: Residuation laws 

For a simple illustration of the Gentzen style presentation we check the composi- 
tions ~ and ~ (cf Application, f g x  _< x, Co-Application, x <_ # fx ) .  Below 
their cut-free Gentzen derivations. 

A ~ A  A ~ A  
DL OR 

(DA) ~ =~ A (A) ~ =~ 5A 
0 D A = ~ A  (>L A ~ D O A  DR 

2.2.7. Structural postulates 

What we have discussed so far is the pure logic of residuation for the unary family 
~ ,  o.  In the previous section we saw how by imposing conditions ASS, COMM or 
their combination on ternary frames, one generates the landscape NL, L, NLP, LP 
with completeness results for the relevant classes of frames (Do~en). Along the 
same lines, we can develop the substructural landscape for the unary family ~ ,  [] 
and its binary accessibility relation R 2, and for the mixed R 2, R 3 system.* 

* For a related decomposition of the $4 ' ! '  modality of Linear Logic, see (Bucalo, 1994; Girard, 
1994). 
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The following structural postulates constrain R 2 to be transitive (4), or reflexive 
(T). Communication between R 2 and R 3 can be established via the strong distrib- 
utivity postulate K,  which distributes unary <> over both components of a binary 
�9 , or, in a more constrained way, via the weak distributivity postulates K 1 , K 2 ,  
where <> selects the left or right subtype of a product. 

4 : ~,<>A ~ (>A 
T:  A - - - ~ A  

K I :  O ( A * B ) ~ O A � 9  
K2:  ~(AoB)--+ A e ~ , B  
K :  ~ , ( A e B ) ~ O A o ~ B  

Below the correponding frame conditions (Vx, y, z, w E W). 

4 :  
T :  

K(1,2) :  
K :  

(Rxy & Ryz) =~ Rxz 
Rxx 

(Rwx & Rxyz) =~ 3y'(Ry'y & Rwy'z) V 3z'(Rz'z & Rwyz') 
(Rwx & Rxyz) =~ 3y'3z'(Ry'y & Rz'z & Rwy'z') 

We have shown above how the Do~en completeness result for NL can be 
generalized to the pure residuation logic for Q, [J. Kurtonina (1995) moreover 
shows that structural postulates like 4, T, K(1,  2) have the appropriate form for an 
extended Sahlqvist completeness result: the pure residuation logic augmented with 
these postulates is frame complete for the first-order frame condition corresponding 
to the postulate in question. 

2.2.8. Structural rules 

The structural rules below translate the postulates T, 4, K1, K2, K from the 
formula level to the term level. (In the Appendix, we prove equivalence between 
the role and the postulate versions, and show that the Gentzen formulation allows 
cut-free proof search.) 

F[(A)0] ~ A F[(A)0] ~ A 
4 

r[((Zx)o) o] ~ A r[zx] ~ A T 

r[((a,)o, a2)] A 
r[((a,, a2)) o] A 

F[((A1) 0, (A2)~ =~ A F[(AI, (A2)~ ~ A 
K1 K K2 

F[((A,, A2)) ~ =~ A F[((A1, A2))O] ~ A 

2.2.9. Structural postulates: universal variant 

In our discussion of structural postulates for e, we have seen that we can express 
Associativity, Comrnutativity either via a �9 postulate, or via implicational postu- 
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lates, if we prefer to keep the language product-free. In a similar vein we could 
have presented T, 4, K in their D forms: 

4D : DA --~ DDA 
TD : DA --~ A 

KD/ : D(A/B) --+ DA/DB 
K D \ :  D(B\A) -+ DB\DA 

Below an illustration for the derivation of the universal variant K[3/. 

B ~ B  A ~ A  /L 
(A/B, B) ~ A 

DL, DL 
((D(A/B)) ~ (DB) 0) =~ A 

K 
((D(A/B), DB)) 0 =~ A 

DR (D(A/B), DB) =~ I::]A 
/R 

D(A/B) =~ DA/DB 

2.2.10. $4: Compilation of structural rules 

We saw above that in the presence of Associativity for e, we have a sugared Gentzen 
presentation where the structural rule is compiled away, and the binary sequent 
punctuation (-, .) omitted. Analogously, for [] with the combination KT4 (i.e. $4), 
we have a sugared version of the Gentzen calculus, where the KT4 structural rules 
are compiled away, so that the unary (.)o punctuation can be omitted. Compare the 
following. (Notation ~F for a term F of  which the (pre)terminal subterms are of the 
form ~A. The 4(cut) step is a series of replacements of terminal DA by D[]A via 
cuts depending on 4.) 

VIAl ~ B 
t3L 

F[(DA) 0] ~ B F[a] ~ B 
r IGA] ~ B T ~ r[DA] ~ B [2L($4) 

D F ~ A  
DL 

(DD)~F =V A 
4(cut) 

(D)0P ~ A 
K 

(Dr) 0 ~ A  D F ~ A  DR(S4) 
D F ~ D A  ~R ~ D F ~ D A  

In the sugared version, we recognize the rules of use and proof for the domain 
modalities of (Hepple, 1990; Morrill, 1990). 

2.2.11. Multimodal generalization 

We have presented the landscape of unary residuated operators from the perspective 
of one pair of  connectives 0 ,  D. 
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The move to a multimodal system where different families of  unary operators 
live together and communicate (with families of the same or of different arity) via 
inclusion and interaction postulates is entirely straightforward. Below we give the 
mode restricted forms of  the interpretation clauses, the residuation inferences, and 
the Gentzen rules. 

v ( r  = {x [ 3y(Rixy  A y �9 v(A)} 
v(DiA)  = {x I Vy(Riyx  ~ y 6 v(A)} 

~, iA-+ B iff A - +  D~B 

F => A r[(A) ~] ~ B 
[R~i] (F)i =~ OiA r[<hA] ~ 13 [LOs] 

(F) i ~ A F[A] ~ B [LDi] 
[R[3i] F => [3iA F[(DiA) i] ~ B 

2.2.12. Discussion 

To close this section, we briefly indicate where the various unary operators that 
have been proposed in the literature can be situated within the general landscape 
developed here. 

At one end of the spectrum, the proposals that come closest to the pure logic of 
residuation for 0 ,  [] are Morrill's bracket operators. In one of their incarnations (the 
version of  (Morrill, 1992)) these operators are presented with the [~L],  [(}R] and 
[DR] rules we have given above. The [[]L] rule of Morrill (1992), however, is inap- 
propriate for the pure residuation system: it derives the non-theorem o(}A => A, 
next to the theorem A => t30A. On the semantic level, Morrill assumes the bracket 
operators to be interpreted in terms of a funct ional  accessibility relation R 2 - an 
interpretation which imposes constraints on the allowable models which we have 
not assumed in our presentation. The linguistic applications of  the bracket operators 
as markers of locality domains can be recast straightforwardly in terms of the more 
discriminating pure residuation logic for r  [] where no functionality constraints 
are imposed on R 2. 

At the other end of the spectrum, we find the $4 domain modality of (Hepple, 
1990; Morrill, 1990), a universal modality [] which assumes the full set of pos- 
tulates K T 4 .  Adding modally controlled structural rules, we obtain the structural 
modalities of  (Barry and Morrill, 1990) and others. A crucial feature of these oper- 
ators is the Reflexivity Postulate [3A --~ A: a modally marked resource [3A will at 
a certain point in the derivation be used as an ordinary datum of type A. Recall 
that we have presented the binary accessibility relation as a form of linguistic 
composition: R x y  holds in case x is the sign one obtains by augmenting y with 
the information added in the R 2 move. From this perspective, Reflexivity is an 
undesirable property, trivializing the R 2 augmentation. In the framework presented 
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here, where we consider a residuated pair of modalities Q, [] rather than a single 
modal operator [], we can capture the proof-theoretic behaviour of the $4 structural 
modalities without making Reflexivity (or Transitivity) assumptions about the R 2 
accessibility relation. With a translation ( �9 = QQ(A)~, the T and 4 postulates 
for [] become valid type transitions in the pure residuation system for Q, •, as the 
reader can check. 

T :  DA--+ A ODA--+ A 
4 : DA-~ DDA ~DA-~  0oODA 

For modally controlled structural rules, one can add restricted versions of the 
global rules relativized to Q contexts, cf. the modal version of the Permutation rule 
below. 

I'[((A2)~, A1)] ~ A 
(a2)o)] A 

3. Controlling resource management 

What kind of expressivity do the unary connectives (}, [] add to the categorial 
language? We have seen in Section 1 and Section 2.1 that the binary connectives 
(or in general: n-ary connectives for 2 < n) offer the logical vocabulary to talk about 
the composition of linguistic resources. With respect to grammatical composition 
the unary connectives play the role of control devices. Resource control can be 
approached from two perspectives: 

THE STATIC PERSPECTIVE. How can one control the structural properties of 
well-formed configurations of linguistic resources with respect to parameters 
such as word-order, constituent structure, dependency structure? 
THE DYNAMIC PERSPECTIVE. How can one control the way the linguistic 
resources are used in the process of putting together a well-formed struc- 
tural configuration? 

Structural control via ~ ,  [] is studied in (Kurtonina and Moortgat, 1995). We 
summarize the results in Section 3.1. In Section 3.2 we show how one can dynam- 
ically control the use of assumptions in the process of proof search via ~ ,  [] 
decoration. 

3.1. STRUCTURAL CONTROL 

The structural parameters of precedence (word-order), dominance (constituent 
structure) and dependency generate a cube of resource-sensitive categorial type 
logics. From the pure logic of residuation NL, one obtains the familiar systems 
L, NLP and LP in terms of Associativity, Commutativity, and their combination. 
These systems occupy the upper plane of Figure 5. Each of these systems has 
a dependency variant, where the product is split up into a left-headed *l and a 
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right-headed *r version. The dependency dimension was introduced in (Moort- 
gat and Morrill, 1991) where it is argued that the asymmetry between heads and 
the material they govern should be considered as orthogonal with respect to the 
function-argument asymmetry. The dependency systems decorate the vertices at 
the lower plane of Figure 5. 

LP 

NLP L 

DNLP ~ DL 

DNL 

Fig. 5. Resource-sensitive logics: precedence, dominance, dependency 

In (Kurtonina and Moortgat, 1995) it is shown that the (>, [] connectives provide 
a theory of systematic communication between these systems. The communication 
is two-way: it is shown how one can fully recover the structural discrimination 
of a weaker logic from within a system with a more liberal resource management 
regime, and how one can reintroduce the structural flexibility of a stronger logic 
within a system with a more articulate notion of structure-sensitivity. 

Consider a pair of logics 120, 121 where/20 is a 'southern' neighbour of/21. 
Let us write/2(7 for the system/2 extended with the unary operators (>, [] with 
their minimal residuation logic. For the 12 edges of the cube of Figure 5, one- 
can define embedding translations (.)~ : 3t'(/20) ~ .~"(/21~) which impose the 
structural discrimination of/20 in/21 with its more liberal resource management, 
and (-)~ : 5r(/21) ~-+ 5r(/200) which license relaxation of structure sensitivity in 
/20 in such a way that one fully recovers the flexibility of the the coarser/21. The 
embedding translations decorate critical subformulae in the target logic with the 
operators ~ ,  •. The translations are defined on the product �9 of the source logic: 
their action on the implicational formulas is fully determined by the residuation 
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laws. For the .~ type of  embedding, the modal decoration has the effect of blocking 
a structural rule that would be applicable otherwise. 

For the ) direction, the modal decoration gives access to a controlled version 
of a structural rule which is unavailable in its 'global' (non-decorated) version. 

We illustrate the two-way structural control with the pair NL and L. Let us 
subscript the connectives in NL with 0 and those of L with 1. The L system has 
an associative resource management which is insensitive to constituent bracketing. 
Extending L with the operators ~ ,  [] we can recover control over associativity by 
means of  the translation .~ : ~-(NL) ~-~ ~(L(>)  below. 

(t) 

pb = p  

(A *o B) ~ = <>(A ~ "l B ~) 
(A /oB)  ~ = [3Ab/1B ~ 
(B \oA)  ~ = B ~ \ l o A  ~ 

One can then prove the following embedding result. 

N L ~ - A ~ B  iff L ~ - A  ~- -+B b 

Consider next the other direction of communication: suppose one wants to 
obtain the structural flexibility of L from within the system NL with its rigid 
constituent sensitivity. For the ($) embedding translation .~ : ~ ( L )  ~ ~ ' ( N L 0 )  
one can use the same decoration schema as for (t). This time, one achieves the 
desired embedding result by means of a modally controlled version of the structural 
rule of Associativity, relativized to the critical 0 decoration. Compare the global 
version (A) with its image under (.)~, (Ao). 

/~1 : A . 1  (B "1 C) < ~ (A-1 B) �9 1 C (A) 

s  <>(A .0 ~ (B  oo C)) r ~ (>(~(A .0 B) -0 C) (Ao) 

($) 

p~ = p  

(A "1 B)  ~ = <>(A ~ "o B ~) 
(A /1B)  ~ = rqA~/oB~ 
(B\IA) ~ = B~\ot3A ~ 

The embedding theorem then takes the following form. 

L ~- A - +  B iff NL,~ + Ao b A~ --+ B ~ 

The derivations below illustrate the strategies of imposing structural control or 
relaxing structure sensitivity with the Geach rule, the characteristic theorem which 
differentiates L from NL. On the left, we try to derive the .~ translation of the 
Geach rule in L ~ .  

The resource management regime is associative - -  still the derivation fails 
because of  the structural (-)<> decoration which makes the C resource inaccessible 
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for the functor [3B/ IC.  On the right one finds a successful derivation of the -~ 
translation in NL0 .  Although the resource management regime in this case does 
not allow free rebracketing, the ~ decoration gives access to the modal version of 
the structural rule. 

FAIL 

((((DA/IB, DB/1C)') O, C)') 0 =~ A 
DR 

( ( (DA/1B, DB/1C)') ~), C)" :=~ HA 

((DA/IB, D B / 1 C ) ' )  0 ~ DA/,C 
(OA/,B, OB/1C)" :=~ FI(IqA/1C) DR 
DA/IB =~ D(DA/1C)/I(DB/IC) /1R 

B = ~ B  DL 
C=~C (DB)O ~ B A=c,A 

/oL uL 
((DB/oC, C)') 0 =:v B (HA) 0 =:~ A 

/oL 
((DA/oB, ((DS/oC, C)')O)~ 0 ~ A 

AO 
((((OA/oB, DB/oC)*) O, C)~ 0 ~ A 

DR 
( ( (DA/oB, DB /oC)') O, C) ~ =~ HA 

/oR 
( (DA/oB, DB /oC)') 0 =~ DA/oC 
(DA/oB, DB/oC) ~ =~ D(OA/oC) DR 
OA/oB :=~ u(DA/oC)/o(DB/oC) /oR 

L(> V (A/oB) ~ ~ ((A/oO)/o(B/oC)) b NL<) + (A0) F (A/,B) ~ ~ ( ( A / l d ) / l ( n / i o ) )  ~ 

3.2. PROCEDURAL CONTROL 

The type of resource control discussed in Section 3.1 concerns the static aspects 
of  well-formed structural configurations of resources such as represented by the 
term structure of the antecedent of a derivable sequent. In the present section we 
show how one can dynamically control the use of assumptions in the process of 
proof search via ~ ,  [] decoration. Our concrete objective is to logically enforce 
the Krnig-Hepple-Hendriks goal-directed head-driven search regime for sequent 
proof search by means of an appropriate 0 ,  [] decoration. 

In the literature on automated deduction, it is well known that cut-free Gentzen 
proof search is still suboptimal from the efficiency perspective: there may be 
different (cut-free !) derivations leading to one and the same proof term. Restricting 
ourselves to the implicational fragment, the spurious non-determinism in the search 
space has two causes (Wallen, 1990): (i) permutability of [L] and [R] inferences, 
and (ii) permutability of [L] inferences among themselves, i.e. non-determinism in 
the choice of the active formula in the antecedent. A so-called goal directed (or: 
uniform) search regime performs the non-branching [R] inferences before the [L] 
inferences (re (i)), whereas headdriven search commits the choice of the antecedent 
active formula in terms of the goal formula (re (ii)). Such optimized search regimes 
have been proposed in the context of  Linear Logic programming in (Hodas and 
Miller, 1994; Andreoli, 1992). In the categorial setting, goal-directed head-driven 
proof search for product-free L was introduced in (Krnig, 1991) and worked out 
in (Hepple, 1990) who provided a proof of the safeness (no proof terms are lost) 
and non-redundancy (each proof term has a unique derivation) of the method. We 
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present the Hepple regime in the format of Hendriks (1993) with Curry-Howard 
semantic term labelling. 

F,u : B*,F' =~ t :pp. [.R] 
[ A x l * L ] x  : p* =C. x : p F , u  : B,F~ =~ t : 

A , x : B = ~ t : A *  A = ~ u : B *  F , x : A * , F  ~ = ~ t : C  
[/R] A =~ .kx.t : A / B *  F, s : A / B * ,  A ,  F' =~ t[x /su]  : C [/L] 

x : B , A ~ t : A *  A ~ u : B *  F , x : A * , F  ~ t : C  
[\R] A =~ Ax.t  : B \ A *  F, A ,  s : B \ A * ,  r '  =~ t[x /su]  : C [\L] 

The L* calculus eliminates the spurious non-determinism of the original pre- 
sentation L by annotating sequents with a procedural control operator '*'. Goal 
sequents F =~ t : A in L are replaced by L* goal sequents F ~ t : A*. 

With respect to the first cause of spurious ambiguity (permutability of [L] and 
[R] inferences), the control part of the JR] inferences forces one to remove all 
connectives from the succedent until one reaches an atomic succedent. At that 
point, the '*' control is transmitted from succedent to antecedent: the [*R] selects 
an active antecedent formula the head of which ultimately, by force of the control 
version of the Axiom sequent [*L], will have to match the (now atomic) goal 
type. The [L] implication inferences initiate a '*' control derivation on the minor 
premise, and transmit the '*' active declaration from conclusion to major (right) 
premise. The effect of  the flow of control information is to commit the search to the 
target type selected in the [*R] step. This removes the second source of spurious 
ambiguity: permutability of [L] inferences. It can be shown that the L* regime 
eliminates spurious ambiguity. Syntactically, derivability in L and L* coincide. 
Semantically, the set of L* proof terms forms a subset of the set of L terms. But, 
modulo logical equivalence, no readings are lost moving from L to L*. Moreover, 
the L* system has the desired one-to-one correspondence between readings and 
proofs. 

3.2.1. Un i fo rm p r o o f  search:  m o d a l  control  

The control operators 0 ,  [] make it possible to enforce the K6nig-Hepple-Hendriks 
uniform head-driven search regime via a modal translation. Our proposal is a variant 
on the "lock-and-key" method of (Lincoln et al., 1992): we force a particular 
execution strategy for successful proof search by decorating formulae with the [] 
( ' lock') and ~ ( 'key')  control operators. We use the base residuation logic for 0 ,  [3, 
plus weak distributivity principles K1, K2  for the interaction between the unary 
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and the binary families. For convenience we repeat the Gentzen transformation of 
the K1,  K 2  structural postulates from our discussion above. 

STRUCTURAL POSTULATE STRUCTURAL RULE 

F[((A1)0,A2)] =V A 

K I :  (>(A ,, B) --+ {>A - B F[((AI,A2)) 0 ] ~ A  
K1 

A 

K 2 :  { } ( A . B ) ~ A - 0 B  F[((Al,A2)) 0 ]=r  
K2 

To establish the equivalence with L* search, we can use the sugared presentation 
of  L where Associativity is compiled away so that binary  punctuation (-, .) can 
be omitted (but not the unary (.)o !). This gives the following compiled format for 
K 1 , K 2 :  

r , (A)O, r '  ~ B 
K ~ 

( r , A , r ' )  o ~ B 

3.2.2. Trans la t ion : formulae ,  s equen t s  

We define the translation mapping first on the formula level, and then extend it to the 
level of  L* sequents, where we have to distinguish marked and unmarked formulae. 
On the formula level, define mappings (.)1, (.)0 : .7-(/, \ )  ~_+ .7-(/, \ ,  (~, D), for 
antecedent and succedent formula occurrences respectively. 

(p)l = p 
( A / B )  1 = ( A ) I / ( B )  ~ 
( B \ A )  ~ = ( B ) ~  1 

(p)O = Qp 

( A / B )  ~ = ( A ) ~  1 
( B \ A )  ~ = D ( B ) I \ ( A )  ~ 

The formulae of  a sequent P =v A in L* are partitioned by the '*' annotation in a 
set of marked formulae - a singleton, since there is only one '*' per sequent -  and a 
set of  unmarked formulae. We extend the translation mapping taking this difference 
into account. The antecedent and succedent translation functions (')1, (')o below 
are defined in terms of (.)1, (.)0, but they act in a different way on marked and on 
unmarked formulae. 

- -  - -  -- { (A) 1 ifA is '*' marked 
(A1, . . . ,An)I  = A 1 , . . . , A N  where A = D(A) 1 otherwise 

(A) irA is '*' marked 
(A)o = A otherwise 

We now have the following proposition. 

L* ~- F ~ A* iff LOK' }- (F)l ~ (A)o 



376 M. MOORTGAT 

EQUIVALENCE OF L* AND L ~ K  ~ 

The (:=~) direction of the equivalence can be proved by straightforward induction 
on the length of derivations in L*. For the more delicate (r direction, we have 
to show that L(~K ~ does not derive more than L*. We give a case analysis of the 
choice points in the top-down (backward-chaining) unfolding of the search space, 
and show that L(~K ~ can make no moves that would lead the search out of  the 
space defined by the translation mapping. 

Below we juxtapose the L* rules and axiom and their counterpart in L ~ K  ~. 
We treat only one implication. For the L Q K  ~ version, we interleave the proof 
unfolding with the evaluation of the translation mapping. As an auxiliary notion, 
we have functions ACTIVE and LOCKED which for a sequent return the set of 
formulae matching the input condition for a logical rule (ACTIVE), and those which 
no logical rule is applicable to (LOCKED). 

Proof search starts with an L* goal sequent F ~ (A)*. The goal type A is either 
atomic or complex, the antecedent is of length 1 or greater than 1. Consider first the 
case of a complex goal type and 1 < IF]. On the left the L* [/R] rule, on the right 
the corresponding derivation in L Q K  ~. Both (t) and (:~) stand in a feeding relation 
with themselves. For the roots of the derivations, we have ACTIVE(J-)= {A/B}, 
ACTIVE(~)= {(A/B)~ for the leaves, ACTIVE(t)= {A}, ACTIVE(~:)= {(A)~ 
Note that all antecedent formulae in (J;) have main connective [] as a result of  the 
translation mapping. The [] connective acts as a lock: embedded connectives in 
these formulae will only be accessible after the removal of O. 

t3(r) l, D(B) 1 ~ (A) ~ 

r ,B ~ (A)* /R -~-~-~-(~O~-o~i /R 
(t) F ==~ (A/B)* -~r~ - ~ ~  (.)o (~) 

Consider now the case where the recursion on succedent implications bottoms 
out, i.e. where we reach the '*' marked atomic head of the goal formula. In L* 
the only applicable rule in this situation is [~-R] which transmits the '*' marking 
from succedent to antecedent. [ ,R]  is non-deterministic: any antecedent formula 
B can receive the '*' marking. In L Q K  ~ the active atom is realized as (p)0 = pp.  
The only applicable rule here is [[]R] which, by residuation, realizes [] as (.)o on 
the antecedent. [DR] can only be followed by [K~], which non-deterministically 
pushes (.)o to an arbitrary antecedent formula [] (B) 1 . At that point [ � 9  becomes 
applicable, which through the elimination of [] shifts (B)1 from LOCKED tO ACTIVE. 
Again, roots and leaves of  the (J-) ($) derivations agree on ACTIVE and LOCKED. 

o( r ) ' ,  (B)', D(r ') '  ~ p 
DL o( r ) ' ,  (o(B)')o,  [](r,) 1 ~ p 
K I 

(o(r)  ~, o(B) ' ,  o(r , ) , )o ~ p 
[](r) '  o(B) ' ,  o ( r ' ) '  ~ []p r ,  (B)*, r '  => p , R  

(t) r , B , r ' ~  (p)* o ( r ) , , o ( B ) , , o ( r , ) l  ~ (p)0 (.)0 ($) 
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Next we analyse the possible antecedent configurations for the different choices 
of active formula. The active formula is either atomic or complex, and the context 
is either empty or non-empty. Let us consider these in turn, starting with the non- 
empty context case. If the active formula is atomic, the derivation fails, in L* and 
in L ~ K  I. If the active formula is complex (i.e. of the form B / C  or C \ B ) ,  the 
only applicable rule, in L* and in L ~ K  ~, is [/L] ([\L]). The derivation branches, 
initiating uniform head-driven search for the negative subtype of the goal formula 
in the left premise, and declaring the positive subtype active in the right premise. 
Roots and leaves of the derivations in L* and in L ~ K  ~ agree on the ACTIVE, 
LOCKED partitioning. 

A ::ez (B)* F, (A)*, F' =~ p / L  
F, (A /B)* ,  A,  F' ~ p 

D(A) 1 ==> (B) ~ D(s l, (A) l, D(F') I ~ P 
/n 

D(F)  1 , (A)I/(B) ~ D ( A )  1 , D ( F ' )  1 :r p 
(.)l 

D(r) ~, ( A / B ) ' ,  D(A) 1, D(r ' ) '  ~ p 

Finally, consider the base cases of the recursion. Below the correspondence 
when the L* Axiom sequent, i.e. [ ,L] is reached. 

p:=~p 
*L (.)l (p)* ~ p (p)~ ~ p 

For the sake of completeness, one should add the case of the trivial initial sequent 
p =~ (p)*, though the issue of spurious ambiguity hardly arises here. Below the L* 
form and its L ~ K  I counterpart. 

p:::~p 
DL 

(Dp) <> =~ p 
(p). =~ P *L Dp :=~ Dp DR~ 
p :=~ (/9)* *R D(P) 1 ==~ (19) 0 k./1, 

(.)o 

ILLUSTRATION: GEACH 

Without the constraint on uniform head-driven search, there are two L sequent 
derivations for the Geach transition. They produce the same proof term. 

c=~c  b=vb  / L  b=~b a = ~ a  / L  
b/c, c ~ b a :=~ a c :=~ c a/b, b ::~ a 

/L / i  
a/b, b/c, c ~ a a/b, b/c, c ::~ a 
a/b, b/c :::va/c / R  a/b, b/c =~ alc  I R  

a/b =~ (a /c) / (b lc)  / R  a/b =~ (a/c) / (blc)  / R  
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GEACH: UNIFORM HEAD-DRIVEN SEARCH 

Of these two, only the first survives in the L* regime. 

- -  * L  (c)* ~ c 
- -  * R  - -  * L  
c ~ (c)* (b)* : .  b 

/L  
(b/c)*, c =~ b 
b/c, c =~ (b)* *R (a)* ~ a *L 

/L  
(o/b)*, b/c, c ~ a 

. R  
a/b, b/c, c =~ (a)* / R  
o/b,  bit ~ (a/c)* 

a/b ~ ((a/c)/(b/c))* / R  

- -  . L  

(C)* :=>" C FAIL 

c =:~ (c)* a/b, (b)* ~ a 
/ i  

o/b ,  @ / c ) * ,  c ~ ,:, 
*R 

o/b, b/c, c ~ (a)* / n  
olb, blc ~ (a/c)* I n  

alb ~ ((olc)lq, lc))* 

UNIFORM HEAD-DRIVEN SEARCH: MODAL CONTROL 

We interleave the proof unfolding and the unpacking of the (.) 1, (.) 0 translations. 

to be cont'd 
(a)~/(b) ~ D(b/c) ~ , U(c) ~ ~ (.)1 

(a/b) 1, I - I (b /c )  1 , I- I(c) 1 ~ a 
ElL (=(~/b)~)o, El(bl~) ~, El(~) '  =~ o 
K'  

( F - I ( a / b )  1 , I - I (b /c )  1 , I - l ( c ) l )  0 ~ a 
taR 

El(o/b) ~,ra(b/~)~, n (c )  ~ ~ u o  0 
~ 

u ( ~  1, El@/c) 1 ~ (~176 ! , -0 

;,o 

Consider first the interaction of [fR] rules and selection of the active antecedent 
type. Antecedent types all have [] as main connective. The D acts as a lock: a 
� 9  formula can only become active when it is unlocked by the key ~ (or (.)o 
in structural terms). The key becomes available only when the head of the goal 
formula is reached: through residuation, [ � 9  transmits ~) to the antecedent, where 
it selects a formula via [Kr]. 
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TRANSMISSION OF THE ACTIVE FORMULA 

There is only one key ~ by residuation on the [] of the goal formula. As soon as 
it is used to unlock an antecedent formula, that formula has to remain active and 
connect to the Axiom sequent. 

~ (.)1 
(r ~ 

DL 
(D(~)~) ~ ~ 

DR 
D(a)  1 ::~ ["]C b ~ b (.)1 
D(c) 1 =~ (c) ~ (.)0 (b) 1 =~ b 

/n 
(b) ' /(c)  O, D(C) 1 ~ b 

(3'  (b/r =(~)1 ~ b 
DL ( D ( b / c ) l )  O, D(C) 1 ~ b 
K' (D(b/@,  o(~)1) o ~ b 
DR D(b/c) ~, D(c) 1 ~ Db 

D ( b / c )  1, D(c)  1 ::~ (b) 0 (.)0 
a=eza 

(a)  1 =:~ a 

(a)l /(b) O, o ( b / a )  1, VI(C) 1 ~ a 

(.)1 

/L  

Below, we show how the wrong identification of the antecedent head leads to 
failure. The key to unlock O(a/b) 1 has been spent on the wrong formula. As a 
result, the implication in (a/b) 1 cannot become active. Compare with the failure 
of  the corresponding L* derivation above. 

c ~ c  (.)l 

DL 
(D(C)I)  0 ~ C 

DR 
D(C) 1 ~ DC FAILS t 

D(~)' ~ (~)0 (.)o D(a/b)l,  @1 ~ 
/L D(a/b) 1 , (b)l/(c) O, F'](C) 1 ~ a (.)1 

D(a/b) 1, (b/c) 1, D(c) 1 ~ a 
DL D(a/b) 1, (D(b/c)l) 0, D(c) 1 ~ a 
K '  (~ ( - /b)  ~, n(b/c) ~, D(~)~) ~ ~ 
DR D(a/b) 1, D(b/c) 1, D(c) 1 ~ Da 

4. Conclusion 

This paper is a technical investigation of the architecture of mixed categorial type 
logics. The raison d'etre for such an exercise derives from new applications of these 
logics to problems of  grammatical analysis - without the linguistic motivation many 
of the logical issues addressed above would simply not arise. The reader who is 
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interested in linguistic applications can turn to (Hendriks, 1995a, 1995b), where 
one finds a multimodal analysis of  comparatives and ellipsis, (Kraak, 1995a, 1995b) 
for a head-adjunction treatment of clitics in French, or (Versmissen, 1995) for a 
logical encoding of linear precedence constraints and word order domains in terms 
of <~, r]. 

Appendix 

Cut elimination for O, D 

In this Appendix, we establish the equivalence of the axiomatic and Gentzen 
presentations of the logic for 0 ,  D, and we show that the Gentzen presentation 
allows Cut Elimination. We start with the pure residuation logic for {), D and then 
consider the addition of structural postulates/rules K, T, 4. 

EQUIVALENCE OF THE AXIOMATIC AND GENTZEN PRESENTATIONS 

To compare the presentations of Figure 2 and Figure 4 we extend the formula 
representation A ~ of a structural configuration A to the language ~ ( / ,  *, \ ,  (~, D) 
in the obvious way: (A1, A2) ~ = A ~ .  A~, (A) ~ = 0 A  ~ A ~ = A. The sequent 
presentation for the language ~ ( / ,  *, \ ,  0 ,  D) can then be shown to be equivalent 
to the combinator axiomatization in the sense that every combinator f : A --~ B 
gives a proof of  A ~ B,  and every proof of a sequent I" ~ B gives a combinator 
f : F ~  

FROM COMBINATORS TO SEQUENTS 

To obtain the Gentzen rules [~)L], [~)R], [DL], [DR] from combinator deductions, 
we use the Isotonicity of<>, D (cf. Figure 3) in addition to the residuation inferences 
#, #-1 .  Given the formula equivalent F ~ for sequent terms F, # gives [DR] ~ [~)L] ~ 
makes premise and conclusion identical, and Isotonicity for {) gives [{)R] ~ The 
only non-trivial case is [nL]. Consider first the case where the context F is empty. 
The combinator derivation of  [DL] ~ is given below. 

f : A ~ B  
(f)o : DA--~ DB A ~ B 

#((f)m) : ~DA --~ B (DA) o ~ B 
DL 

Next the case where the context F in the [DL] premise F[A] =~ B is non-empty. 
Let g be F[A] ~ -4 B. Let 7r(g ) be a sequence of #,/3, 2/ residuation inferences 
isolating A on the left of the arrow. Then we obtain the formula equivalent of the 
conclusion of  [DL] via the deduction 7r -1 (#(O(7r(9)))). 
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FROM SEQUENTS TO COMBINATORS 

To obtain the combinators id, f o g (Transitivity), # ( f ) ,  # -  1 (g) (Residuation) from 
sequent derivations, we use the Cut rule. Once we have established the equivalence 
of  the combinator and the sequent presentation, we prove Cut Elimination for the 
latter. [Ax] gives id, f o g is a special case of Cut. The crucial new cases # ( f ) ,  
# - I  (g) follow. 

A ~ A ~ R  B ~ B o L  
(A) 0 =~ ~ A  f : O A - ~  B g : A =~ o B  (ClB) O =~ B 

(A) 0 ~ B (cut) (A) 0 =~ B (cut) 
QR ~ L  

i t ( f )  : A =~ t:]B #-a(g) : OA :r B 

CUT ELIMINATION: PRINCIPAL CUTS 

We now extend the Cut Elimination result to the new connectives (~, O. We proceed 
by induction on the complexity of  the cut formula, and distinguish principal cuts, 
where the cut formula is active in both cut premises, from permutation conversions, 
where this is not the case. 

Below the new cases of principal cuts, with cut formula OA and hA.  Replace- 
ment of  a cut on OA (DA) by a cut on A of smaller degree. 

A =~ A r[(A)O] =~ B ~L 
(A) 0 =~ ~A (>R r[<>A] ~ B A m A r[(A) o] ~ t3 

r[(ZX)~] ~ B (~ut) ..~ r[(~)~] ~ B 

(A) o ~ A r[A] ~ B 
A =~ 1:3A o R  r[(DA)~] ~ B o L  (A) <> =~ A r[A] ~ B 

(~ut) (cut) 
F[(A) 0] =~ B "-~ F[(A) 0] =~ B 

CUT ELIMINATION: PERMUTATION CONVERSIONS 

The new cases where the active formula in the left or right premise is different 
from the Cut formula allow for the usual elimination strategy: permutation of the 
Cut rule and the logical rule. The Cut is moved upwards,  and becomes of  lower 
degree. Below the left premise antecedent cases for (>A and []A. 

r[(A) o] ~ B r[(A)O] ~ B A[B] ~ C 

r[<>A] ~ B ~ n  A[B] =~ C A[r[(A)O]] ~ C 
(cut) ~ n  

A[r[<>A]] ~ C ~ A[r[SA]] ~ C 

A[A] =~ B A[A] ~ B r[B] ~ C 
A[(t3A) 0] =~ B DL rIB] ~ C r[a[A]] ~ C (cut) 

(cut) 1:3L 
r[~[(DA)O]] ~ C -~ r[~[(~A)~]] ~ C 

(cut) 
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PERMUTATION CONVERSION: RIGHT PREMISE ANTECEDENT 

Active type ~ A  or o A  in the antecedent of the right Cut premise. Notation: 
F[A1, A2] for a structure F with substructures A1, A2, not necessarily sisters. 

r[A, (B) ~ =~ C A =~ A r[A, (B) 01 ~ C 
A =~ A r[A, ~B] =~ C ~L F[A, (B) 0] =~ C 

F[A, CB] ~ C (cut) ~ F[A, (}B] =~ C (}L 

(~,t) 

r[A, B] =~ C A =~ A r[A, B] =~ C 
o L  (cut) 

A =~ A r[A, ([::]B) 0] =r C F[A, B] =~ C 
F[A, (DB) 0] =~ C (cut) .,., F[A, (DB) 0] =:~ C o n  

PERMUTATION CONVERSION: RIGHT PREMISE SUCCEDENT 

Active type ~ A  or t3A in the succedent of the right Cut premise. 

(A[A]) 0 =~ B F =~ A (A[A]) 0 ~ B (cut) 
DR F = ~ A  A[A]=~DB (A[F]) 0 = ~ B  

(cut) o R  
A[F] =~ t3B -,-* A[F] ~ 138 

r[A] ~ B A =~ A F[A] =~ B 

A =~ A (r[A]) o ~ <>B r [a ]  r B 
(F[A]) 0 =~ OB (cut) -,., (F[A]) ~ =:r ~ B  ~ R  

STRUCTURAL RULES FROM STRUCTURAL POSTULATES 

The discussion so far concerns the pure residuation logic for ~ ,  D. Let us now 
extend the equivalence between axiomatic and Gentzen style presentation to the 
structural postulates and rules. To obtain the sequent rules T, 4, K from axiomatic 
derivations, it is enough to consider the case where the context F is empty, as 
we have seen above. The following deductions give the formula equivalent of the 
structural rules T, 4, K .  We leave K1,  K 2  to the reader. 

4 : (><>A~ - +  ( > A  ~ / : ( > A ~  - ~  A 

f o 4 :  (>(>A ~ -+ A ",-.* 

T : A  ~ ~ f : (>A ~ 
f o T : A ~  A 

[(A)O] ~ =~ A 

[((A)O)O]o :=~ A 

[(A)0] ~ =~ A 

A ~  
T 

[((A1) 0, (A2)0)]~ =~ A 
K 

f o K : ~ ( A ~ ' s A ~ ) - + A  ~ [ ( ( A I , A 2 ) ) 0 ]  ~ :=~A 
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STRUCTURAL POSTULATES FROM STRUCTURAL RULES 

Derivation of  the structural postulates via Gentzen proofs is straightforward. 

A ~ A OR B =~ B OR 
A ::,- A OR (A)~ =~ 0A (B) ~ ~ 0 B  ,,R 

(A) 0 =~ 0A ((A) 0' (B) 0) ~ 0A �9 0 B  
4 K 

A =~ A OR ((A)~176 =~ 0A 0L ((A,B)) 0 =~ 0A �9 0 B  .L  
(A) O =-~ O A  (~A) 0 =~ 0A ((A �9 B)) 0 =~ 0A �9 0 B  

A = ~ 0 A  T 0 0 A = ~ 0 A  ~L 0 ( A * B ) ~ 0 A * 0 B  0L  

CUT ELIMINATION: STRUCTURAL RULES 

We extend the cut elimination algorithm to logics with a structural rule package 
from T'({T, 4, K}).  Recall that in the case of connectives the proof of the Cut 
Elimination theorem is by induction on the complexity of Cut inferences, measured 
in terms of the number of connectives in the cut formula. The structural rules do not 
involve decomposition of formulae, so we need an additional complexity measure 
here. 

Following (Dogen, 1988, 1989; van Benthem, 1991), let the trace of a cut 
formula A be the sum of the lengths of the paths in the derivations of the cut premises 
connecting the two occurrences of  A with the point of  their first introduction in 
the proof. The cut elimination steps involving structural rules now assimilate to the 
permutation cases: if a structural rule feeds the cut inference, we can interchange 
the order of  application of  the cut and the structural rule, leading to a situation 
with decreased trace, as the inductive hypothesis requires. Two examples are given 
below. 

A[(A') 0] =~ A A[(A') 0] =~ A r[A] =:, B 

A[A'] =#- A T r[A] =~ B r[,a[(A')o]] ~ B 
r[~x[a,]] =~ B (cut) - , - .  r[A[,v]] =:, B T 

r[(r'[A])O] =~ B 
4 r[((r,[A])O)o] =~ B 
(cut) 

r[((r ,[A])o)o] =~ B 
A = ~ A  

(cut) 

A =~ a r [ ( r , [a ] )o  I = ~ .  
r [ ( r 'v , ] )o ]  = ~ .  

4 r [ ( ( r ' [zq)o)  o] =~ B 

(cut) 
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