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Abstract. It has been shown that the main problems of the circuit theory of solar flares - unlikely huge 
current growth time and the origin of the current interruption - have been resolved considering the case 
of magnetic loop emergence and the correct application of Ohm's law. The generalized Ohm's law for solar 
flares is obtained. The conditions for flare energy release are as follows: large current value, > 1011 A, 
nonsteady-state character of the process, and the existence of a neutral component in a flare plasma. As 
an example, the coalescence of a flare loop and a filament is considered. It has been shown that the current 
dissipation has increased drastically as compared with that in a completely ionized plasma. The current 
dissipation provides effective Joule heating of the pIasma and particle acceleration in a solar flare. The 
ion-atom collisions play the decisive role in the energy release process. As a result the flare loop resistance 
can grow by 8-10 orders of magnitude. For this we do not need the anomalous resistivity driven by 
small-scale plasma turbulence. The energy release emerging from the upper part of a flare loop stimulates 
powerful energy release from the chromospheric level. 

1. Introduction 

The circuit model for solar flares proposed more than twenty years ago by Alfv6n and 
Carlqvist (1967) is still attractive among the numerous flare models. Following the idea 
of Alfv6n and Carlqvist the problem of flare energy release is equivalent to the problem 
of electric current interruption in the solar corona-photosphere circuit. The model is 
based both on the measurements of Severny (1965) indicating vertical currents up to 
a few times 1011 A in the neighborhood of sunspots and on the analogy with a circuit 
containing a mercury-vapor rectifier. The plasma in the rectifier can, under certain 
conditions, make a jump from a highly conducting to a highly resistive state. Sen and 
White (1972) proposed a dynamo mechanism for generating an electromotive force in 
the corona-photosphere circuit. The energy of the generator is taken from the kinetic 
energy of neutral atoms in the photosphere. The photospheric dynamo can supply the 
required power ( ~ 1029 erg s - 1 ) for a fairly big flare if the plasma velocity in the dynamo 
region is about 105 cm s - 1 (Kan, Akasofu, and Lee, 1983). Because the current descrip- 
tion facilitates the discussion of global constraints of solar flares, and because of the 
fruitful analogies between a flare loop and equivalent electric circuit as well as between 
the Earth's magnetosphere-ionosphere circuit and the solar corona-photosphere 
circuit, the circuit model is still very sound. There were many attempts to develop the 
circuit theory of solar flares (Sen and White, 1972; Heyvaerts, 1974; Spicer, 1977; 
Akagofu, 1979; Alfvdn, 1981; Kan, Akasofu, and Lee, 1983; Henoux, 1987; Melrose 
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and McClymont, 1987). The circuit analog is also a very effective tool to investigate the 
coronal heating mechanism (see, e.g., Ionson, 1982). 

Current interruption in the circuit model was usually attributed to the electric double 
layer or multiple double layers (Alfv6n, 1981; Henoux, 1987). It was proposed that 
charged particles are accelerated up to high energies in the corona within a very short 
distance of the order of the Debye length, much less than 1 cm. Meanwhile, from the 
kinetic theory of the steady-state double layers (Gurevich, Meerson, and Rogachevsky, 
1985) it follows that the energy of the charged particles accelerated in a double layer 
is determined by the layer potential drop and cannot exceed the thermal energy (a few 
keV) of a flare plasma. Thus, for the flare energy release the multiple double layers must 
switch on coherently. Moreover, the formation of the double layers produces a plasma 
density drop. This is in contrast to the observations, since X-ray and microwave data 
(de Jager, 1979; Zaitsev and Stepanov, 1983) suggest that the plasma density of the 
energy release volume in the coronal part of a flare loop can be sufficiently high: 
1011_1012 cm -3. 

Hence, the circuit theory of solar flares must be developed a lot because there is no 
answer today on the key problem of a flare: what is the origin of sudden enhancement 
of the resistance in the current circuit? 

In most solar flare models the current dissipation is used this way or another to 
explain the energy release (Alfv6n and Carlqvist, 1967; Syrovatsky, 1966; Sturrock, 
1980; de Jager, 1986). The stationary current density j is given by the relation 

j = a E  (1)  

or its known modifications. Classical or Coulomb conductivity due to particle collisions 
OCoul does not ensure the required energy release. It is therefore common practice to use 
the anomalous conductivity o~n ~ %oul, caused by the current instabilities of small-scale 
waves (Tomozov, 1971; Spicer, 1977; Somov and Titov, 1985). The conditions for 
current instability onset on the Sun are quite rigid and cause numerous difficulties in 
the flare theory. Observations show, however, that a solar flare is an ordinary phenome- 
non and occurs in many various situations. 

As for the circuit model it should be noted that the anomalous resistivity due to, for 
example, electron collisions with the ion-sound turbulence does not supply the required 
resistance in the coronal part of a flare loop. In order to resolve this problem, Melrose 
and McClymont (1987) suggested that the current profile in a coronal loop breaks up 
into many filaments and the filling factor must be about 10- 5 for the required energy 
release rate. However, the laboratory experiments do not confirm this idea. According 
to Fadeev, Kvartshava, and Komarov (1965) the filling factor in the Z-pinch device does 
not exceed 0.5, as a rule. 

Recently, attention was drawn to the fact that Ohm's law, as it stands in Equation (1), 
is not correct for solar flares (Zaitsev and Stepanov, 1989). A determining role in the 
current dissipation in flares is played by both the ion-neutral collisions and the 
non-stationary character of the energy release process. Consequently, the conductivity 
decreases by 8-10 orders of magnitude as compared with %oul- An important factor 
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earlier disregarded is the partial plasma ionization in the primary energy release volume. 

There are indications based on synchronous X-ray and He observations that the cold 
(~ 104 K) partially ionized and hot (~ 107) completely ionized plasma components 
coexist in the coronal part of the flare loop (Zirin et al., 1967; Rust and Webb, 1977; 
Webb and Jackson, 1981). Essential temperature inhomogeneity in the coronal part of 
the flare is confirmed also by Svestka (1976). 

Another important problem of solar flare physics is the huge inductance of the coronal 
magnetic arch-photosphere circuit. Because of this inductance the current rise time 
after the voltage source starts to operate is more than 10 4 years thus being unrealizable 
for the corona-photosphere circuit. 

In Section 2 we will analyze the electric current behavior during the emergence of a 
current-carrying magnetic loop and will discuss the global constraints of the flare 
loop-photosphere circuit. Section 3 presents an illustration of the flare energy release 
using the interaction of a single flare loop with a filament as an example. We have used 
the generalized Ohm's law for the non-steady-state condition taking into account the 
neutral plasma component in the energy release volume (Appendix). We will show also 
that the energy release rate of a solar flare can be explained without anomalous resistivity 
and that current filamentation is not needed. The main energy release of a flare occurs 
in the chromosphere rather than in the corona (Section 4). In Section 5 we will briefly 
describe the flare scenario in the context of the advanced circuit model and summarize 
the results. 

2. The Current-Carrying Flare Loop: Circuit Analog 

Consider an equivalent electric circuit composed of a coronal magnetic arch with 
resistance R c and inductance L and a photospheric section with resistance Rph and 
electromotive force (e.m.f.), o ~, (see, e.g., Alfv~n and Carlqvist, 1967; Henoux, 1987). 
The photospheric e.m.f., g, is caused by the Lorentz force (e/c) (v x H), which in turn 
is created by the photospheric material motion. For this dynamo mechanism to work, 
the plasma must not be frozen-in. Such conditions do exist in the photosphere where 
the ion-neutral collision frequency is much more than the ion gyrofrequency (Sen and 
White, 1972). A quite opposite relation is true for the electrons. Therefore the ions follow 
the neutral component of the photospheric plasma, a charge imbalance arises, and an 
e.m.f, sets up: 

= -  v a x H d x ,  (2) 
C 

where va is the velocity of neutral atoms. 
An essential feature of the electric circuit under consideration is associated with the 

high inductance of the flare loop (Alfv6n and Carlqvist, 1967): 

L = 41( In 8l~zr ~) . (3) 
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Here the magnetic loop is approximated by a slender semi-circular flux tube of radius 
l/rc. At l = 2 x 109 cm and r = 108 cm, Equation (3) yields L ~ 10 l~ cm ~ 10H. 

An important property of a high-inductance circuit is the large rise time of current 

when the e.m.f, is switched on. This is apparent from the equation 

d 
R I  + - -  ( L I )  = E,  R : R c + Rph.  (4) 

dt  

The resistance of the coronal part of the magnetic loop R c = l /aS  with the Coulomb 

conductance aCou~ is about Rc g 10 - 11 ~2 for the loop length l ~ 2 x 109 cm, the loop 
cross-sectional area S ~ 3 x 1016 cm 2, and the plasma temperature T = 106 K. Kan, 

Akasofu, and Lee (1983) found that the photospheric resistance is of the same order 

of magnitude, i.e., Rph ~ 10- 11 O. It is seen from Equation (4) that for constant 

inductance, L, the current rise time is t = L / R  g 3 x 10 4 years. At the first sight this 

seems to be an unsurmountable obstacle to the circuit models of flares. However, 

bearing in mind the magnetic loop emergence increasing the inductance, we have one 

more time-scale z L = ( d L / L  dt) -  1, which governs the characteristic current rise time. 

Indeed, if the inductance changes linearly as L( t )  = L o + tit then the solution of 

Equation (4) will be: 

I ( t ) = I  o + - -  1 . (5) 
R + t i  

It is seen from Equation (5) that for I o = 0, the characteristic rise time of the current 

is of the same order as the inductance variation time in the circuit, L t i -  1 = ( d L / L  dt) -  1 

The current formation in flaring loops is attested by the emergence of the magnetic flux, 

often observed a few days or a few hours before the flare. Assuming, for example, that 

the emergence time At is about seven hours, one has ti = L/A t  ~ 4 x 10- 4 ~-~ >~ R. Let 

us suppose also that L o ~ L(t) .  Then from Equations (2) and (5) it follows that for 

photospheric material velocity va = 5 x 10 4 c m  S - 1, H = 10 3 0 e ,  and Ax  = 109 cm, the 

maximum value of electric current formed in a flare loop is about/max = g/ti g 1012 A. 

The stored magnetic energy in a single flare loop is then W = ( 1 / 2 )L I  2. For L = 10H 
and I = 1011-1012  A, we have W = 5 x 1029-5 x 10 31 erg, which is quite enough for a 

modest flare. However, the power of Joule dissipation in a flare circuit 
(IV = (R~ + Rph)I  2 = 1018-1020 erg s -  1 = 1011_1013 W, or 8-10 orders less than the 

required value in the impulsive phase of a solar flare. Hence, the flare can occur in the 
coronal or chromosphere-photosphere part of the circuit only if, for this reason or 
another, the resistance grows rapidly up to R = 10-4-10  - 2 ,Q, meaning essentially 

current circuit interruption. This is one of the key flare problems to elucidate the origin 
for such an increase in circuit resistance. 

3. Energy Release in a Prominence-Loaded Flaring Loop 

Observations indicate a close connection between flares and dark filaments located 
above a magnetic neutral line (Svestka, 1976). About 45 ~o of major flares are preceded 
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by filament activations and flares that occur in old active regions are quite generally 

connected with filament motions (Smith and Ramsey, 1964; Dodson and Hedeman, 

1970). In this section we illustrate the flare energy release driven by the generalized 
Ohm's law using a current carrying magnetic loop as an example. Particular attention 

is paid to the possible contribution of the prominence to the energy release process. 

3.1. CURRENT DISRUPTION DUE TO PROMINENCE - FLARE LOOP INTERACTION 

The prominence on the top of a magnetic arch (Figure 1) can be unstable against the 

flute-type perturbations and can serve as a flare trigger (Pustyl'nik, 1973). The flute 

Fig. 1. Interaction of a current-carrying flare loop with a prominence. The prominence tongue (dotted 
area) penetrates into the flare loop due to the flute instability. 

instability of the ballooning mode occurs when the radius of curvature of the trough, 

having the form of a tongue, is 

4rcnxgS~ 2 
< , (6) 

H 2 

where n x = n a + n, and LP is the length of the magnetic field line supporting the 
prominence. Putting n x = 1012 cm-  3, y = 109 cm, H = 500 Oe, from Equation (6) we 

find ~ < 2 x 106 cm. If the temperature of the prominence bottom exceeds 3 x 10 4 K,  

the gravity force is inferior to the centrifugal force. The gravity acceleration, g, in 

Equation (6), is substituted by 2~cT /miN  (Zaitsev and Stepanov, 1988), where ~c is the 
Boltzman constant, m e the ion mass, so that the recessed tongue may have a smaller 
curvature. For example, at T = 107 K, we have N < 4 x 108 cm. The active region, 
heating before the flare up to a temperature T > 10 7 K,  is indicated by precursors in soft 
X-rays 10-30 min before the flare start (Zhdanov and Charikov, 1985). 

The flute instability leads to three important consequences. First, prominence oscilla- 
tions arise (Pustyl'nik, 1973; Zaitsev and Stepanov, 1988), which produce nonstationary 
conditions in a flaring loop. Second, the prominence deforms the magnetic flux tube and 
contracts the current channel, thus increasing eventually the resistance of the coronal 
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part of the circuit and consequently the energy release rate. Third, the flaring loop is filled 
with a partially ionized plasma and the equilibrium conditions in a flaring loop are 
violated when the right-hand side of the motion equation (A.8) in the Appendix is not 
z e r o ,  

Note that even if the prominence bottom is hot (~ 10 v K), the tongue-entrained cold 
plasma also penetrates into the flare loop due to the flute instability. As shown below, 
large radiative losses prevent fast heating of prominence tongues in a flare loop by the 
current. Therefore, the partially ionized cold and completely ionized hot plasma compo- 
nents can coexist in a coronal loop in accord with the observations of Zirin et al. (1967), 
and Webb and Jackson (1981). 

We now estimate the value of total energy power which goes into plasma heating: 

= f q dV (7) 
i ]  

V 

in the volume V of that part of the flaring loop, which interacts with the prominence. 
Here q = j.  E* means the work of the electric field E* under current in a coordinate 
system moving with the bulk plasma, which is spent for the plasma Joule heating. 
Consider for simplicity a horizontal current channel having axial symmetry. With 
nx= 1011-1012cm -3, I--1011-1012A, the azimuthal magnetic field component 

H~o = 500 Oe, and the channel cross-sectional area S = 1016 cm 2, the Amp6re force 
j x H exceeds the gravity force by about three or four orders of magnitude, so that the 
latter can be neglected in Equations (A.8) and (A. 11). We, therefore, assume that in the 
equilibrium state the Amp+re force in the current channel is balanced by the gas pressure 
gradient. 

The equilibrium state is violated as the flute instability of the prominence develops. 
The current channel is filled with the dense partially-ionized plasma of the prominence, 
which smooths out the initial radial pressure distribution. In the case ofc - lj x H ,> 7p~ 
Equation (A. 14) can be written as 

j2me(Vei + l~ea ) F Vpe j F 2 
q= ( V p a x H ) -  + - -  (j x H )  2. (8) 

e2n cmin via en c2rtmi Via 

We then integrate Equation (8) over the cylindrical volume, bearing in mind that in this 
geometry Vpej = 0 and disregarding terms of the order of 2~p~/H 2 as compared to unity 
(the plasma fi ~ 1) and find the energy release power: 

~V = ~ me(Vei +~ >a)d 2~zF212d l I  2 , 
+ (9) 

[_ e2nS c4nmiviaSZJ 

where d is the length of the flare loop part interacting with the prominence. It should 
be readily apparent that the second term in Equation (9), which describes the Joule 
dissipation of the current due to ion-neutral collisions, exceeds the conventional Joule 
dissipation described by the first term by many orders of magnitude. A considerable 
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increase of Joule dissipation in partially-ionized gases was noted first by Schl~iter and 

Biermann (1950) (see also Cowling, 1957). This is because the energy of ions moving 

through the neutral gas due to the Ampere force j x H is much larger than the energy 
of the relative motion of electrons and ions. The dissipation of the energy of moving ions 
by ion-neutral  collisions implies great additional dissipation of the energy of the electric 

currents. This effect is absent in a steady-state fully-ionized plasma. 
Hence, we avoid using the anomalous resistivity when solving the solar flare pro- 

blem and consider the energy release in a sufficiently large volume. This fact is usually 

ignored in the analysis of the flare energy release. Indeed, putting into Equation (9) 
n z, = /7 a + r/ = 1012 c m -  3, which corresponds to the dense parts of the prominence 

material that has penetrated into the flare loop, and assuming that the cold plasma 
component ensures F = 0.1, with I = 3 x 10 II A, T = 1 0  7 K ,  d = 5 x 10 8 cm, and 
S = 1016  cm 2 we find 

Rlin me(Vei + Vea)d = ~ 4 •  lO-13.Q, 
ne2 S (lO) 

2rcF2IZd F 12 dT  1/2 
R,, t - - 1.6 • 10 6 CGS ~ 2 x 10 .4  ~ .  

c4nmivmS 2 1 - F camin~S 2 

With these parameters, the energy release rate in the circuit W -- R m I  2 is about 
2 x 1 0  26 erg S 1, thus being sufficient to explain the energetics of an elementary flare 

burst. One should point out the very important peculiarity of the proposed energy release 

mechanism: an increase in current I leads to an increase in energy release according 

to the formula 

~ V ~ I  4 . ( 1 1 )  

The characteristic time scale of the energy release is determined by the velocity of the 
prominence tongue penetration into the flaring loop: z~ ~ r/(T/mi) 1/2 is about 1-10 s, 

i.e., of the order of an elementary flare burst. Note, that the current value is almost 

constant during the energy release due to the huge inductance of a flare loop. 
For the sake of comparison, we investigate the conditions for anomalous resistivity 

driven by, for example, Buneman instability in the context of the circuit model. It is 

known that Buneman instability occurs if the velocity of electrons relative to ions 

exceeds the plasma electron thermal velocity VTe. For the current channel under 
consideration it means that the cross-sectional area S of a channel with T = 10 v K, 
n =  1012cm 3, i = 3  • 1011Amustbe  

I 
SB < = 2 x 10 9 cm z . (12) 

enVr~ 

For anomalous resistivity due to ion-sound turbulence the cross-sectional area of a 
current channel must be S; , < 1011 cm 2. Thus, the current filamentation in a flare loop 
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with a filling factor about l0 - 7-10 - 5 is a strong requirement for anomalous resistivity. 
This is in accordance with the result of Melrose and McClymont (1987). 

It is important to note that the radiative losses in a cold ( ~  105 K) and dense 
(,~ 1012 cm -3)  plasma qr = L r ( T ) F ( 1  - F ) n ~  102 erg cm -3 s -  1 exceeds the Ohmic 

heating of the prominence material by the electric current: (/V/Sd ~ 10 erg cm - 3 s - 1 ; 

hence, the cold prominence material in a flare loop is not subjected to fast heating. Here 

L r ( T  ) is the radiative cooling coefficient (Cox and Tucker, 1969). This is the reason for 

the coexistence of cold partially ionized and a hot fully-ionized plasma components in 

a flare loop required for the flare energy release within the framework of our approach 
based on the generalized Ohm's law under the non-steady-state condition. 

3.2. P A R T I C L E  ACCELERATION 

The potential drop U over the length of the current channel due to the nonlinear 
resistance Rn~ = 10 - 4 0  and for the current I = 3 x 1011 A is 

U = eRnt I  = 30 MeV. (13) 

With this potential drop, the bulk of the electrons can be accelerated up to an energy 

E e = ( l }p /d )U ~ 100 keV, while the bulk of the ions to E i = ( l~p/d)U g 5 MeV. Here l fp  

is the mean free path of the particles due to classical collisions. The charged accelerated 

particles can contain a considerable part of the flare energy. Supposing, for example, 
that the number of accelerated electrons is about N g 1033. We then find a total energy 

of fast electrons W e = N E  e ~ 1026 ergs that is quite comparable with the energy released 
in a single flaring loop. 

3.3.  E N E R G Y  RELEASE VOLUME: AN EQUIVALENT CIRCUIT 

Analyzing the energy release in the coronal part of a flare loop where the current 
interruption occurs, we have omitted two points which, in principle, can make the energy 

release less effective. The first one concerns the spurious capacitance driven by the 
prominence tongue penetrating into a flare loop. To explain this point, let us represent 

the primary energy release volume R c by the equivalent LRC circuit indicated in Figure 2 
by a dashed box with spurious capacitance C ~ dc2/47~g 2 ~ 4 x 1012 cm, where V A is 

the Alfv6n velocity, the inductance L 1 ~ d/c 2 ~ 5 x 10 - 13 CGS ~ 0.5H, and the resist- 

ance R(t)  depending on time and growing suddenly from the value of Rli n to the value 
of Rnt (see Equation (10)). Because of spurious capacitance the question arises: what 
part of the total current will flow through nonlinear resistance? To answer this question, 
let us represent the maximum value of the current through the capacitance C as follows: 

i~ax < CI dR(t) R m CI - -  , (14) 
dt "gfl 

where zft is the typical time scale of the flute instability. Putting into Equation (14) 
C ~ 4 x 1012 cm, Rnt ~ (10 -4 -10-  3) ~,  We have I ~  ~x ~ 4(10-  5-10-  3)i. Thus, the 
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Fig. 2. An equivalent electric circuit for a flare loop interacting with a prominence. The coronal resistance 
R c during the energy release process is represented by an LRC circuit with capacitance C, resistance Rnt , 
and inductance L I . The current in a circuit I = I1 + 12 with inductance L is driven by e.m.f.g.. Rph is the 

photospheric resistance. 

current will flow through nonlinear resistance and effective Joule dissipation takes place. 

The second point deals with the excitation of the Alfv6n wave propagating along the 

magnetic flux tube in the current interruption region. Alfv6n waves can be generated by 

the plasma velocity deviation perpendicular to the magnetic field when the prominence 

tongue penetrates into the flare loop. As a result, a part of the total current belonging 

to the Alfv6n wave can flow around the 'cold' tongue and does not participate in the 

energy release. It is easy to show that the ratio of Alfv6nic current to the total current 

is 
1 HoV~ 

I A / I  , (15) 

where V is the plasma velocity deviation due to the flute instability, H~o is the 

nonpotential component of the magnetic field arising due to current I. Taking the 

relation V_ < VTi into account, we find I~a• ~//Ho/4H~o, where// is  the plasma beta. 

Hence, for H~o ~ Ho a n d / / ~  1 the Alfv6nic current is not important. It should be noted 

also that it is impossible to have any direct current in an LRC circuit with series 
capacitance as proposed by Ionson (1982). 

The shunt capacitance C (Figure 2) introduces a new time scale for the equivalent 
circuit. Indeed, for an LRC circuit with L 1, C, and Rnt we can write the equation 

d212 Rnt dI  2 1 
- -  4" + 12 = 0 ,  (16) 
dt 2 L 1 dt L1C 
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where I 2 = I - 11. The solution of Equation (16) has the form 

- [  (   '  lcosF/1 12 I CR"t exp = _ - - , t /  t . (17) 
~f~ 2L 1 ,/J I_\L 1C 4L~,/ 

For 1/L1C>> 2 2 R,z /4L 1 we have dumping oscillation with a period z = 2z ,,~11C 

2d/VA ~, 10 s. The quality of these oscillations under flare loop conditions is suf- 
ficiently high: Q = x / L 1 / C / R , z  ~ (102-103). The same LRC circuit exists in the chro- 

mosphere where energy release is more powerful (see Section 4). Under chromospheric 
conditions the ratio I ~ X / I , ~  10-1. It is not excluded that the manifestation of this 

'high Q' resonator can be a weak modulation of the microwave flux with a time scale 

of roughly several seconds during and after the impulsive phase of the flare observed 
sometimes for example by the Berne group (Magun et al., 1990). 

In the conclusion of this section we summarize the typical time scales for flare energy 
release in a framework of the circuit approach: 

(i) Current rise time before the flare, rz: = (dL/L  dt)-  1, which is equal to the magnetic 

loop emergence time (a few hours or a few days). 

(ii) Time scale of the flute instability, ry l ~ r/Vrr ~ 1-10 s. 

(iii) Current relaxation time after current disruption, % ,,~ L1/R, t  ~, 500-5000 s, which 
is about the flare duration. 

(iv) Period of eigenoscillations of the LRC circuit, ~ ~ 2re x / ~ l C  ~ 10 s. 

4. Energy Release in the Chromosphere 

Heating of the flare loop footpoints by energetic particles produces nonsteady-state 
conditions in a large current system at the chromospheric level and 'switches' the 

generalized Ohm's law. It seems reasonable to use the term chromospheric flare, recently 

avoided because of the energy release observations in compact coronal magnetic arches, 

since at the chromospheric level the energy release is much more powerful than the 
coronal value. Indeed, for the vertical (with respect to the Sun surface) part of the 
magnetic flux tube with current I ~ 3  x 1011A and height d ~ 2  x 10Scm, from 

Equation (10) we find: 

F I 2 d  
RChr = 1012 _ _  CGS ~ 3 x 10 -2 1-2 (18) n l  

1 - F c4mil'l~S 2 Z 1/2 

In Equation ( 1 8 ) n x ~  10 ~3 cm -3, T ~  104 K, F ~  0.5 (Svestka, 1976) and we 
assumed that the tube cross-sectional area is reduced at the footpoints of the flare loop, 
S ~ 10 is cm 2. The energy release rate in the chromosphere I;vchr = ~'ntOchrr2~ is about 
1028 erg s -  1, which is quite sufficient to explain a large flare. This fits the conclusion 
of Stepanov, Urpo, and Zaitsev (1992) based on the analysis of the chromospheric 
plasma evaporation in the event of June 22, 1989, that the main energy release process 
occurs in the chromosphere, and not in the coronal part of a flare loop. 
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5. Conclusions 

We have shown that the main problems of the circuit theory of a solar flare which are 
caused by the non-realizable huge current rise time after the photospheric voltage 
generator switches on and by the sudden enhancement of resistance have been resolved, 
bearing in mind the magnetic loop emergence and using the correct form of the 
generalized Ohm's law. 

We propose the following scenario for a solar flare before and during the impulsive 
phase. The photospheric material motion leads to the generation of e.m.f, producing 
electric current. The current grows up to 10 a 1-1012 A in a flare loop during the period 
of new magnetic flux emergence (several hours or days). The reason for current dis- 
ruption in a flare circuit is the flute instability of the prominence located just above the 
flare loop. The dense, cold matter of the prominence, which fills the flare loop because 
of the flute instability, ensures non-steady-state conditions and a sufficient number of 
neutrals for effective Joule current dissipation. It is very important to note that the 
energy release rate is proportional to the total current to the fourth power. Over a few 
seconds an energy > 1026 ergs is realized in a single flare coronal loop, which is 
comparable to the energy of an elementary flare burst, and the electrons and ions are 
accelerated simultaneously. The flare loop footpoint heating by energetic particles 
and/or by conductive fronts produces non-steady-state conditions at the chromospheric 
level where the generalized Ohm's law is switched and the major energy release 
(>  1028 erg s -  1) occurs. Shock and/or thermal waves, propagating from this region, 
violate the stationary conditions in neighboring current systems and introduce effective 
current dissipation over a large area in the chromosphere. Hence, the energy release in 
the coronal part of a flare loop interacting with a prominence is merely the trigger of 
a powerful chromospheric flare. Of course, there are other switching mechanisms for 
the generalized Ohm's law. It is not excluded, for example, that the flare energy release 
due to the generalized Ohm's law is possible in a current prominence (Carlqvist, 1969; 
Alfv6n, 1981). 

In conclusion, it should be noted that the proposed advanced circuit model, based 
on the generalized Ohm's law of the form of Equation (A.7), can be applied also to 
the flare energy release in stars. For instance, putting into Equation (14) typical 
parameters of the chromosphere of red dwarf stars, n z ~ 1012 cm -3, T ~ 10 4 K, 

S ~ 1018 cm 2, d ~ 109 cm, and supposing I ~ 1013 A, one can get the energy release 
rate R n f l  2 . ~  1031 erg s -  1, which is quite enough for a modest stellar flare. 
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A p p e n d i x .  G e n e r a l i z e d  O h m ' s  L a w  

We now obtain the generalized Ohm's law taking the partial plasma ionization into 
account. The equations of motion for electrons (e), ions (i), and atoms (a) can be written 
a s  

en  
- e n r ~ * r  _ _ 

C 
v e X H - m ~ n v ~ i ( v  ~ - vi) - m e n V e ~ ( V  e - v.) - V p e  -- 0 ,  ( A .  1) 

en  
e n E * +  - -  v i x H - m e n V e i ( V  i - Vie) -- m i n v i a ( v  i - v~) + m i n g  - V p i  - 

C 

dV 
- ra in  - -  = 0 ,  (A.2) 

dt 

- n m e V e ~ ( V ~  - %) - n m i v i ~ ( v ~  - vi) + r e . n a g  - V p .  - n ~ m ~  - -  

We have introduced the mean plasma velocity 

dV 
= 0 .  

dt 

(A.3) 

2 n k m k V k  
k 

V - (A.4) 
n k m  k 

k 

and the diffusion velocities v k of electrons, ions, and atoms with respect to the plasma, 
i.e., V k = V + vk, and 

~ ,  n k m k v k  = 0.  (A.5) 
k 

E* is the electric field in a coordinate system frozen in a plasma moving with velocity 
V in relation to a coordinate system at rest, 

1 
E * = E + -  V x H ,  (A.6) 

C 

and d / d t  is the mobile operator: d / d t  = ~/~ + V grad. In Equations (A.1)-(A.3) the 
viscosity effects are neglected due to their small magnitude. 

Defining the current density as j - - e n ( v ~ -  %), excluding the velocities v k from 
Equations (A. 1)-(A.5), and neglecting the terms of the order ( m e / m i )  1/a as compared 
to unity we obtain the generalized Ohm's law, 

E* m e ( V e i  + vea)j + j • H fa • H fe F2 dV 
- + F + p - -  • H ,  ( A . 7 )  

e 2 n  e n c  cnrniv~a e n  c n m i v t ~  d t  
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and the force-balance equation, 

dV 1 
p - - = - j x H + ~ f  k, k = e , i , a .  (A.8) 

dt c k 

Here 

p = n, ,m a + n m  i (A.9) 

is the plasma density, 

F - nama (A. 10) 
ham a + ?lm i 

the relative density of neutrals, 

f e  = - - T P e ,  f i  = - -TPi  + n m i g ,  fa  = - T P a  + n a m a g  (A. 11) 

the forces of nonelectric origin acting on the plasma components, ve~ the collision 
frequency of electrons with k-species particles, p~ the gas-kinetic pressure, and g the 
gravitational acceleration. We also put n e = n i = n. 

In a steady-state homogeneous medium (d/dt = 0) Equation (A.7) takes on the form 
of the known expression for Ohm's law in a partially ionized plasma (see, e.g., Gershman, 
1974): 

e Fe z 
(Vei + Vea)J + - -  j x H + - -  H x ( j  x H )  = 

meC c2nmemi~.a 

e2n  e Fe  2 
- - -  E* + - -  7pe  + - -  (f~ + f~) • H .  (A. 12) 

me me Cmemi~ia 

At equal temperatures of the plasma components, Pa/Pe = n , / n  = F/(1  - F ) ,  with the 
gravity force disregarded, we obtain from Equations (A.7) and (A.8) the well-known 
expression (Cowling, 1957) 

_ ne 2 ~ Vpe j x H F 

J FFle(Yei q- Yea) ( E:~ + X en enc cHPniVia 

I 1 ]t x V p ~ x H + -  H x ( j x H )  . (A. 13) 
C 

The Joule dissipation of the electric current, as is well known, is characterized by 
q = j .  E*, a quantity which, in view of Equation (A.7), has the form 

j2me(Vei + Vea) F( fa  • H ) j  fe j  F 2 (d~t  ) q=  + + p x H  j ,  (A. 14) 
e2n Cmil'l~ia en cmiRVia 

where p dr /dr  is determined from Equations (A.8) and (A.9). 
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It should be noted  that  the Joule current  diss ipat ion under  non-s teady-s ta te  condi t ion 

have been appl ied in some models  of  the Ear th ' s  magnetospher ic  subs torms for very 

dis tant  regions of  the magnetospher ic  tail where the ionizat ion degree of  a p l a sma  is 

sufficiently high (Akasofu  and Chapman ,  1972). The other way the conduct ivi ty  tensor  

componen t s  in a p l a sma  with neutrals  were invest igated for the Ear th ' s  ionospheric  

p lasma,  however,  under  the s teady-s ta te  condi t ions  only (Gershman ,  1974). The con- 

ductivity associa ted  with i o n - n e u t r a l  collisions has been calculated also by K a n  and 

Lyu (1990) in the context  of  Joule diss ipat ion in a solar flare for the case of  a weakly 

ionized gas when the s teady-s ta te  approximat ion  is true. 
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