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Abstract. A self-consistent theoretical model for storm continuum and bursts is presented. We propose that 
the Langrnuir waves are emitted spontaneously by an anisotropic loss-cone distribution of electrons trapped 
in the magnetic field above active regions. These high-frequency electrostatic waves are assumed to coalesce 
with lower-hybrid waves excited either by the trapped protons or by weak shocks, making the observed 
brightness temperature equal to the effective temperature of the Langmuir waves. 

It is shown that whenever the collisional damping (vc) is more than the negative damping ( - 7A) due to 
the anisotropic distribution, there is a steady emission of Langmuir waves responsible for the storm 
continuum. The type I bursts are generated randomly whenever the collisional damping (vc) is balanced by 
the negative damping ( -  7A) at the threshold density of the trapped particles, since it causes the effective 
temperature of Langmuir waves to rise steeply. The number density of the particles responsible for the storm 
radiation is estimated. The randomness of type I bursts, brightness temperature, bandwidth and transition 
from type I to type III storm are self-consistently explained. 

I. Introduction 

On dynamic-spectrum records a type I storm consists of many shortlived, narrow-band 
bursts scattered at random across the frequency-time plane. Usually these bursts are 
superposed on a background continuum of emission. Hey (1946) was first to recognize 
the association of noise storms with sunspots. Except near the limb, the storm radiation 
is generally strongly circularly polarized in the sense of the ordinary mode (Le Squeren, 
1963). The observed polarization and heights are generally taken as evidence that the 
emission process is a plasma process at or near the local plasma frequency. Usually the 
type I storms are longlived, lasting from hours to days. The frequency of occurrence is 
in the range from 500 to 50 MHz, peaking around 100-150 MHz. The centroid of the 
burst emission is usually within the observed source region of the continuum (Daigne, 
Lantos-Jarry, and Pick, 1970). The most important characteristic of the storm radiation 
is the brightness temperature. Usually the brightness temperature of the continuum 
< 101~ K, the maximum observed being ~ 9.4 x 109 K at 169 MHz (Kerdraon and 
Mercier, 1983), whereas type I bursts are more intense and they can have T b > 101~ K, 
even though there are no measurements at all the frequencies. At lower frequencies, there 
is a transition from type I storm to type III storm radiation. Kundu (1965) and Elgaroy 
(1977) have extensively reviewed the observations on solar noise storms: 

Two emission mechanisms, namely cyclotron and plasma, were proposed to explain 
the storm radiation. The main objection to the cyclotron emission mechanism is that 
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it favors the extraordinary mode whereas it was never observed (Melrose, 1980a). 
Therefore, it is now believed that the emission mechanism should be a plasma 
mechanism. The scenario of recent theories is as follows: (1) Langmuir waves are 
excited spontaneously or through a loss-cone type of instability by a trapped distribution 
of electrons (2) the conversion of these waves into radiation is by coupling with low- 
frequency waves, either lower-hybrid or ion-acoustic (Melrose, 1980a; Benz and 
Wentzel, 1981; Spicer, Benz, and Huba, 1981; Wentzel, 1981, 1986). All the above 
theories invoke spontaneous emission of Langmuir waves by isotropic distribution of 
electrons to explain the continuum and loss-cone type of instabilities to excite enhanced 
emission of high-frequency waves to explain the type I bursts. Even though the trapped 
distribution of electrons is identified as the responsible agent for type I storms, while 
calculating the effective temperature of the spontaneously emitted Langmuir waves, the 
damping due to trapped electrons is always taken as positive, since the distribution is 
considered tobe isotropic. The Landau damping of Langmuir waves by the background 
plasma is estimated by considering that the electron density is independent of radial 
distance, and since it is extremely small, it has been neglected completely. 

If one carefully observes the dynamic spectrum or intensity plots of type I emission, 
one sees that type I bursts occur as intensity fluctuations in frequency and time. Most 
probably the problem of type I emission is directly related to the problem of field 
fluctuations in a non-equilibrium plasma. The problem of critical fluctuations near the 
onset of a plasma instability is still an unsolved problem in plasma physics (see 
Ichimaru, 1973; Sitenko, 1982; Fung, Papagopoulos, and Wu, 1982). The study of 
spontaneous emission of Langmuir waves by the anisotropic distribution of electrons 
is similar to the study of critical fluctuations in a non-equilibrium plasma. 

Here we propose that the spontaneous emission of Langmuir waves by the aniso- 
tropic distribution of electrons can explain both the continuum and bursts self- 
consistently. If the transformation of high-frequency electrostatic waves into radiation 
is assumed to be due to their coalescence with lower-hybrid waves excited by the trapped 
ions or by the weak shocks, the effective temperature is equal to the observed brightness 
temperature. We show that whenever collisional damping (vc) is dominant over the 
negative damping due to anisotropic electrons ( -  ?n), there is a steady emission of 
Langmuir waves responsible for the continuum, and whenever v c = - 74, i.e., at the 
threshold densities of the trapped particles, the effective temperature rises steeply, 
reaching values up to 1011 K, giving rise to bursts, which is similar to a critical fluc- 
tuation in the effective temperature of Langmuir waves near the onset of the instability. 
The threshold condition is satisfied randomly giving rise to random appearance of type I 
bursts superposed on the continuum, since the acceleration of electrons in the source 
regions is stochastic. The plan of the paper is as follows: in Section 2, we estimate the 
effective temperature of Langmuir waves spontaneously emitted by a loss-cone distribu- 
tion in the coronal streamer. The marginally stable state of the electron distribution 
function is maintained because of the weak scattering and collisional losses of lower 
energy particles. In Section 3, we compare our estimates with those of quasi-linear 
estimates. We estimate the energy density of low-frequency waves in Section 4. In 
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Section 5 we discuss the scattering process, and in Section 6 we give a method to plot 

the brightness temperature versus density. In Section 7 we present the discussion, and 

in Section 8 we summarize our conclusions. 

2. Emission of High-Frequency Langmuir Waves 

Most probably the suprathermal electrons responsible for noise-storm radiation are 
trapped in the magnetic field structures above the active regions. In a trap, particles can 

be anisotropic due to the presence of the loss cones. For the formation and maintainance 
of the anisotropic distribution in the magnetic loop, the condition for weak diffusion 

v D ~ �89 b should satisfy (Kennel and Petchek, 1966; Melrose and Brown, 1976). Here 
v D = 10 - 8neE- 3/2 s - 1 is the rate at which pitch-angle diffusion occurs where E is the 

electron energy in keV, e o is the pitch angle at the edge of the loss cone, v b is the bounce 
rate in the trap, and r/e is the ambient electron density. For the type I emission for the 
assumed value of E = 28keV, the size of the t r a p ~  3 x 101~ % ~ 0 . 1  and 
/'/e ~ 108 c m -  3, we obtain vD ~ 6.8 x 10- 3 s - 1 whereas �89 ~ 1.7 x 10- 2 s -  1, indi- 

cating that the condition for weak diffusion is satisfied (see also, Melrose and White, 

1979). Therefore, one can assume that the typical distribution responsible for type I 
emission is the loss-cone distribution 

1 4 + _ G  _Sexp - - -  , 
f , ( v ) = - 4 x / ~  =3/2 2v2- ~ J (1) 

k,1) Tb ,/ 

where v z and v x are the velocity components parallel and perpendicular to the magnetic 
field, and vr~ is the thermal spread in the velocities. The above distribution is normalized 
to unity. 

The effect of these particles on the Langmuir wave distribution may be described by 
the transfer equation 

Cl I'k~ _ T L v ~ , ,  _ e L ( k )  _ ? L ( k ) T L ( k )  �9 ( 2 )  

dt 

Here T L is the effective temperature of the Langmuir waves, e L is the emission 

coefficient, and 7 L is the effective absorption coefficient, which is the sum of negative 
absorption due to anisotropic electrons (Ta), collisional damping (vc) and Landau 

damping by ambient electrons (TL). Therefore, it can be written as 

? L  = 7A + ])c + "J)L' (3) 

To estimate the effective temperature of Langmuir waves, one should calculate the 
emission coefficient e L and the effective damping ? L. 

2.1. EMISSION COEFFICIENT 

The emission coefficient e L for an electrostatic wave in the case of magnetized electrons; 
i.e., energy per unit volume and wave number interval per second is given by (Melrose, 
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1980c; Wentzel, 1985) 

~L(k) = 16rc3e2R k~ d ns • G dG dG j2 L(v)6(co - sf2 - kzG ). 

(4) 

Here R is the ratio of the energy of the electrostatic wave to the total energy and it is 
-1 for Langmuir waves, e is the electronic charge, J, is the Bessel function of order s; ~ 2  

f2 is the cyclotron frequency; k z and k x are the components of the wave vector along 
and across the magnetic field respectively, and n, is the number density of the supra- 
thermal particles. The Cherenkov resonance condition for the magnetized electrons is 

co = sO + k~vz. (5) 

By substituting the function s given by Equation (1) in Equation (4) and by integrating 
it over Vz, using the resonance condition (5), we obtain 

e 2 (,0 2 k  ~ ~n" , ( (o2-273~_~ sf2)2)/ 
(xL(k)  = 2 x ~  ~r3/2 r~v~- R Z exp x 

awZ T b / 

x ; v 3 d v x d 2 ( ~ ) e x p ( - V 2 x / 2 @ b ) .  (6) 

0 

The integration over v x can be carried out by using the relation (Erdelyi, 1953) 

I : ; e-"2x2j~(bx)x dx 1 _b2/2a21 (b2"~ e 
2a 2 m \2a2] 

0 

(7) 

where I m is the modified Bessel function of the first kind for an imaginary argument. 
But 

dI _ i x3 dx JZ(bx) exp ( - a2x). 
da 2 

O 

(8) 

In the limit of high frequencies, co > s the effect of the magnetic field is negligible. 
Then, absorption must also be possible for k z = 0, since this limit corresponds to the 
isotropic plasma without an external magnetic field. This is physically obvious since the 
Larmor radius of the particles greatly exceeds the wavelength when f2--, 0. The formal 
transition to the limit f2~  0 is nontrivial and connected with the problem of the 
asymptotic representation of the Bessel functions of high order in large arguments. For 
f2--, 0, the arguments of the Bessel functions become large. Then all terms with I m I < s 
contribute to the same order, whereas the terms with I ml > s are exponentially small 
where s = b212a 2 = tG-2 Vrbl2 ,f22. 
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Therefore, by differentiating the right-hand side of (7) with respect to a 2 and by using 
the asymptotic relation for Im(Z) for large z which is 

Ira(z)- exp~(~z)(1- m2 - 0"25-~, (9) 
x/2rcz \ 2z / 

we obtain 

aL(k ) 1 n, m e coff o)2 ~2 Z x 
4 ne v2r~ k 2 kxk  z s 

x e x p I _ ( . _ _ ~ _ - s ( 2 . ) 2 ] (  1 ( s2-0 .25)  
\X/2VTbkz ,]  ..] + 2k--Zxv~r ~ ~"22) " 

(lO) 

Here we substituted R = �89 The main contribution is by the term co = s~?. The s can take 
values from 5 to 20 for a typical noise storm. And for COp ~ co, co/k x ~ vrb, k~ ~ 0.7k x, 
the emission coefficient is reduced to 

o~L(k) ~ O'lme n~ COV2b . (11) 
/% 

2.2. E F F E C T I V E  D A M P I N G  

The negative damping of Langmuir waves ( - 7,1) excited by the anisotropic distribution 
of electrons as given by Equation (1) can be written as (Zaitsev and Stepanov, 1975) 

) - 1 2 cot 0 / 

1 /~  nsco 4 _ c o 2 / 2 k 2 1 ) 2  b (12) 
- ?A = 4 ~ l Z  rtek3v~b (1  + c o t O )  e , 

where 0 is the angle between the magnetic field and the wave vector. The 7A is negative 
only for Langmuir waves with phase velocities 

( k ) 2 K  v2 ( 1 -  2 cot 2 0). (13) 

In other words the system is unstable only for 54?74 < 0<  re/2. 
The waves are actually z-modes since k is almost perpendicular to B. When cot 2 0 ,~ 1, 

- 7A reaches its maximum: 

_ ?~ax ~ 4.4 x 10-2cop n~ (14) 
/% 

Therefore, the negative d~tifipitag is directly proportional to the frequency as well as the 
number density of the nontl-m'rmal particles. 
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The damping due to electron-ion collisions in the coronal plasma is given by 

v = 5.5(ne/Te 3/2) ln(10 4 Ty3/nae/3), (15) 

where T e is electron temperature in degrees of Kelvin. The collisional damping rate is 

given by 

uc= v/2. 

The absorption coefficient due 

CO;CO 
~ L  = 3 k4v5 T 

to Landau damping in the background plasma is 

- - -  exp 2v~k ~ , 

(16) 

(17) 

where v T is the thermal speed of electrons in the ambient plasma. The above formula 
for #L is valid only in the case of weak absorption, i.e., when #L ~ k in a transparent 
medium. The condition of weak absorption is fullfilled, if CO2/2k2v2 r = 2 2 V~h/2V T ~ 1, where 
Vph is the phase velocity of the waves. We should note that in the region of weak 
absorption of plasma waves, their frequency CO ~ COp. If Vph ~ v r ,  the expression (17) is 
no longer valid, because in that region YL ~ CO, i.e., the waves are damped in 
t ,,~ 7-1 ,., CO- 1 s, or in a distance L ~ 2/2rc which means that the plasma waves with 
Vph ~ V T cannot propagate in the plasma due to a strong Landau damping. Therefore, 
as a result of Landau damping, plasma waves cannot go out of the region co ~ cop into 
the rarefied plasma (e.g., from solar corona into interplanetary medium). Actually during 
the propagation of waves with frequency co in a smoothly varying plasma, their phase 
velocity Vph = , f i  v ~ / ~  is decreased with the plasma frequency COp (since 
e = 1 - CO2/CO2). Therefore, when vph is decreased to v r ,  strong Landau damping takes 
place leading to a complete absorption of the plasma waves. (For details, see 
Zheleznyakov, 1977; Thejappa, Gopalswamy, and Kundu, 1990). It is, therefore, useful 
to estimate the length Ap travelled by a plasma wave before it is completely Landau 
damped. Since the absorption coefficient is related to absorption length Ap as 

1 
~ c  - , ( 1 8 )  

Ap 

we can use Equation (17) as an equation for the absorption length Ap. From the 
dispersion relation for Langmuir waves, the dielectric constant in the cold approxima- 
tion ~ = 1 - COp2/CO2 can be written as 

e = 3  - -  v2T . (19) 

By Taylor expanding e around co ~ COp we obtain 

de 1 &o 2 
= -  Ap Ap .  (20) 

dp co2 Op 
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Since the noise storm radiation occurs mainly above the active regions, i.e., in the 

streamers, the most  appropriate density model for such a streamer is the 5 x Newkirk's  

density model 

N = 2.1 X 105 X 10 4.32/0 , (21) 

where p is the radial distance in units of  solar radii. The plasma frequency cop is related 

to the density N as 

CO2p = 3.18 x 109N. (22) 

By using Equation (21), differentiating Equation (22) with respect to p, and equating 

co ~ cop we obtain 

= 9.95 A p . ( 2 3 )  
p2 

By substituting Equation (23) into (17) in place of  2 2 3VT/Vph , according to the rela- 

tion (19), we obtain an equation for Ap: 

Ap= 3.8 x 10 -2  R ~  COpp4 exp(_O.  15p2/Ap) ' 
V T 

(24) 

where R o is a solar radius. The radial distance p is related to the plasma frequency fp 

in M H z  in the density model given by Equation (21) as 

4.32 
p - (25) 

logfp  2 - 1.23 

For  T = 10 6 K ,  v T ~ 3.89 X 108 cm s -  i and R o = 6.96 x 10 l~ cm, one finds for the 

absorption length Ap: 

E ( )] 282 l n A p -  23.42 - In 2 fp + = 0 .  (26) 
(log fp - 1.23) 4 Ap(logfp 2 - 1.23) 2 

One can solve the above equation for the absorption length Ap for different fre- 
quencies. The Landau damping can be estimated as 

7L = vg/Ap. (27) 

Here Vg is the group velocity, estimated as Vg ~ 3V~/Vph. For VT~ 3.89 X 108 cm s 1 

and Vph ~ vrb ~ 10 I~ cm s -  i one obtains Vg ~ 4.54 x 107 cm s - 1. A tabulation of  the 

absorption length and Landau damping for different frequencies is given in Table I. 
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TABLE I 

The effective absorption length and Landau damping of the Langmuir wave 
estimated for different plasma frequency levels in the corona 

Frequency Absorption length Landau damping 
in MHz (Ap) in R o ~L in S- I 

300 1.05 • 10 2 6.2 • 10 -2 
250 1.19 x 10 -2 5.48 x 10 -2 
167 1.39 x 10 a 4.69 x 10 .2 
80 2.11 x 10 .2 3.09 x 10 .2 
50 2.9 x 10 .2 2.25 x 10 -2 
30 4.92 x 10 .2 1.33 x 10 .2 

2.3. EFFECTIVE TEMPERATURE OF LANGMUIR WAVES 

F r o m  Equa t ion  (2) it is clear that  the effective t empera ture  of  the spon taneous ly  emit ted 

L a n g m u i r  waves  in the s ta t ionary  case is given by:  

TL(k)- c~L(k) (28) 
~L(k) 

In  the theory of  f luctuat ions,  the effective f luctuat ion tempera ture  of  a non -equ i l i b r ium 

p l a s m a  is de te rmined  by a similar expression.  W h e n  the negat ive  d a m p i n g  ( -  7A) due  

to an  aniso t ropic  d is t r ibut ion  of  electrons is b a l a n c e d  by the col l is ional  d a m p i n g  (vc), 

the effective d a m p i n g  7L(k) is equal  to the L a n d a u  d a m p i n g  7L. This  s i tuat ion corre- 

sponds  to the critical f luctuat ion level where  the effective t empera tu re  rises steeply 

before the onse t  of  the instabil i ty.  We  call the densi ty  of  the supra the rmal  e lectrons when  

- 7A = Vc the threshold  densi ty  (ns /ne) th ,  which is different for different frequencies.  In  

Tab le  II ,  we give the col l is ional  d a m p i n g  (vc), the negat ive  d a m p i n g  ( - 7A) and  (ns /ne) th  

at different frequencies,  a s suming  T e = 10 6 K. 

By us ing  re la t ion (11) for the emiss ion  coefficient and  re la t ion  (28) w h e n  

7L(k) = 7L(k), we can  c o mp u t e  the effective t empera tu re  of  the L a n g m u i r  waves  at 

threshold  densit ies.  In  Table  I l l ,  we give the emiss ion  coefficient and  the effective 

TABLE II 

The ambient electron density, collisional damping, negative damping due to trapped electrons, and the 
density ratio of the trapped particles to the ambient electrons at threshold for different plasma frequency 

layers in the corona 

Frequency in MHz n e cm- 3 v~ - 7~ '~• (ns/ne)th 

300 1.11 • 109 34.73 8.29 • 107ns/ne 4.19 x 10 -7 
250 7.74 • 108 24.69 6.9 • 107ns/ne 3.57 • 10 - 7  

167 3.45 • 108 11.26 4.62 • 107ns/ne 2.44 x 10 - 7  

80 7.92 • 107 2.69 2.21 • 107rls/ne 1.23 • 10 -7 
50 3.1 • 107 1.08 1.38 • 107t'ls/ne 7.83 x 10 8 
30 1.1 X 107 0.40 8.29 • 106ns/ne 4,82 x 10 * 
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TABLE III 

The emission coefficient and the effective temperature of the Langmuir waves 
emitted by the trapped electrons at threshold, i.e., when negative damping is 
balanced by the collisional damping at various frequencies 

Frequency in MHz a'tt h Tth L in K 

300 6.53 • 10 - 6  8.39 • 1011 
250 7.11 x 10 - 6  6.75 x 1011 
167 2.33 • 10 - 6  3.6 x 1011 
80 5.63 x 10 6 1.32 x 1011 
50 2.24x 10 v %2 x 10 l~ 
30 8.27 x 10 -8 4.05 • 10 l~ 

brightness temperature  of  Langmuir  waves at threshold beam densities for various 

frequencies. Here  we assumed v~b _ lO,O cm s - 1 

3. Comparison with Quasi-Linear Analysis 

In Section 2, we have es t imated the effective temperature  of  the spontaneously  emitted 

Langmuir  waves,  by an anisotropic  electron distr ibution.  Above  the threshold values, 

i.e., when - 7A > vc, the l inear analysis does not  hold  since the condi t ion for quasi-  

equilibrium between the emission and absorpt ion  does not  hold.  Therefore one should 

est imate the T L by solving the two-dimensional  quasi-l inear equations.  Bre izmann 

(1986) has solved such a problem for a typical  t r apped  distr ibution of  electrons. The 

max imum energy densi ty  of  the Langmuir  waves excited by such a distr ibution is 

es t imated as 

WL nsmV 2 
q ,  (29) 

neTe 2AneTe 

where A is the Coulomb logarithm, v b - velocity of  the supra thermal  part icles and q is 

a dimensionless  function whose maximum value is ~ 0.1. The form of  the distr ibution 

function used by Bre izmann (1986) is different from what  we have used, however,  for 

est imating the energy density, the form of  the distr ibution function is not  important .  The 

effective tempera ture  of  the p l a sma  waves is given by (Melrose,  1974) 

( T L > ~ o  = W L ~ph vph 1 , (30) 
f p /  Avph Af2 

where Avph is the spread in phase  velocities and Af2 is the solid angle of  the emission. 

F o r  vph ~ Avph ~ 10 l~ cm s - 1 ; and Af2 ~ 47r, we can est imate the effective tempera ture  

of  Langmuir  waves at different frequencies. In Table  IV we give the Coulomb logarithm, 

the energy densi ty of  Langmuir  waves as given by Equat ion (29) and the effective 

temperature  of  Langmuir  waves at different frequencies. 

The effective tempera ture  of  Langmuir  waves computed  by solving the quasi-l inear 

equation T ~  as given in Table  IV, is always more than the threshold effective tempera-  
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TABLE IV 

The Coulomb logarithm, the ratio of the total energy density of Langmuir waves to the thermal energy and 

the effective temperature of Langmuir waves estimated by quasi-linear analysis for different frequencies 

Frequency in MHz A = ln(10 4 T3/2/n 2/3) WL/neT e T ~  

300 11.48 1.2 • 10 -6 3.89 • 1012 

250 11.6 1.02 • 10 -6 4.02 • 1012 

167 11.87 6.78 • 10 -7 3.99 x 1012 

80 12.36 3.28 • 10 -7 4.03 • 1012 

50 12.67 2.04 • 10 -7 4.03 • 1012 
30 13.01 1.22 • 10 7 3.99 • 1012 

ture of spontaneously emitted Langmuir waves (see Table III). One should note that the 
effective temperature T~L remains constant, ~ 4 x 1012 K, independent of frequency at 
the threshold values of ns/n e. 

4. Low-Frequency Waves 

In addition to the electrons, if one assumes that the fast ions are injected across the field 
into the magnetic confinement system with a velocity Vb; , the distribution function for 
such fast ions can be assumed to be close to a S-function: f(v) ~ ?lb(~(V -- Obi), which 
we call a ring. For a sufficiently large plasma density, i.e., COp; >> f2; and when the ratio 

of the beam to plasma density is not too small, i.e., %/n e > me/me, the main instabilities 
are those in the frequency range 12; ,~ CO ~ O e with the growth rate 7 > Oi- Here me. ; and 
Oe. ; are the masses and cyclotron frequencies of electrons and ions, respectively, and 
n b is the density of ions in the ring. 

When studying instabilities with 7 > f2;, the ions can be considered to be moving along 
straight lines. In this case the magnetic field does not influence the quasi-linear relaxation 
of the velocity distribution of the fast ions so that the quasi-linear equations for their 
distribution function are the same as that in the absence of magnetic field. The quasi- 
linear relaxation of such a beam due to the excitation of the lower-hybrid oscillations 
proceeds in exactly the same way as the quasi-linear relaxation of the electron beam due 
to high-frequency Langmuir waves (Shapiro and Shevchenko, 1988). In the general case 
this situation corresponds to the time variation of the particle distribution function in 
three-dimensional velocity space. For the case of kll ~ 0, general quasi-linear equations 
can be integrated over vii and kll and the problem becomes that of investigating the time 
behaviour of a two-dimensional distribution f ( v •  t) and a two-dimensional spectrum 
of oscillations WLH(k• t). Therefore, f = f ( v •  t), i.e., the ion distribution function 
remains isotropic during the whole process of relaxation (see, Kulygin, Mikhailovskii, 
and Tsapelkin, 1971). The energy density of lower-hybrid waves excited by the isotropic 
distribution of trapped ions can be estimated (Breizmann, 1986) as 

WLH nbmit) 2 
- -  ~ - -  q .  ( 3 1 )  
neT e ne2ATe 
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For n b / n e ~ m e / m i ;  v b = 5yr.; A ~  12, q = 0.1, and T e = Ti= 106K, we obtain 

W L I - i / n e T e  ~ 10 - 4  

5. Conversion of Plasma Waves into Transverse Waves 

5.1. RAYLEIGH SCATTERING 

As we noted earlier, the polarization and heights are generally taken as evidence that 
the emission process is a plasma process at or near the local plasma frequency. The 
emission at the second harmonic should be negligibly small. I f  the effective temperature 
of Langmuir waves T2ff < T* = 4 x 1013 K, the emission at the second harmonic is 

predominant over that of the fundamental in the case of Rayleigh scattering of plasma 
waves on ion density fluctuations (Zaitsev and Stepanov, 1983). 

Since the effective temperature of Langmuir waves emitted spontaneously by an 
anisotropic electron distribution is less than 4 x 1013 K (see Table III)  and the radiation 

should be at the fundamental, most probably the conversion of Langmuir waves into 
radiation by scattering on ion density fluctuations does not play any role in the case of 

storm radiation, and the low-frequency waves in the source region may play the role of 
scatterers of these longitudinal waves into transverse waves (see Melrose, 1980a). 

5.2. COALESCENCE OF LANGMUIR WAVES WITH LOWER-HYBRID WAVES 

The transformation of Langmuir waves (L) into electromagnetic radiation (t) due to 

scattering on lower-hybrid waves (LH) takes place when the resonance conditions 

k L + kLH = k ,  eoL(kL) + eoLH(kLri) = eo(k), (32) 

are satisfied. The kinetic equations for the waves can be written in the form of transfer 

equations. The equation for the electromagnetic waves can be written as (Zheleznyakov, 
1977, p. 413) 

~ W  k ~ W  k feo w(WkLWkc. W k L  Wk2 Wk/d3kL d3kLH - - + V g  - 
0t 0L \ c%eoLr t o leo COl.rieo / h(2rc) 3 

(33) 

Here W k, Wkc and WkL. are the energy densities of t, L, and LH waves respectively, 
h is Planck's constant, and W is the probability of L + LH --, t process and it is given 
as (Melrose, 1980b) 

W -  (2rc)~ he 2 eo3ri(kLri) m; sin2 0 / 5 ( k -  k i~-  k i . H ) b ( e o - e o c -  c%ri) �9 
2 k2i_iV 4 me 4 me 

(34) 

Here 0 is the angle between k and k L. The first term on the right-hand side of 
Equation (33) corresponds to the emission coefficient oft-waves with wave vector k and 
can be written as 

O~k = f WWkL WkLH (2) d3kL d3kLH (35) 
coi eoL. h(2~)  3 d 
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The damping of t-waves due to decay into L and LH waves is given by the second and 
third terms as 

= + - (36) 
\ (0 L f,0LH h(2zr) 3 

In a quasi-stationary large source, the energy density W k can be estimated as follows. 
I f  one assumes that Wk and WkL. change very little during A t  ~ 1/7k, in a distance 
A L  .,. 1//~ k (where/~k = 27kVg 1 is the absorption coefficient along the ray due to decay 

t ~ L + LH), the energy density W k is maintained at a constant level. Therefore, 

~ W  k ~ W  k 
- -  + v g  ~ O . (37) 

St OL 

Here Vg is the group velocity of the electromagnetic waves. I f  we express the energy 
densities in terms of temperatures as 

Z Teff Z T L  Z T L H  

Wk - (2r03 , WkL (2r03 , Wk~. (2r03 , (38) 

where )/is Boltzmann's constant, and by equating the right-hand side of Equation (33) 
to zero, we obtain a relation 

r T L  T LH 
Te~ = (39) 

gO L T LH + (-0LH T L 

In the case of coalescence of Langmuir waves with lower-hybrid waves with 

(DE >~ (-OLH, the effective temperature of electromagnetic waves Tef r with ~o = 
= (D L + (..0LH ~ CO L can have a maximum value equal to the effective temperature of the 
Langmuir w a v e s  ( T  L) in a wide range of values TLH/T L >-- O ) L H / ( . 0  L ,  It does not exceed 
T L for any value of TLH/T L. 

If  one assumes that the spectrum of plasma waves W k is isotropic and if the source 

is stationary and homogeneous, the effective temperature of the radiation Tee r is equal 
to the effective temperature of Langmuir waves  T L only if the condition /~L >> 1 is 

satisfied. Here L is the linear dimension of the source. In other words, Teerraises to the 
maximum value equal to T L if the source is optically thick with respect to the decay of 
electromagnetic wave (t) into Langmuir (L) and lower-hybrid (LH) waves. In the case 
of the optically thin case Te~ is determined by ek. Therefore, to find Teer, one has to 

estimate ~k and 7k. 
By substituting Equation (34) in Equations (35) and (36) and by assuming that 

C0LH/kLH ~ Vbi, since the lower-hybrid waves are excited due to the resonance condition, 
C0LH ~ kLH' Vbi is satisfied, and by writing d3kL = kL 2 dk L sin 0 dO dO, we can easily 
perform the integration in Equations (35) and (36), to obtain 

2 
(2~) 3 e 2 m l  VbiCOp WkLWkLHkL, (40) 

~ k - -  2 9 m e m  e v 6 
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and 

and 

2 FC0L n 1 = (2~)3 e2 mi Vbi (~P kL WkL + WkL.  �9 (41) 
2 ~k 18 m e m e V 4 V 2 L (J')L 

The emissivity ~ ,  and absorption coefficient # are given by 

cG = k2%(Icos01 Vg) - 1  , (42) 

# = 27k/Vg. (43) 

By taking for the plasma waves kL ,.~ O)p/Vph and for the electromagnetic waves 
co ~ COp, k ,.~ • / c  and Vg ,.~ c OX/~e/~ p and by noting that in an isotropic plasma 

cos 0 ~ 1, we obtain 

4 2 
Vbi (2~r)3 e2 mi x / ~  c3 ~ p  - -  WkL WkLH (44) 

9 me me Vp h 1)6 

and 

# 9 m e m e 1) 6 CVph I_ (-OL 

By using the relations (38) we can write 

l e 2 m i  v2i 2 [  ] #L - 2 )~ X / ~  007, L COL n TL + TLrI . (46) 
9 m e m e V 6 Vph C I_ O)L 

z 5v2, 3.86 x 108 cm s -  1 For (O)LH/ ( -OL)T  L ~ TLH , and for (Op/~'~e~ 5, 1)bi~  1)T '~ 

1)ph ~ 1010 cm s - 1, COp = 2rt X l0 s s - 1, and by taking into account that the absorption 

of electromagnetic waves due to decay into two longitudinal waves is significant only 
in a layer of thickness L ~ l0 s cm (see Zheleznyakov and Zlotnik, 1974), we can 
estimate the lower limit of lower hybrid waves when Tee r ~ T L as 3.53 x 109 K. It agrees 
with the estimates given by Melrose (1980b) and Wentzel (1986). If T L < 3.53 x 109 K, 

the effective temperature Tee r is given by 

C2 
Teff = ( 2 7 ; ) 3 ) ~ p 2  ao, L .  (47)  

By substituting Equation (44) in (47) and using the relations (38), we obtain 

1 e 2 m i COp r Vbi L X T L T  LI~. (48) 

9 m e m e 

For the same parameters as above and for TLH ~ 108 K we obtain Tel r ~ TL/IO. 

Since the effective temperature estimated from Equation (31) exceeds 3.5 x 10 9 K by 
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several orders of magnitude the effective temperature of radiation, in other words the 
brightness temperature is equal to the effective temperature of Langrnuir waves (T L) in 
the present case. 

6. The Brightness Temperature of the Radiation 

As we stated earlier, since the optical depth in the scattering process is very large, the 
brightness temperature (TB) is equal to the effective temperature of the Langmuir waves. 
Therefore, we can write 

o~ L 

T L= TB- (49) 7L 

S" 
-y 

2O 

kl 

ao , -  
' I ' ~ ' I ' ' ' 

300 MHz 

, I , , , L , i , 

3 8  4 
Nb /Ne  * e ( - 7 )  

i , i ~ , ] l J , , l ' t L , 

80 250 MHz 

50 

3 6  4 2  2 2 5  3 3 5  
Nb/Ne  * e(-7) 

167 MHz 
80 MHz 

F i g .  1 .  

2 2 2  2 4  
Nb/Ne  * e(--7) 

1 8  t Ii 12 
N b / N e  * e(yT)  
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Fig .  1. T h e  br ightness  t e m p e r a t u r e  as  a funct ion  o f  n u m b e r  dens i ty  o f  the s u p r a t h e r m a l  e l ec trons  in the 

l o s s - c o n e  d i s tr ibut ion  a t  300,  250 ,  167, 80, 50,  a n d  30 M H z  frequenc ies .  

By using Equations (3), (11), and (14) we  can rewrite the above equation as 

0 . 1  n~ C_Ov2bme 
/'/e r~ ~ (50) 

- 4 . 4  x 10 - 2  ns - -  mp + vo + ~L 
Yl e 

For vrb = 101~ cm s -  i, and using the Tables I and II for v~ and 7L respectively, we 

can plot in Figure 1, T B as a function of  n J n  e. From Figure 1, one can notice that T 8 
rises sharply when ns/n e approaches the threshold values. For an increase of  0.5 • 10 - 7 

in n J n  e near the threshold, the increase in T B is by two orders of  magnitude. 

Equation (50) is valid only for ns/n e <= (nJne)th. Beyond threshold values, one should 
solve the quasi-linear equations to obtain TB, since the linear analysis is not valid 
for - ~ A  > v ~ .  
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One should note that the solution for the transfer equation, in the limit of the optically 
thick case (/~L >> 1) Equation (28) is valid even at threshold. For a source of linear 
dimensions L ~ 5 x 10- 2 Ro ' which is typical for type I bursts, the condition #L >> 1 
is always satisfied for all the frequencies. One should also note that as ns /n  e increases, 
the effective damping 7 approaches zero, and solution (28) is not valid. There is a sort 
of stimulated emission of Langmuir waves at this limit even though the net damping is 
greater than zero, similar to the critical fluctuation temperature in a non-equilibrium 
plasma. We have shown that the brightness temperatures of type I bursts up to 1011 K 
can be explained by mere spontaneous emission. As the density of the beam is increased, 
making - 7A > vc, the emission is no longer incoherent but coherent, and it can give high 
brightness temperatures explaining the very bright type I bursts. 

7. Discussion 

As seen in Figure 1, there is a steady emission for number densities n J n  e less than 
4 x 10 -7,  3 x 10 -7,  2.2 x 10 -7,  1 • 10 -7 ,  6 x 10 -8, and 4 • 10 -8 at 300, 250, 167, 
80, 50, and 30 MHz, respectively, giving rise to steady emission of storm continuum. 
As the density ns /n  e approaches the threshold values at these frequencies, the brightness 
temperature Te increases sharply by two orders of magnitude giving rise to intense type I 
bursts. The threshold condition may be satisfied randomly in space and time which 
depends on the acceleration or injection mechanism of electrons into the source region. 

Weak shocks driven by emerging magnetic flux are supposed to be responsible for 
the high energy electrons in the source region as well as the low-frequency lower-hybrid 
waves (Spicer, Benz, and Huba, 1981; Wentzel, 1981). The acceleration of electrons 
by collisionless shocks through the lower-hybrid waves was discussed by Vaisberg et  al. 

(1983), Krasnoselkikh et  al. (1985), Thejappa (1987), Lampe and Papadopoulos (1977), 
and Benz and Thejappa (1988). The acceleration is a stochastic process, i.e., the 
injection of particles into the source region takes place stochastically making both n s and 
v b stochastic. 

The low-frequency lower-hybrid waves can be excited easily either by shocks due to 
the modified two-stream instability whose energy density for typical type I parameters 
is W L H / I ' I e T  e ~ 1 0  - 6 (Spicer, Benz, and Huba, 1981), or as stated earlier, by the trapped 
distribution of energetic ions. 

In Figure 2, we plot the brightness temperature (TB) of the type I burst (i.e., at 
threshold) as a function of the frequency as predicted in this model for a strong storm. 
One can see from Figure 2 that the brightness temperature increases with the frequency 
which is one of the predictions of our model. It can be tested by measuring T b of type I 
bursts at various frequencies. The brightness temperature of the continuum can lie 
anywhere from 107K to 10 l~ K at all the frequencies. By knowing the brightness 
temperature of the continuum at a given frequency, one can estimate the number density 
of the suprathermal electrons trapped in the field lines by using Equation (50). In 
Figure 3, we plot the threshold beam density ns/ne  as a function of frequency. One can 
easily see the linear relationship. By knowing the frequency of observations of type I 



A SELF-CONSISTENT MODEL FOR THE STORM RADIO EMISSION FROM THE SUN 189 

xz 

8 

6 

o i ~ i l l l l ~ l l l l l l l l l r l l 4 1 1 1 1 1 1 q i  I ,  
5(? 10(? 1 5 0  20(? 2 5 0  3(?0 

Frequency in MHz 

Fig. 2. The brightness temperature spectrum for type I bursts. 

I 

35O 

bursts, we can estimate the threshold density of the beam when v c = - 7A, and can 
estimate their brightness temperatures since it is difficult to measure them because of 
the difficulty in estimating the source size. 

As we noted earlier, since the electrons are accelerated stochastically by the shocks, 
they are injected into the source region above the active regions stochastically. The 

electrons are also lost due to collisions and also escape into the loss-cone. Therefore, 
the threshold condition for the number density of particles n s / n  e in the source region is 

satisfied randomly, explaining in a natural way the random appearance of type I bursts 
superposed on continuum. At all other time, the suprathermal electrons emit steady 
background continuum. 

As we have noted from Figure 3, the threshold density of the suprathermal particles 
decreases steadily with frequency. The threshold condition is purely dependent on the 
number density ( n s / n e )  and a slight decrease in n , / n  e violates the threshold conditions, 
making T b equal to the temperature of the continuum. Most probably the fluctuations 
in n s or n e, i.e., 5ns or b n  e, determine the bandwidth and lifetime of type I bursts. In the 
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Fig. 3. Threshold density of the energetic electrons in the loss-cone distribution as a function of frequency. 

absence of  an electric field, we can write the kinetic equation for the nonthermal particles 

a s  

~t 
- -  - - V p f , ,  (51) 

which can be written as 

( -  ans) ( - ~fs) 
. ~  V p  bt, (52) 

n~ fs 

where the effective collisions 
m 

Vp=3 .~S vc. 
/)z 

(53) 
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At 167 MHz frequency, the fluctuations in the density of nonthermal particles are 
~ n , / n  s ~ 0.02 when the brightness temperature of the burst is 10 times that of the 
continuum. For v z ~ 1 0 9 c m s  -1, v r ~ 3 . 8 9 x  108cms l, and v c ~ l l . 2 6 s  -1, we 
obtain Vp = 2.47 s -1. Therefore the lifetime of the fluctuation at 167 MHz is 

1.0 x 10 -2 s, and the distance travelled by the density enhancement bns is 
S ~ 100 km, which corresponds to the bandwidth of 0fp/fp ~ 0.2~o. Here we have used 
the relation O f p / f p L x / 2  ~ S ,  where L N is the characteristic distance over which the mean 
electron density in the corona changes and it is ~ 105 km. Therefore, by knowing the 
continuum level and the peak T,  of the burst, we can estimate the bandwidth and the 
lifetime of the type I bursts. 

For type I bursts, n s / n  e is not always necessarily at threshold values; it can be 
anywhere near the threshold values. At decameter wavelengths the suprathermal par- 
ticles escape and excite the type III storms. Since the observed brightness temperature 
of type III storm bursts is lower than the flare related type III bursts, they may be 
microbursts (see Kundu e t a l . ,  1986; White, Kundu, and Szabo, 1986; Thejappa, 
Gopalswamy, and Kundu, 1990). As reported by Thejappa, Gopalswamy, and Kundu 
(1990) the microbursts are due to spontaneous emission of Langmuir waves by the 
electron beams with the threshold density. The conversion is most probably due to 
ion-density fluctuations in the case of microbursts. As discussed by Thejappa, 
Gopalswamy, and Kundu (1990), there is a clear distinction between the storm type III's 
and flare-related type III bursts. In the case of normal type III bursts, Langmuir waves 
are emitted coherently through the two-stream instability whereas microbursts are 
exclusively due to incoherent emission of Langmuir waves by the electron beams. 

8. Conclusions 

(1) The spontaneous emission of Langmuir waves by the anisotropic distribution of 
electrons in the closed magnetic fields above active regions is most probably the 
emission mechanism for the storm radiation. 

(2) The conversion of Langmuir waves into radiation is most probably by their 
coalescence with lower-hybrid waves excited either by weak shocks or by fast ions 
injected across the field lines into the magnetic loops. The background ion density 
fluctuations do not play the role of scatterers in the case of storm radiation, since in this 
case the second harmonic emission will be predominant over the fundamental, contrary 
to observations. 

(3) Whenever the source region is filled with suprathermal particles, there is a steady 
enhancement of Langmuir waves due to spontaneous emission, explaining the wideband 
steady continuum. For typical parameters, the brightness temperature of the continuum 
is in the range 10 7 K to 10 l~ K and it can be explained with the number density of the 
suprathermal particles n , / n  e ~ 10- 9 - 1 0 -  7 at all the observed frequencies. Usually the 
brightness temperature decreases with frequency for a particular storm at a given time. 

(4) Whenever the collisional damping is equal to the negative damping due to aniso- 
tropic distribution of electrons, there is a steep rise in the brightness temperature giving 
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rise to type I bursts. The random nature of the threshold condition naturally explains 
the randomness of the type I bursts. The brightness temperature spectrum of type I 
bursts shows that T 8 increases with frequency. 

(5) The finite bandwidth and short lifetime of type I bursts are the spatial and 
temporal scales of the random density fluctuations of the suprathermal particles in the 
source region. 
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