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Abstract. We investigate the structure of slow-mode MHD shocks in a plasma where both radiation and 
thermal conduction are important. In such a plasma a slow shock dissociates into an extended foreshock, 
an isothermal subshock, and a downstream radiative cooling region. Our analysis, which is both numerical 
and analytical, focuses on the nearly switch-off shocks which are generated by magnetic reconnection in 
a strong magnetic field. These shocks convert magnetic energy into kinetic energy and heat, and we find 
that for typical flare conditions about 2 of the conversion occurs in the subshock while the remaining �89 occurs 
in the foreshock. We also find that no stable, steady-state solutions exist for radiative slow shocks unless 
the temperature in the radiative region downstream of the subshock falls below 105 K. These results suggest 
that about ~ of the magnetic energy released in flare loops is released at the top of the loop, while the 
remaining 1 is released in the legs of the loop. 

1. Introduction 

It has long been recognized that magnetic reconnection plays a very important role in 
solar flare phenomena (Giovanelli, 1947; Sweet, 1958; Parker, 1963; Petschek, 1964; 
Sonnerup, 1979, 1984; Priest, 1984, 1985), and magnetic reconnection has been used 
to explain the observed energy release in solar flares and the formation of the flare loops 
(Parker, 1984; Malherbe, Forbes, and Priest, 1984; Forbes, 1986; Priest and Forbes, 
1986; Low and Wolfson, 1988; Forbes, Malherbe, and Priest, 1989). Solar flare loops, 
with their temperature ranging from 104 to 3 X 107 K, are unusually dense compared 
with the surrounding corona (Lin, Lin, and Kane, 1985; Withbroe, 1978; Zirin, 1986; 
Heinzel and Karlick), 1987), and they are long-lived features which may persist for 
10 hours or more. An enormous amount of material - greater than the mass of the entire 
corona - flows through the flare loops system during its lifetime (Kleczek, 1964; Kopp 
and Pneuman, 1976). Thus, the evolution of the flare loops involves not only recon- 
nection, but also the additional processes of chromospheric ablation and thermal 
condensation (Sturrock, 1972; Hirayama, 1974; Ohki, 1975; Schmieder etal., 1987; 
Forbes and Malherbe, 1986a, b). 

MHD slow-mode shocks, which were first introduced in reconnection theory by 
Petschek (1964), are the key link between magnetic reconnection and chromospheric 
ablation (see, e.g., Cargill and Priest, 1982). To see why this is so, consider Figure 1 
which shows the expected shock pattern in the reconnection model of flare loops by 
Forbes, Malherbe, and Priest (1989). According to this model reconnection occurs at 
a coronal x-line which lies at the intersection of two pairs of slow-mode shocks. These 
shocks convert magnetic energy into bulk flow kinetic energy and heat. Due to the strong 
thermal conduction along the field lines, the slow shocks dissociate into isothermal 
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Fig. 1. Expected flow pattern in the reconnection model of flare loops. Chromospheric ablation is continu- 
ally driven by heat released from magnetic field annihilation. As field lines are reconnected, the loops grow 
in size, and the ribbons propagate outward, away from the axis of symmetry (after Forbes, Malherbe, and 

Priest, 1989). 

subshocks and foreshocks (thermal conduction fronts) (Forbes and Malherbe, 1986b), 

but the jump conditions across the total shock transition, from upstream of the fore- 
shock to downstream of the subshock, are given by the usual slow-mode jump condi- 

tions. The foreshocks and the subshocks annihilate the magnetic field in the plasma 
flowing through them, and the thermal energy released in the annihilation is spread out 
all along the field lines. Consequently the heat is conducted from the corona to the 
chromosphere and leads to extensive heating and ablation of chromospheric plasma, 
creating and sustaining the hot X-ray loops. 

The thickness of the total shock transition is of the order of the scale-size of the loops. 

Therefore, the total transition can no longer be considered strictly as a shock since its 
thickness is not small compared to its extension in the other dimensions. However, the 
subshocks still exist as proper shocks, although strictly speaking they should no longer 
be thought of as subshocks. 

The plasma which crosses the subshocks forms a pair of reconnection jets which are 
directed towards and away from the photosphere. Unlike the upward jet, the downward 
jet forms on field lines which are connected to the chromosphere. Consequently, 
evaporation injects dense chromospheric plasma into the lower jet but not into the upper 
one. Because the downward jet is supermagnetosonic with respect to the fast-mode 
wave speed, it terminated at a fast shock (termination shock) below which is region of 
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deflected flow, forming a deflection sheath (see Forbes, 1986). As reconnection 
proceeds, the x-line moves upward, and field lines on which the ablated plasma is 
flowing move through the termination shock and become disconnected from the sub- 
shocks. Once the field lines are disconnected, the plasma on them is no longer heated, 
and it immediately begins to cool. During the cooling, a thermal instability is triggered 
and the plasma temperature drops below the corona temperature. This cool plasma 
forms the visible Hc~ loop prominence where the cool plasma flows, or falls, down the 
legs of the loops and returns to the chromosphere. 

In the past 25 years, studies of the structure, the stability, and the propagation of 
slow-mode shocks in different aspects (Kantrowitz and Petschek, 1966; Coroniti, 1970; 
Bel and L.-Micoulant, 1973; Rosenau and Frankenthal, 1978; Swift, 1983; Feldman 
etal., 1984, 1985, 1987; Hada and Kennel, 1985; Winske, Storer, and Gary, 1985; 
Edmiston and Kennel, 1986; Kennel, 1987, 1988; Richter, 1988) have built up a 
considerable knowledge base about slow shocks. However, very little work has yet been 
done on the radiative slow shocks involved in the evolution of solar flares. 

The structure of slow shocks becomes much more complicated when radiation and 
thermal conduction are both taken into consideration. The large density of the flare 
loops makes radiative cooling a significant factor in the energy equilibrium. The effect 
of radiation on shock wave behavior in fluid dynamics has long been studied. One of 
the first studies on radiative fluid dynamic shocks was done by Marshak (1958). And 
some authors have studied radiative shocks in connection with the evolution of super- 
nova remnants (Cox and Tucker, 1969; Cox, 1972a, b; Chevalier, 1974; Chevalier and 
Theys, 1975). An analysis of radiative shocks must necessarily include coronal heating 
to reflect the radiative coupling with the surrounding coronal environment. Accordingly, 
when talking about radiative cooling, we consider both radiative cooling and coronal 
heating as a united process unless otherwise specified. 

The purpose of this paper is to present a theoretical analysis on the structure of 
radiative slow shocks. In addition to the foreshock and the subshock there is a radiative 
cooling region downstream of the subshock. The plasma flowing through this region 
radiates the excess heat generated during its passage through the shock. Some radiative 
loss also occurs in the foreshock region, but in general the dominant radiative loss occurs 
in the downstream region. 

It should be kept in mind that the very concept of a simple planar shock transition 
is not directly applicable to flare loops, since in flare loops the foreshock region extends 
all the way from the reconnection site to the chromosphere. This distance is on the order 
of the size of the loops, the total shock transition cannot be considered planar. The 
actual problem of the structure of the flare loops is more complicated than the problem 
of planar shocks. Furthermore, in flare loops ablation of chromospheric plasma by the 
conduction electrons and energetic particles is a dominant factor in the formation of the 
loops. Since we ignore this ablation process in this paper and assume shocks to be 
planar, our analysis of radiative slow-mode shocks represents only a first step in 
modeling the actual structure of flare loops. 

For purposes of comparison and illustration we first consider the structure of radia- 
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tive gas dynamic shocks in a thermally conducting medium. Following this, we then 

determine the structure of M H D  switch-off shocks where the component of magnetic 

field tangential to the shock is annihilated completely. Switch-off shocks are very good 

approximation to the type of slow shocks that are likely to exist when reconnection 

occurs in the corona (Petschek, 1964). 

2. Basic  M H D  Equat ions  

The fundamental M H D  equations used here are given by Priest (1982b). We consider 

the stationary movement of a plane shock propagating along the positive x-direction at 

a speed V o. Two coordinate systems are adopted: the laboratory frame in which the fluid 

upstream of the shock is at rest, while the shock wave propagates through it; and a 

shock-rest frame in which the shock stays at rest while the fluid flows through it at the 

velocity - V o as shown in Figure 2. 

Fig. 2. 
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Schematic diagram of slow shock geometry in shock-rest frame. The upstream and downstream 
parameters are labeled by subscripts 1 and 2, respectively. 

The shock-rest frame is related to the laboratory frame by transformation 
z = x - Vot. Accordingly, in the shock-rest frame, the M H D  equations are: 

P = p R T ,  ( la)  

d B J d z  = O, (lb) 

d(pVx) /dz  = 0 ,  (lc) 

d[VxBy + VyB x + ~ (dBy/dz)]/dz = 0 ,  ( ld) 

d[P  + B2/2# + pV2x + (4pv/3) (dVx/dz)]/dz  = 0,  (le) 
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d(PVxVy + BxBy/l~ + pv(dVy/dz)] /dz  = O, (lf) 

7P dVx/dz  + V x dP/dz + (~ - 1) {d(~c dT/dz) /dz  - p 2 Q ( r )  + pH~ + 

+ rl (dBy/dz)2/t ~ + pv [4 (dVx/dz)2/3 + (dVy/dz)2]} = O, (lg) 

where P, p, T, 7, R, and # denote the pressure, the density, the temperature, the ratio 
of specific heats, the gas constant, and the magnetic permeability, respectively. The 
quantities Bx(Vx) and By(Vy) are the normal and the tangential components of magnetic 
field (velocity), and Vx = Vo - v, where v is the perturbed fluid velocity (in the lab frame) 
normal to the shock. The dissipation coefficients are the magnetic diffusivity t/, the 
kinematic viscosity v, and the thermal conduction t~. The optically thin raditive cooling 
is characterized by cooling function pZQ (T), while coronal heating is characterized by 
the heating function pH c, where Hc is a constant. 

In an ideal fluid shock are discontinuities, since v, t/, and tc vanish. However, for a 
real fluid with finite dissipation coefficients, shocks are transition layers in which 
dissipation effects are balanced by nonlinear effects. The 'thickness' of the transition 
layer is measured by the scale length of the corresponding dissipation. 

To emphasize the effect of radiative cooling, we treat t/, v, and ~: as constants 
throughout our work so that we can focus on the study of radiation. We also adopt a 
reasonable assumption often used in solar flare research (Priest, 1982a; Forbes, 
Malherbe, and Priest, 1989), i.e., the scale lengths of viscosity L v and resistivity L ,  are 
comparable but much smaller than thermal scale length L~. 

Radiative cooling function Q ( T )  takes form of 2T ~, where 2 and c~ are piecewise 
constants (Cox and Tucker, 1969; Priest, 1982b). For simplicity we consider two simple 
approximations: first, a single value of cr i.e., cr = 2, 2 is constant for all 
temperature; and second, two values of ~, i.e., cr = 2 when T < T~ and c~ = -�89 when 
T > T~ with corresponding constants 2 for each cr value. The temperature T~ is 
defined as the critical temperature at which Q (T) reaches a maximum. 

The occurrence of slow shocks requires V o > C, L1, where Csm is slow-made wave 
speed given by the smaller value of 

C2L1 1 2 + + [ ( c L  + 2 = _ - 4 C a l  Cs l  c o s  (Pl ] 1 / 2 } .  (2a) 

For isothermal subshocks, the condition is Vxe < CsLa (Coroniti, 1970), where C,L d is 
the downstream isothermal slow-mode wave speed given by the smaller value of 

02Ld 1 2 - _ [ (C2d + 02d)2  4C2dO2dCOS(,Od]I/2 } = ~{CXd + C?a + - , (2b) 

where CA, Cs, C,, and (p denote the Alfvdn speed, the sound speed, the isothermal sound 
speed, and field direction, respectively. The upstream (downstream edge of subshock) 
parameters are labeled by subscript l(d). Coroniti's condition indicates that an iso- 
thermal subshock occurs when the total shock strength exceeds the critical value so that 
the dissipation of thermal conduction can no longer balance the nonlinear effect of the 
strong shock, hence the additional dissipations, such as viscosity, have to be introduced. 

It is usually assumed that the motion of fluid outside the total transition layer is 
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uniform and steady (in the shock-rest frame). Hence, d/dz = 0 except within the tran- 
sition layer. This physical consideration requires, therefore, that radiative cooling be 
balanced by coronal heating outside the total transition layer. The outer boundary 
conditions (OBC), i.e., the equilibrium conditions, are expressed accordingly as 

p2Q(r)-PHc--*O as z ~ o o o r z ~ - o o ,  (3a) 

d/dz --, 0 as z --, oo or z ~ - oo , (3b) 

A--+A 1 as z ~ o o ,  (3c) 

A ~ A  2 as z ~ - oo ; (3d) 

here A denotes an arbitrary physical parameter (see Figure 2). 
The above OBC are often given as general BC of the M H D  Rankine-Hugoniot (R-H) 

relations, since all the transition are confined within the total shock layer. However, this is 
not the case when radiative cooling in the downstream of the subshock is considered. 
Equation (3a) describes the equilibrium requirement in the far downstream region, 
which, in general, is not satisfied by M H D  R - H  relations. According to Kennel (1987), 
isothermal subshock occurs at the downstream edge of the total shock transition. 
Therefore, M H D  jump relations specifies the parameters at downstream edge of the 
subshock rather than those in the far downstream region. So the region immediate 
downstream of the subshock is no longer uniform. Instead, an intermediate region called 
radiative cooling region, in which the variation of physical parameters is mainly due to 
the effect of radiation, occurs between the subshock and the far downstream. The total 
transition layer is no longer the same as the total shock layer. It now consists of the total 
shock layer and radiative cooling region. Thus we define the inner boundary conditions 
(IBC) of radiative slow shock as those M H D  jump relations for the total shock as well 
as the subshock transition. Our IBC may also include the non-zero derivatives of the 
physical parameters at upstream and downstream edges of the subshocks, if necessary. 
Despite of the fact that the so-called inner boundary conditions actually depend on the 
OBC, it is necessary to distinguish between them because they have different physical 
meanings. 

3. Gas Dynamic Shocks 

The elimination of magnetic field simplifies Equations (1) to 

f = pR T, (4a) 

d(pV)/dz = 0,  (4b) 

d [P  + pV 2 + (4pv/3) (dV/dz)]/dz = 0,  (4c) 

__dV dP [ d  ( ~ c d T )  ~ pv(dV']2] 
XP~z-z + V - + ( 7 - d z  1) dzz d z  -P2Q(T)+pHr \ d z /  [=0" 

(4d) 
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The OBC (see Equations (3)) give 

[pQ(r) - H~]I1 --- [pQ(r) - Hc]r2. (5a) 

The IBC (derived by integrating Equations (4b)-(4d)) give 

X =  

y = 

(7 + 1)M~ 

7M~ + 1 - x / ( M ~ -  1) 2 + A  

7Ml 2+ 1 + 7 ~ ( M P -  1) 2 + A  

7 + 1  

(5b) 

(5c) 

X,=X~lg- 1, 

where M~ is the upstream Mach number, 

~ g  = (-Pl q- 01 gg)/Pl gg = 1 + 1/7M~, 

/ - - 7 - 1 { ( t c  d~zT ) 4pIV~ ) 
p1V~ d 3 7- -1  d 

A = 2(7 + 1)M4I, 

1 

d 

(5d) 

and Vo = V 1. The quantities X a n d  Y representthe total shockjump, and Xsgives the 
subshock jump" 

X -  V1 _ p~ , Y=P~ , X , -  Vs_ p~_ Pa 
Va Pl P~ Vd P, P, 

Thus, Coroniti's condition becomes X, > 1. 
The above OBC and IBC imply that radiative cooling affects the shock structure 

mainly in two ways. First, as an integral effect, radiative cooling changes the jump 
conditions for shocks and subshocks since the ordinary jump relations are replaced by 
Equations (5). Second, radiative cooling creates a radiative region attached at the 
downstream edge of the isothermal subshock. The extent of the first effect depends on 
the thickness of the shock because if the shock is very thin, the radiative loss within the 
shock is negligible. Figure 3 shows a schematic plot of the shock geometry. The 
thicknesses of the shock and the subshock are determined by thermal and viscous scale 
lengths, respectively. Fluid flows through the various regions which are indicated as 
follows: 

upstream of total shock transition - [ 1], 

upstream edge of subshock - Is],  

radiative cooling region - [C],  

foreshock-  [F] ,  

downstream edge of subshock - [d l ,  

far downstream of shock - [2]. 

In this paper we assume that the subshock is very thin compared to all other scale 
lengths, or equivalently, that v = 0 (we also expect r/= 0 because we assume v ~ r/). 
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Fig. 3. Schematic diagram for hydrodynamic shock structure: (a)density curve, (b) different regions of 
shock structure. Subscripts d and s denote the downstream and upstream edges of subshock, respec- 

tively. 

Thus the radiative energy loss within the subshock is negligible. By contrast, we assume 
the foreshock to be very thick, so that the radiative loss in the foreshock is not negligible. 

3.1. RADIATION ALONE 

To discuss radiative cooling process we first consider the simple case in which thermal 
conduction is zero. The total shock transition reduces into a discontinuity when K = 0, 
and the jump conditions are those of an ordinary gas dynamic shock. The solution for 
region C is easily found by substituting v = 0 and ~ = 0 into (4), that is 

V = uV~ , (6a) 

p = p ~ / u ,  (6b) 

P = . 1 V o ~ / ( ~  - u ) ,  (6c) 

T = Vo2(tlg - u ) u / R ,  (6d) 
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where u(z)  is the normalized gas velocity satisfying 

[?r/g - (7 + 1)u] du/dz  = (? - 1 ) p [ p Q ( T )  - Hc] / (p ,  V 3 ) ,  (7) 

with Q ( T )  = 2 T  ~' and d/dz-~ 0 (as z--, - ~ ) ,  i.e., 

H e = p l Q ( T 1 )  = p 2 Q ( T 2 ) .  (8) 

The matter we are amost concerned about is whether or not the above equations lead 

to a physically realistic solution. Let us first look at the case ~ = 2. 

Substituting ~ = 2 into Equation (8) produces a cubic equation for u, namely, 

[ / , / ( r i g -  b / )2 ]  ]2 = ( r i g -  1 )  2 . ( 9 )  

It has three roots (u+ > u o > u ), 

Uo= 1 

and 

u+ = [2r ig -  1 _+ (4r ig -  3) ' /2]/2. 

The quantity u o represents the trivial solution of no shock at all because it gives a 

downstream velocity which is the same as the upstream velocity. The solution u + gives 
an unphysical solution because it leads to a negative value for the downstream pressure. 

Thus the only choice for a physical solution is 

It 2 = b/ = [ 2 r i g  -- 1 - (4r ig-  3)I/2]/2. (10) 

Equation (7) can be normalized and rewritten as an autonomous system, 

du 7 -- 1 (b/ -- 1 )  (/X -- b /a )  (b/ -- U + ) 
- , ( 1 1 )  

d~R u 7 r ig -  (7 + 1)u 

where ~R = zPl Q (T1)/[ V3(rig - 1) 2 ]. Critical-point analysis (Bender and Orszag, 1978) 

shows that u = u 2 is a stable node of the system (11). This means that the conbined effect 

of radiative cooling and wave heating is to drive the system towards thermal equilibrium 

in the downstream region when z = 2. This conclusion can be generalized further to all 

satisfying 

~ >  r i g - U *  
- -  - % ,  ( 1 2 )  

rig - 2u* 

where 1 < % < c~, and u* represents the expected solution of Equation (8). For the 
other values of c~, the effect of radiative cooling is to drive the system away from 
equilibrium, and thus the system is thermally unstable. In other words, the plasma flow 
will approach equilibrium in the downstream region only when condition (12) is 
satisifed, otherwise no proper equilibrium can be reached. 

The cooling function Q (T) in the temperature range appropriate for the corona and 
flare loops (104-3 x 107 K) may be roughly modeled as (see Priest, 1982b) 
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~Q<(T) = ~ < T  2, T <  T~, 
Q ( T )  (13) 

(Q>(T)  ~ > T -  1/2 T > T~, 

where ~ > = 10- 31.5, ~ < = 10-44 and T~ = l0 s K. The velocity Uc, corresponding to 

T~, is 

bl c = l [  ~ g  _ N/~2g _ 4Tc/(Vo2/R)] . 

Since we wish to apply our results to flare loops we will assume that the upstream 
temperature corresponds to the temperature of the chromosphere (2 x 104K) 
rather than the corona (106 K). Hence, in the upstream region we set ~ = 2 and 
H~ = Pl Q(T1)  = P12 < T~. According to the previous discussion and condition (12), the 
equilibrium in the downstream region is approached only when e = 2 (i.e., T < T~). 
Thus the cooling in region C is governed by 

du ? - 1 (u - 1) (u - b/2) (b/ -- /d + ) 
- -  , U < U ~ ,  (14a) 

d~XR U 7F/g - (7 + l)u 

du _ ? - 1 F ( T c R / V 2 ) 5 / 2  - ( ~ g  - 1) 2 ]  /d > 
Uc (14b) 

d{R U[yt]g - ( ~  + 1 ) u l  L u 3 / 2 ( t l g  - u )  1/2 A ' " 

3 . 2 .  R A D I A T I O N  A N D  T H E R M A L  C O N D U C T I O N  C O M B I N E D  

The differential equation for the velocity u in a radiative gas dynamic shock with thermal 
conduction as derived from Equations (4) is 

[Tt/g - (7 + 1)u] du/d~ = DRc  - dQg/d~, (15) 

where ~ = Z/L,~, the length L~ is the thermal scale length of the total shock defined by 
L~. = 7 tc/(Pl Cp Vo), and DRc is the differential energy loss due to radiative cooling, i.e., 

DRc = ( 7 -  1 ) R L U c [ p l Q ( T ) / ( u I t ~ ) -  1]/u,  (16) 

where R r = L,cHc/U c V 3 is a dimensionless constant representing the ratio of the thermal 
scale length L~ to characteristic length of radiative cooling LR, defined by 
G = V3/Hc. 

For the two-value cr case, DRc is 

DRC = (7 - 1)RLG[U(t lg - u)Z/T~ - 1]/u,  T <  Tc,  (17a) 

D e c  = (7 - 1)RL U~ [(Tc/T1)Zu 3/2x/Tc/(rlg _ u) - 11, T >  To. 
bt 

(17b) 

The normalized heat flux (~VT) is 

Qg = d[u(qg - u)]/d~ = (r/g - 2u)du/d~. (18) 

The BC of Equation (15) is given by Equations (5) and v = 0, where A is replaced 
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by Ag = 2(7 + 1)M4Ig, and 
1 

Ig = R c + Qg[d = ~ DRcd~ + [ ( t /g-  2u)du/d~]p d. 
fM 

d 

Do Equation (15) and its accompanying BC lead to a physical solution? The answer 
can only be found by investigating the behavior of u(~) in the region downstream of the 
subshock. We rewrite Equation (15) as 2-D autonomous system: 

du/dr = Q g / ( ~ g  - 2u), (19a) 

dQg/d~ = DRc - [Ttlg - (7 + 1)u]Qg/(qg - 2u). (19b) 

It can be shown by critical-point analysis that condition (12) is the decisive criterion 
for the above question. If the solution u = u* satisfies the equilibrium equation 
pQ(T) - plQ(T1) = 0, i.e., DRc = 0, then the point (u, Qg) = (u*, 0) is a critical point 
of the system (19). When the condition (12) is not satisfied, (u*, 0) is an unstable node 
or an unstable spiral point - in the phase plane of (u, Qg), all trajectories near the point 
(u*, 0) move away from it as ~ ~ - oo. The physical interpretation is that radiative 
cooling drives the system away from the equilibrium. By contrast, (u*, 0) becomes a 
saddle point when c~ satisfies condition (12). That is, trajectories near this point 
approach it in a specific direction, and move away from it in the other direction. Only 
one trajectory reaches this point as ~ - oo (see Bender and Orszag, 1978), and this 
special trajectory corresponds to the expected physical solution. In other words, the 
system approaches the appropriate equilibrium in the downstream region when 

> (ng  - u* ) / (n~  - 2u*). 
For example, when c~ = 2, the autonomous system (19) has thre critical points, 

namely, (u, Qg) = (1, 0), (u 2, 0), and (u+, 0). Point (u2, 0) corresponds to the physical 
solution, and this point is a saddle point near which trajectories approach it in the 
direction dQg/du = A g  + and move away from it in the direction dQg/du = A g _ ,  where 

Age = 2 (7+ 1)u2- 7rlg +- 

+ \ / [~  u~ ( t lg-2U2)(t lg-3uz)} .  
u2 T2 

(20) 

Figure 4 diagrams the saddle point behavior of the solution of the system (19) near 
the point (u2, 0). The figure shows that (u2, 0) can be reached only through the trajectory 
(dQg/du = Ax+) as ~--, - oo. 

What if ~ < (rlg - u*)/(tlg - 2u*) and u d = u* ? This special value of u d corresponds 
to the solution where equilibrium is reached immediately at the downstream edge of the 
subshock. For this solution there is no cooling region at all, but the solution is still an 
unstable one because any tiny deviation from it would immediately drive the system 
away from equilibrium. 
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Schematic plot for solution of system (19) n e a r  (//2, 0)  - saddle point behavior (e = 2). One, and 
only one, trajectory would reach (U2, 0)  in the direction (dQg/du)] 2 = Ag+, as ~--~ - oo. 

Accordingly, we conclude that the downstream equilibrium can only be reached at 
a temperature lower than T c. In other words, the downstream fluid must cool down from 

its high temperature above T c to a low temperature below Tc, if it is to reach an 

equilibrium. The lack of steady-state solutions for T d > T c reflects the fact that a plasma 

on the high-temperature side of the maximum of Q (T) is thermally unstable (Cox and 

Tucker, 1969). 
The velocity u can be obtained by solving Equation (15) numerically. However, an 

important point has to be taken into consideration in doing the numerical calculation. 
As mentioned previously, the introduction of radiative cooling changes the jump condi- 

tions radically. When radiative cooling is negligible, X, the density jump for total shock, 

is completely determined by the upstream parameters. However, when radiative cooling 
is not negligible, X depends not only on the upstream parameters, but also on the shock 
solution (see above expressions Of Ag and Ig). That is, we need to knowX before solving 
Equation (15), whereas X depends on the solution of Equation (15). A similar situation 
also occurs when the radiative MHD equations are solved numerically. We use an 
iterative method to deal with this problem, and this method is discussed further in the 

following section and Appendix B. 
Figure 5 shows the numerical solution of Equation (15) for c~ = 2. Also shown is the 

shock solution when radiation is absent. The principal effect of the radiation is to 
decrease the temperature and flow speed in the downstream cooling region. 
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Fig. 5. Numerical solution of radiative gasdynamic shock. From (a) to (d) we plot respectively the 
variations of the velocity, the density, the pressure, and the temperature in the total shock transition region. 
The units of T, P, p, and V are T~, Pl ,  Pl, and Vo, respectively, and the upstream conditions are M~ = 1.35, 
R L = 1, and u,. = 0.1. Solutions with no radiation (RL = 0) are also plotted in dashed curves for comparison. 

4. Slow-Mode Shocks 

In this section we determine the shock structure of MHD slow-mode shocks in the 

switch-off shock limit. This limit means that there is no tangential magnetic field in the 
region downstream of the subshock, so for this region the solution is similar to the gas 
dynamic solution. However, as we will see, in the foreshock region upstream of the 
subshock it is considerably different. Physically, the most significant difference between 

the gas dynamic shock and the slow shock is that the gas dynamic shock converts the 

kinetic energy of the flow into heat, while the slow shock converts magnetic energy into 
both heat and kinetic energy. As before, the jump conditions at the subshock serve as 

IBC and the starting point for numerical integration of the shock structure equations. 
Because these MHD jump relations are much more complicated than the gas dynamic 

ones, we discuss the MHD jump relations separately before considering the integration 
of the shock structure equations. 

In analyzing shock structure it is very helpful to know what conditions must be given 
in order to define a unique shock transition. It is well known that for ordinary gas 
dynamic shocks that, one parameter, such as the upstream Mach number, is enough. 
By comparison, three parameters are needed for ordinary MH D  shocks. For example, 
the upstream plasma fl, the Alfv6n Mach number, and the field direction are sufficient. 
When radiation is taken into consideration, an extra parameter has to be introduced to 
describe the effect of the radiation. In this paper, R L - the ratio of the thermal scale 
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length L~ to characteristic length of radiative cooling LR, where L~ = y tc/(plcpgo) , 
LR = u,. V3/Hc, is chosen as the parameter. Since L~ is also the scale length of the total 
shock transition, R L gives a measure of the strength of the radiative cooling. 

4 . 1 .  T H E R M A L  C O N D U C T I O N  A L O N E  

With no radiative cooling, Equations (1) can be integrated across the total shock 
transition layer (see Figure 2) and rearranged to read 

Xfil y -  1 - - +  

01 ? 
02 + 1) - 2 COS 2 ~/91 q- 

+ ( X _ y - 1  01~X~+_ 0_1-2X 
7 J ( X -  01) 2 sin2cpl = O, (21a) 

Y = 1 + flf l {sin2q)l + 201 c o s 2 ( p l ( 1  _ 1 / X )  - 

where X and Y are defined as 

X = Pd/D1 = V x l / V x d  "~ V o / V x d ,  

and 

-[sinqolX(1 - O~)/(X- 01) ]2}  , 

Y = P d / P l  

B,,a/By, = X(1 - 01 ) / (X -  01), 

PT,,. = Vyl + VotgCpl(X- 1) /0( -  01) , 

B x =- Bx~. 

01 = vg /C~x l  <_ 1, 

Ca2xl = CA21 cos2q~l = B2xl/(#pl), 

fil = 2#P1/B2 , 

coscpl = B,~1/B1 �9 

(21b) 

(22a) 

(22b) 

(22c) 

(22d) 

(22e) 

(22f) 

(228) 

Here ill, CAxl, and cos(P1 denote the upstream plasma parameter (ill ~ 1 for solar 
flares), the Alfv6n speed normal to the shock, and the magnetic field direction, respec- 
tively. 

The above relations are the general jump conditions for MHD slow-mode shocks. 
The real root (greater than 1) of the cubic equation (21a) gives the density jump X, and 
all of the other physical parameters can be determined once X is known. 

For switch-off shocks (see Figure 6), By d = 0 (i.e., 01 = 1), hence the shock speed is 
the same as upstream Alfv6n speed normal to the shock. Accordingly, we obtain 

1 + fil + c~176 + x/(~l + sine t(Pa) 2 + 4 c~ 1 - /~1Y)/] )2 
X =  , (23a) 

2131 + (~ - 1)/y] 
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Fig. 6. Schematic geometry of MHD slow-mode switch-off shock. 

Y= 1 +/31- 1 (1 + cos2cpl- 2 cos2cp~/X), (23b) 

V,.,i = 1/,,1 + VoB, . l /B~l .  (23c) 

As mentioned in Section 2, Coroniti's condition has to be satisfied in order for 
isothermal subshocks to occur, i.e., V,.,/< ~cd ,  where ~La  is given by the smaller value 
of Equation (2b). 

For switch-off shocks, ~o,t = 0, hence, C2d = C2xd = C2A~:I/X. From 

c2,, = P,,/pd = c 2 , , & / 2  = r c L ~ l / 2 x ,  

we find that 

,13 d = Y/3, C2xI/C2A.,:I ~ C2I /C2Ax,  >> 1, (24) 

since B_,2, > B~,, i.e., C2~, > C2d. 
Therefore, C2Ld = C2d, and the formation of the isothermal subshock in a slow-mode 

switch-off shock is ensured because, for X > 1, 

G , , i / x  = Vo/X = r ~  < C ~ ,  = c A ,  = c ~ x l / , / 2 .  (25) 

Jump conditions for the isothermal subshock can be derived by integrating 
Equations (1) across the subshock (from d to s) and using the isothermal condition 
T~ = T a to replace the energy equation(lg). Then combining the results with 
Equations (22) and v = 0, q = 0, we obtain 

201 cos2 qh(X~ + 1 - X) - Yfil - 

- X s i n  2~, 1 \ X - X ~ , J  ~ 2 ~ J  0,  (26a) 
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Bvs = B>,1X(1 - O~)/(X - X s 0 1 ) ,  (26b) 

Vy, = Vv, + V o t g ~ 0 1 ( X - X s ) / ( X - X , 0 1 ) .  (26c) 

When  01 = 1 (switch-off shock),  two possible  solutions can be drawn directly from 

Equat ion (26b): 

(a) B>,, = 0 ; 

(b) X = X , .  

The solution B>.s = 0 is an impossible  result for real shocks,  and therefore, for switch-off 

shocks,  the isothermal  subshock j ump  condi t ion is X s = X. The foreshock may  then be 

thought of  as a ' tangential  shock '  because  only the tangential  componen t s  of  velocity 

and magnetic  field are changed,  while the normal  componen t s  of  velocity and magnetic  

field remain unchanged.  

The jump of  the fluid variables are: 

l/~ s = V o , (27a) 

P, = P l ,  (27b) 

P ,  = P~ Y / X  = P1 [ 1 + fi~ ~ (1 + cos 2 ~o~ - 2 cos 2 qo 1/X)] /X,  (27c) 

B2., = B z l ( x  - 1) [X + (X/31 - 2 cos2 q~l)/sin2 q0, ]IX 2 , (27d) 

Vy s = Vvl + Vo(By 1 - O y s ) / B x l .  (27e) 

Table  I shows the jump  condi t ions  for some typical  solar flare loops.  

TABLE I 

Shock and subshock jump conditions 
(T 1=2•  104K,B l=  100G, n 1 = 5 x  101~ 

Region M1A Vx/Vxl Vy/Vy 1 BulB.1 P/P1 T/T1 P/P1 fi 

1 0.1 1.00 1.00 1.00 1.00 1.00 1.00 3.47 • 10 - 4  

0.01 1.00 1.00 1.00 1.00 1.00 1.00 3.47 • 10 - 4  

s 0.1 1.00 23.76 0,772 1.00 1.15 • 103 1.15 • 103 0.665 
0.01 1.00 2.26 • 103 0.775 1.00 1.15 x 103 2.89 x 103 0.667 

d 0.1 0.399 1.01 • 10 2 0 2.51 1.15 X 103 2.89 • 103 1.00 X 102 
0.01 0.400 1.00 • 104 0 2.50 1.15 • 103 2.88 • 103 1.00 • 104 

Bxl/B1 = Vo/CA1 = Vvl/V o = MIA. MIA is the upstream Alfv6n Mach number. 
CA1 = 9.76 X 102 km s-  1 is the upstream Alfv6n speed. 

The normal  fluid velocity and the density are cons tants  in the foreshock region of  

switch-off shocks.  This behavior  makes  switch-off shocks quite different from gas- 

dynamic  shocks and fas t -mode M H D  shocks.  As Table I shows we expect:/31 ~ 1; 

fia ~> 1 ;/3s -< 1 ; therefore, 

X . ~  (1 + fil + 7 -2  cos2~~ + (7 + 1)/7],  (28a) 
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y = fl~-i, (28b) 

cal, (28c) 

By, = B,., x / ( X -  1)IX. (28d) 

Equation (28d) implies that of the total energy released by the annihilation of the 
magnetic field in the shock, about X 1 is released in the foreshock region while about 
1 - X -  1 is released at the subshock. For typical flare loop conditions X ~ 3, therefore 

above results suggest that about ~ of the magnetic energy will be released at the 
subshocks, i.e., at the top of the flare loops, while the remaining �89 will be released in 

the region upstream of the subshocks. 
For the near switch-off shocks, the fast wave speed Cfd approximately equals Cse, 

the downstream sound speed, since Bye~By I ~ Byd/B x < 1 and //d >> 1. Therefore, 
V2d/C~a ~ 2 X Y -  1fll ~/7 ~ 2X/7 > 1, and the downstream flow is supermagnetosonic 

with respect to the fast-mode wave speed. 

When 

cos2cPl = X(1 + 131)/(X + 2), 

B.,, s = 0, fld = 2, and hence the subshock is simply a gas dynamic shock for 

cos2q)l > X(1 + fii)/(X + 2). (29) 

The subshock vanishes when 

13~ < 2IX.  (30) 

4 . 2 .  R A D I A T I O N  A N D  T H E R M A L  C O N D U C T I O N  C O M B I N E D  

In the light of the discussion in Section 3, we let v = r/= 0 for simplification so that 

isothermal subshocks reduce to discontinuities. The modification of the jump conditions 
is discussed first. Next we determine the fluid velocity in the regions upstream and 
downstream of the subshock. Because the switch-off shock is quite different from the 
gasynamic shock, the fluid velocity behaves differently than before. 

When radiative cooling is taken into account, the jump conditions obtained in 
Section 4.1 need to be modified correspondingly. Actually, all other relations would 

remain the same as in Section 4.1 except the expression for X. The equation for X now 
reads 

X2[fll  + (01 - Io)(7 - 1)/7] - X(/9~ + 20~ - 02 sinaq)l) + 

n t- 0 1 C O S 2 q ) I ( 7  + 1)/7 + XO 1 sinZcpl(X/7 + X -  01) • 

X [ ( l  -- O1)/(X- 0 1 ) ]  2 = 0 ,  

For switch-off shocks, 

X =  

(31) 

1 +/3, + cos2cpl + x/(fll + sin2qg,) 2 + 4 c~176 [ 1 - fl, 7 + (72 - 1)Io]/~ 2 

2[/ i + (1 - to )  (7  - 1 ) / 7 ]  
(32) 
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where 

1 

d 

1 

d 

is the normalized effect of radiative loss as well as the heat flux at the downstream edge 

of the subshock, and M1A = No~CA1 is the upstream Alfv6n Mach number (M1A ~ 1 

since By I >> Bxl ). 

Substituting B X = Bx1, V~ -- V o, p = Pl into Equations (1), we obtain immediately that 
in the foreshock 

VoBy + Bxl Vy = VoBy 1 + Bxl  Vy l ,  (33a) 

P + B2y/2# = P1 + B21/2//. , (33b) 

doe dT/dz) /dz  + Pl VoR (dT/dz)/(? - 1) - 01 [Pl Q ( T )  - He] = 0.  (33c) 

Equation (33c) is the critical equation - once it is solved for T, all the other physical 
parameters are readily obtained. If T is expressed in units of T o = Vff/R, then 

Equation (33c) is reduced to 

d2T/d~ 2 + dT/d~ - (7 - 1)Rru~[PlQ(T)/Hc - 1] = 0,  (34) 

by appropriate normalization (notations follow Equation (15)). 
If the radiative loss function Q (T) is fitted with two-component piecewise curve (i.e., 

:~ = 2 and cr = -1) ,  then by using ~ < T, { = } > T~-1/2, Equation (34) can be written 

a s  

d2T/d~ 2 + dT/d~ - (7 - 1)RLUc[(T /T1)  2 - 1] = 0,  T <  Tc, (35a) 

d2T/d~ 2 + dT/d~ - (7 - 1)RLUc[T~S./2/(T~ T1/2) - 1] = 0,  T >  To. (35b) 

Equations (35) govern the behavior of T in the foreshock region and can be solved 
numerically. 

In the downstream region, the switch-off condition By = 0 leads to Vy = Vy d so that 
the plasma movement exhibits pure gas dynamic behavior. The equation for u = Vx/V o 
is then reduced from Equations (1) by substituting in By = 0 and V u = Vy a and nor- 
malizing. The result is 

d{ 2d  2 __du uc[-PlQ(T)u k uric 1 1 = 0 '  [u(r/o- u)] + [yr/o- (7 + 1)u] ~ -  (~,- 1)R L 

(36) 
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where 

riO = (Pd  + Pl VoVxd) / (P l  Vg) = (Pl + B2112, tt + Pl Vg) l (P l  Vo 2) = 

= 1 + (fl, + sin2qo1)/(2M2A) . 

Equation (36) has the same form as Equation (15) (with Equation (18) substituted 

in) except r/g is replaced by r/o (r/o ~> r/g, since M1A 4 1). Consequently the relevant 

discussion on Equation (15) can be generalized to include Equation (36). I f  we define 

rl* = (Pd  + Pl Vo gxe)/Pl g2, then the condition (12) is generalized as 

c~ > ~* = O f f  - u * ) / ( ~ *  - 2u*) ,  (37) 

where 1 < ~* < oc. The quantity r/* describes the normalized total momentum. For  

gasdynamic shocks, r/* = t/g, while for M H D  shocks, r/* = r/0. The quantity u* is the 

solution of  the equilibrium equation 

p l Q ( T ) / H  c - ,  = 0 .  (38) 

Again, according to condition (37), when the piecewise ~ is chosen for the over-all 

fitting with Q ( T ) ,  the downstream equilibrium cannot  be approached when T > T~.. 

When T < T ,  a = 2, Equation (38) becomes 

b/(~]O - -  b/) 2 = ( T 1 R / V 2 )  2 " 

The expected equilibrium velocity is estimated by using r/o ,> 1 and u < 1 as 

u*  = u _  ~ = u 2 ~ [ T , R / ( t l o V ~ ) ] :  = [fi,/(fil + 2M~A + sin2cpl)] 2 ~ f i t ,  

and the equilibrium temperature T 2 is 

T 2  = / J2(F]o  --  I d 2 ) g 2 / R  "~ ~I  TI  . 

The above equilibrium temperature T 2 is estimated for the data in Table I: 

T 2 ~ f l l T  1 = 3.47 x 10-4  • 2 x 1 0 4 K ~ 7 K [  

This unrealisticaly low temperature occurs because we use c~ = 2 to fit with Q ( T )  for 

T < T C. However,  e = 2 is no longer appropriate for T < 2 • 10 4 K since e increases 

more rapidly in that temperature range. A better fit suggested by Peres et  al. (1982), that 

:~ = 11.7 when 4.4 x 103 K < T < 8 • 10 3 K, gives T 2 = 5.8 • 10 3 K. Therefore, a bet- 

ter over-all fit with Q ( T )  may be obtained by choosing the more precise power law of  

K such as 

= 10, 

a =  2 ,  

1 
= - - 2 7  

= 3.9 • 10 -79 , T < 2  • 1 0 4 K ,  

= 10 4 4  2 • 1 0 4 K <  T <  T c , 

~' = 10 -315 , T >  T c. 

Equation (36) can then be combined with above to describe the cooling in the down- 

stream region. 
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An interesting point worth considering is that the fluid may be heated rather than 
cooled in the downstream region. It is known that the cooling function Q (T) reaches 
a maximum at around 105 K (i.e., Tc) and a minimum at around 3 x 107 K (i.e., Tel ). 

Hence e < 0 for To < T < Tcl, and c~ > 0 for the temperature outside that range. Since 

values of c~ < 0 never satisfy condition (37), it is impossible for the system to approach 

the equilibrium when e < 0 because of thermal instability. However, when e is sufficiently 
greater than zero so that condition (37) is satisfied, then in regions where either 

equilibrium is possible T > To1 or T < T~. The equilibrium in the region where T < Tel 

implies the heating of the downstream plasma. Since the subshock formation requires 

u2 < C, rd, an upper limit for the temperature is 

Tma x = T(u = Csra)~ Td X1/2 . (39) 

Therefore, radiative heating can occur for Tma x > 3 x 107 K, if there is an extra energy 
source downstream of the subshock. 

Since we assume that the subshock is located at ~ = 0, the equations which govern 
the shock structure can be summarized as 

dZT/d~ 2 + dT/d~ - (7 - 1)RLUo[P~Q(T)/Hc - 1] = 0,  4 >  0,  (40a) 

d 2 du 
d~ 2 [u(q o - u)] + [Tr/0 - (7 + 1)u] d~ - 

- ( 7 - 1 ) R L  u--~ ,1Q(T)  ] u k  ~ 1 = 0 ,  ~ < 0 .  (40b) 

In order to solve Equations (40), we have first to calculate the necessary IBC because 

u(~) and T(r cannot be integrated numerically from - o o  or oo. The numerical 
calculation has to start from the subshock, i.e., ~ = 0. 

Let ~ = 0 + and r = 0 -  denote the upstream and the downstream edges of isothermal 
subshock. The following equations are obtained by integrating Equations (40a) and 

(40b) from ~ = 0 + to o% and ~ = - o% respectively: 

Qm, + Rcu = [Xfll - (1 + c o s  2 q)l - 2 COS 2 q ) l / X  ..t- ~I)]/(2XM~A), ( 4 1 a )  

Qma - Rod = (u2 - l /X) [Ttlo - (u 2 + l /X) (7 + 1)/2]. (41b) 

Equation (32) can be rewritten as 

Qmd + Rcu = [ f l l ' ~  + ] J -  1 - ~ ( f l l  ~- 1 + c o s 2 q ? l ) / X  --t - 

+ (7 + 1) COS2qoI/X2]/(2M]A), (41c) 

where Q~ = dT/d~is the normalized heat flux (~cTT) with T expressed in units of VZ/R, 
R~, and Rod are the energy losses due to radiation in the foreshock and cooling regions, 
respectively: 

Rc~ = t (7 - 1)RLu~[P~Q(T)/Ho - 1] d~, 
t d  

0 + 



THE STRUCTURE OF RADIATIVE SLOW-MODE SHOCKS 335 

0 
f l ,  

R~d = t (7-  1)RL U~ [p~Q(T)/(uHr 1] d~. 
.) U 

The three equations above are not enough to determine the five unknowns X, Re,, 
Rc~, Q ..... and Qma, which are needed to solve r (~)  in the upstream region and u(~) 

in the downstream region. Thus to obtain additional constraints we rewrite 
Equations (40) as 

d Q m / d u  + 7rlo - (7 + 1)u - (7 - 1)Rruc[(rlo - u)2/T12 - 1/u] x 

x (tlo - 2u)/Qm = O, u 2 < u < u d ,  

d Q m / d T  + 1 - (7 - 1 )Rru~[(T /T1)  2 - 1] /Q,  = O, T 1 < T <  T a ,  

where the piecewise e with two components has been used to fit Q ( T ) .  Two initial 

conditions can then be drawn by taking the limit u --, u z and T ~ T1 in the two equations 
above, namely, 

dQm _ (7 + 1)u2 - 7r/o + 

db/ 2 2 

/ [ 7 r l o  - (7 + 1)u21 z (t/o - 2ua) (qo - 3u2) + + (7 - 1)Rz.uc 
'4 4 u2 Ta 

(41d) 

( d O m / d T ) i  1 = - [ 1  + x/i- + g(y - 1)Rz .uc /T l ] /2 .  (41e) 

To determine O,,,d and O . . . .  Equation (40a) is integrated from u = u2, Qm = 0 to 

u = ua, Q, ,  = Q,,,a, while Equation (40b) is integrated from T = T1, Qm = 0 to T = T,, 
Q,,, = Q,,,s. These coupled equations are solved iteratively until the values converge. 

Once Q,,,a and Q,,s are known, X, Rcu, and Rca can be obtained from Equations (41). 
In turn u({) and T(4) can be calculated by integrating Equations (40a) and (40b) from 
the subshock towards the downstream and the upstream regions. 

In Figure 7, we plot an example of the structure of a radiative slow shock from the 
far upstream region through to the far downstream region. When compared with the 

shock solution with no radiation (R L = 0, shown by the dashed curve), the figure shows 

that the radiation in the downstream region is much stronger than it is in the upstream 
region. Apparently this occurs because downstream of the subshock the density is much 

higher. Due to the switch-off limit, the radiation has almost no effect on the pressure 
and the tangential components of the velocity and the field, though it does substantially 
change the temperature, the density, and the normal velocity in the downstream region. 

Figure 8 shows the variation of the magnetic, kinetic and internal energy through the 
shock and the downstream cooling region. Also shown are the plasma parameter, the 
heat flux, and the fast mode Mach number. The effect of the radiation is to greatly 
increase the Mach number which is about 1.7 (for 7 5_) in the absence of the radiation. = 3  
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Fig. 7. A numerical solution of an MHD switch-off shock. From (a) to (f), T, P, p, II~, Vv, B,. are in the 
units of Vo/R, p~V if, Pl, Vo, Vo, and Bvl , respectively. The Alfv6n Mach number MIA = COS~O 1 = 0.1, 
fl~ = 3.47 x 10 -4,  and Rc = 1, where a 3-component ct fit has been used for Q(T). Solutions with no 

radiation (R L = 0) are shown by the dashed curves. 

(e) 

(t) 

To show how the shock structure varies with the strength of the radiative loss, we 

plot the temperature jump across the total shock transition. As shown in Figure 9, the 

temperature jump is nearly constant as RL, the ratio of radiative to conduction scale 

lengths, increases. However, at R L near 1, the temperature jump suddenly decreases. 
This sudden decrease is due to the fact that for RL > 1, the radiative scale length 

becomes smaller than the thermal conduction scale length. When this happens, the 

radiation loss isgreater than the amgnetic energy available in the total shock transition, 

and the shock can be maintained only by drawing more energy from the inflow plasma. 

This is done by greatly changing the structure of the shock. Thus the sudden transfer 

of the curve from nearly horizontal to steep falling at RL = 1 suggests that the shock 

is nearly getting destroyed when the characteristic length of radiative cooling is less than 

the thermal scale length. 

5. Summary 

In the presence of strong thermal conduction an M H D  slow shock dissociates into 
foreshock, which is dominated by heat-flux transport, and an isothermal subshock, 
which is dominated by viscous dissipation. The addition of radiation creates a third 
region immediately downstream of the subshock, and in this region radiative cooling 
dominates. For coronal conditions typical of flare loops, the radiation in the down- 
stream region is much stronger than it is in the foreshock. Because of the thermal 
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conduction, the downstream cooling region is strongly coupled to the foreshock, and 
the determination of the shock structure requires simultaneous solution of the equations 
governing all three regions. 

For typical flare conditions, we find that the pressure jump across the total shock 
transition is nearly equal to/?7 1, where fil is the upstream plasma ft. The downstream 
tangential velocity is about the same as the upstream Alfv6n speed, supermagnetosonic 
with respect to the fast-mode wave speed. The tangential magnetic field (normalized by 
upstream tangential field) at upstream edge of the subshock is close to (1 -X-1)1/2,  
where X is the density jump across the total shock. This indicates that of the total energy 
released by the annihilation of magnetic field, about �89 ( ~ X - 1 )  is released in the 
foreshock region while remaining 2 ( ~  1 - X -  1 ) is released at the subshock. Since the 
thickness of total shock transition is of the order of the scale-size of flare loops, this 
result suggests that the magnetic energy release occurs not only at the top of the flare 
loop (where the x-line is), but also throughout the entire length of the loop. 

In a previous order-of-magnitude analysis of flare loops, Forbes, Malherbe, and Priest 
(1989) assumed that almost all of the energy release occurs in the subshock, and that 
the thermal energy conducted into the foreshock region was on the order of the radiative 
loss there. However, our analysis of the structure of slow shocks implies that substantial 
(up to l)  of the energy release occurs in the foreshock region and that it is the radiative 3 
loss in the downstream cooling region rather than the foreshock region, which is of the 
same order as the energy conducted into the foreshock. Therefore, the balance between 
the radiative cooling and thermal heating is never reached in the foreshock. Instead, it 
might occur in the downstream of the subshock, although we do not know whether this 
will really be the case in the flare loops, since a full two-dimensional solution will be 
necessary to determine the correct behavior. 

A criterion for equilibrium in the far downstream, i.e., inequality (37), has been derived 
by critical-point analysis. It shows that no stable, steady-state solutions exist for 
radiative slow shocks unless the temperature in the downstream region of the subshock 
falls below 105 K. 

Appendix A. About Criterion (12) 

We present here the derivation of criterion (12) by using the critical-point analysis (see 
Bender and Orszag, 1978, for further discussion). We start by normalizing Equation (7) 
into a 1-D autonomous system: 

[Tr/g - (7 + 1)u] du/d~ = UcRL(~; - 1) [ Q ( T ) / Q ( T 1 )  - H]/b /2  . (A-l) 

If u = u* satisfies 

Q (T )  - uQ (T 1) = 0,  (A-2) 

and the appropriate physical conditions are applied, then u = u* represents the solution 
to the downstream equilibrium. The stability of this solution can be analyzed by 
examining the behavior of(A- 1) near critical point u = u* through critical-point analysis. 
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The quantity Q ( T )  can be written as 

Q ( T )  = ~,(V2/R)~'u~'(tlg - u) ~' : Czu~'(rlg - u) ~' , 

so that Equation (A-2) gives 

H * ~ x -  l ( t ] g  - -  . * ) ~ r  = Q ( T , ) / C  z . (A-3) 

Substituting u = u* + e into Equation (A-l) and linearizing it by letting e + 0, we get 

de , -  l ( c ~ -  1 ~ ) 
- e. (a-4) [7~?g- (7+ 1)u*] ~ u~R L u* \ u* tlg u* 

Therefore, when e ~ 0, 

{ U ~ ( y - 1 ) R L  ( c~ -  I 
e ~ e x p  u ,  [~g~ ~y + 1)u,] u* ~ g -  u *  { " ( A - 5 )  

The condition u ~ u* as {--+ -oo  (in the downstream region) requires 

(~ - 1 ) /u*  - ~ / ( ~  - u * )  > 0, 

i.e., 

:~(~1~ - u * )  - ~ u *  > r/~ - u * ,  

which is equivalent to criterion (12), that is 

> ( ~  - . * ) / ( ~  - 2 . * ) .  

A p p e n d i x  B.  S o m e  N o t e s  on  N u m e r i c a l  C a l c u l a t i o n  

The critical-point analysis indicates that the solutions satisfying the upstream and the 
downstream equilibrium conditions correspond to two saddle points. The saddle point 
behavior makes it difficult to solve Equations (40) numerically because of the bad 
convergence properties. Near the saddle point any tiny numerical error drives the 
numerical result far away from the exact solution. This situation can only be avoided 
by starting the calculation from the saddle point itself. Therefore, the calculation is 
carried out in two steps. First, starting the integration from u = u; and T = 7"1, we 
calculate Qm (u) and Qm (T)  by iterating to obtain the necessary inner boundary condi- 
tions. Then, u(~) and T(~) are calculated subsequently, by starting from the subshock. 

We transform Equations (40) into the following new form for a piecewise e with two 
components: 

For { > 0, 

Y'1 = 1, 

- -  [ J l / Y l O  - -  ] L/.,F2, Y l  < Y l c ,  (B-l) , - 1 + (7 1)uc 2 2 1 R 

Y2 = -- 1 + (7  1)Ue["5/2"-2"-1/2 -- DR /,, 
k f l c  3"10 -Yl ] L / Y 2 ,  Y l  > Y l c ,  
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where 

y,  = T ,  Y~ = Qm = dT /d~ ,  

with initial conditions 

yl(0) = Ylo = T 1 ,  

Y2(O) = Q~I ,  

yi(O) = 1, 

yi(O) = ( d Q m / d T ) ] , ,  

where y;_(0) is given by Equation (41b), Ylc corresponds to T~. 
For r < 0, 

where 

Yl = 1, 

y~= [ -  

+ f [ -  Y'(tl~ - yl)2 1] 
7t/o + (? + 1)y, [ _ y l 2 ~  ~ Ylo) 2 , 

o f r 2 r Y l c ( t ~ o - Y x c ) l X / 2  } 
7/7o + (7 + 1)yI + J ~ 1 2 [  y l ~ -  ~ - 1  , 

Yl < Ylc , 

(B-2) 

Yl > Ylc , 

y l = u ,  

Y2 = Q,, = (r/0 - 2y~)dyl/d~, 

f = (7 - 1)RLuc(17o/Y, - 2)/Y2,  

with initial conditions 

321(0) = Yl0 = b/2'  

Y2(O) : Qm2,  

y'l(0) = 1, 

y~.(O) : ( dQm/du)  12. 

Picking T(a ~ > T~ as the starting point, the iteration runs as follows: first, integrate 
'~(~. the first estimate of Re,. Next, integrate Equations (B-l) from T 1 tO T(d ~ t o  get t~c,. 

Equations (B-2) from u 2 to u~ ), where u~ ~ is calculated from the equation of state 
T a = ua(r/o - ud) to get ~.~,nd,g')(1) the first estimate of Q,,a. Then u(~ ~, the first estimate of 
u a = X -  1, can be obtained by substituting R(~ and Zmat~(l~ to Equation (41c) and solving 
it. Finally, T(a ~) can be solved from this equation. Accordingly, T}2~... T(d n~ are calculated 
by iterations until ]T~ ) - r ~  + 1) I < ~ or n > N, where ~ and N are the predetermined 
error and iteration time, respectively. 

In our computation we have done numerical integration by using a standard fourth- 
order Runge-Kutta algorithm. 
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