
Revis ing Deduct ive Knowledge
Stereotypical Knowledge in a

Student Mode l

and

X U E M I N G H U A N G , G O R D O N I. M C C A L L A , J I M E. G R E E R ,
A N D E R I C N E U F E L D

Department of Computational Science, University of Saskatchewan,
Saskatoon, Saskatchewan, Canada STN OWO,
huang@skorpio, usask, ca

(14 August 1990; in final form 29 October 1990)

A b s t r a c t . A user /s tudent model must be revised when new information about the
user /s tudent is obtained. But a sophisticated user/s tudent model is a complex struc-
ture that contains different types of knowledge. Different techniques may be needed for
revising different types of knowledge. This paper presents a student model maintenance
system (SMMS) which deals with revision of two impor tant types of knowledge in student
models: deductive knowledge and stereotypical knowledge. In the SMMS, deductive knowl-
edge is represented by justified beliefs. Its revision is accomplished by a combination of
techniques involving reason maintenance and formal diagnosis. Stereotypical knowledge is
represented in the Default Package Network (DPN). The DPN is a knowledge parti t ioning
hierarchy in which each node contains concepts in a sub-domain. Revision of stereotypical
knowledge is realized by propagating new information through the DPN to change default
packages (stereotypes) of the nodes in the DPN. A revision of deductive knowledge may
trigger a revision of stereotypical knowledge, which results in a desirable student model
in which the two types of knowledge exist harmoniously.

K e y w o r d s : user /s tudent model revision, deductive knowledge, stereotypical knowledge,
reason maintenance, diagnosis, default package network

1. I n t r o d u c t i o n

An intelligent tutoring system (ITS) usually has a knowledge base containing
its knowledge (or beliefs) about the student called the student model (Slee-
man and Brown, 1982; Wenger, 1987). The tutoring system can obtain this
knowledge by analysing the student's responses to the system. This is called
student knowledge analysis) In fact, most research in student modeling fo-
cuses on the task of student knowledge analysis (Clancey, 1986; Wenger,
1987). However, a student model would be more useful if the information
extracted during analysis could be recorded and re-used in succeeding inter-
actions. This paper addresses the task of representing knowledge about the
student and maintaining the student model, or the task of student model

1 Student knowledge analysis is normally referred to as diagnosing in the ITS li terature.
We rename it to avoid confusion since a component of SMMS is also called the diagnostic
system.

User Modeling and User-Adapted Interaction 1: 87-115, 1991.

(~ 1991 Kluwer Academic Publishers. Printed in The Netherlands.

8 8 XUEMING HUANG ET AL.

management (McCalla et al., 1988). In particular, we focus on the issue of
revising the student model when the tutoring system obtains new beliefs
about the student.

The task of revising a student model would be simple if all beliefs in
the student model were obtained by analysing the student's behavior (we
call these analyses observations), since then there would be no data de-
pendency among the beliefs, or at least we could assume that there is no
such data dependency. Revision can be done by trivially adding or deleting
corresponding beliefs in the student model, or by increasing or decreasing
credibility of the corresponding beliefs (Burton and Brown, 1982; Kimball,
1982; Clancey, 1987). However, usually a tutor's knowledge about a student
obtained from observations (by the student knowledge analysing system) is
very limited. This limitation is magnified in an intelligent tutoring system
because of the narrow input channel of the computer. One way to augment
the knowledge is to install some deductive inference rules in the system.
By applying these rules to the existing student model the system can (in-
ternally) generate new knowledge about the student. For example, assume
that a mathematics tutoring system has an inference rule stating that a stu-
dent who knows subtraction must also know addition (represented by a logic
implication rule knows(sub) D knows(add)). Now if it believes that the stu-
dent knows subtraction (i.e., knows(sub) is true), then it could infer that the
student also knows addition (i.e., knows(add) is also true). This approach
has been used in some student modeling systems and user modeling systems
(Sleeman, 1985; Kass and Finin, 1987; Kobsa, 1990). Generally, we refer to
knowledge obtained from observations and its augmentation by deductive
inferences, as deductive knowledge.

Although deductive knowledge is an augmentation of knowledge from di-
rect observation, usually it is still insufficient. People make many default
assumptions about others' beliefs during a dialogue. In particular, during a
tutoring interaction, a tutor must make many assumptions about the stu-
dent's knowledge to design advice to the student. There may be many dif-
ferent types of assumptions in user/student modeling (Wahlster and Kobsa,
1989). Stereotypical assumptions are one of the most important types (Rich,
1979). A stereotype is a package of defaults about a certain group of users.
Default assumptions about a user are stored in a stereotype that models
the group to which that user belongs. Stereotypical knowledge is important
for user/student modeling because it provides a vast amount of knowledge
about the user/student based merely on evidence for membership in a cer-
tain group(s).

Unlike revision of independent beliefs, revision of deductive knowledge
and revision of stereotypical knowledge are difficult. These difficulties and
related problems have been extensively studied by research in a theoretical
AI area known as belief revision (Doyle, 1979; de Kleer, 1986; Martins and

REVISING DEDUCTIVE KNOWLEDGE AND STEREOTYPICAL KNOWLEDGE 89

Shapiro, 1988; Makinson, 1985). However, the issue of how to apply tech-
niques of belief revision to user/student model revision has not been studied.
On the other hand, although stereotypes are widely used in user model-
ing systems (Rich, 1979; Finin, 1989; Chin, 1989), revision of stereotypical
knowledge remains difficult. 2 Our present goal is to investigate revision of
these two types of knowledge in a student model, as well as the relationship
between the two revision processes.

The paper presents the student model maintenance system (SMMS)
shown in Figure 1. During interaction with the student, the student knowl-
edge analysing system (SKAS) analyses the student's responses to generate
the tutoring system's new beliefs about the student. New beliefs generated
by such "observations" are sent to the SMMS which then revises the student
model to accommodate the new beliefs. The updated information about the
student in the student model, such as whether the student knows a particular
concept or believes a particular misconception, is provided for other compo-
nents of the tutoring system, including the SKAS, whenever they query the
SMMS.

The student model consists of two knowledge bases. The deductive knowl-
edge base contains knowledge generated from "observations" and knowledge
generated by applying the inference rules. The stereotypical knowledge base
contains knowledge in the active stereotypes. (The stereotype hierarchy of
SMMS is discussed in Section 3.) Since deductive knowledge comes from
a more concrete information source than stereotypical knowledge does, the
former may override the latter when they are in conflict. Using the ter-
minology of default reasoning, deductive knowledge contains "facts", while
stereotypical knowledge contains "defaults" (Reiter, 1980; Finin, 1989).

A revision occurs when a set of new beliefs is generated by the SKAS and
sent to the SMMS. The SMMS enters these new beliefs into its deductive
knowledge base and makes the necessary revisions to maintain consistency
of the deductive knowledge base. It then checks its stereotype hierarchy. If
the activating conditions of some deactivated stereotypes or the retraction
conditions of some activated stereotypes are satisfied due to revision of de-
ductive knowledge, then corresponding stereotypes would be activated or
retracted, thus revising the stereotypical knowledge base. This results in a
consistent student model.

The rest of the paper is organized as follows: Section 2 discusses revision
of deductive knowledge. Section 3 discusses revision of stereotypical knowl-
edge. A comparison of the SMMS with related work is given in Section 4.
Section 5 concludes the paper. Note that although the research is reported
in the context of student modeling, the issues studied pertain to general user
modeling to a greater or lesser degree.

2 A recent paper (Kobsa, 1990) desribes a user modeling shell called BGP-MS that
tackles this difficult problem.

90 XUEMING HUANG ET AL.

Studr
Respo~

Other

Components

of the

Tutoring

System

Fig. 1. SMMS in an Intelligent Tutoring System

2. R e v i s i o n o f D e d u c t i v e K n o w l e d g e : A n E v o l u t i o n a r y P r o c e s s

In this section we discuss how techniques developed in the area of belief
revision can be used for revising deductive knowledge in a student model.
As a result, a system called the evolutionary belief revision system (EBRS)
is developed to accomplish the desired revision.

2.1. COHERENCE BELIEF REVISION VS. FOUNDATIONS BELIEF REVISION

There are two basic approaches to revision of deductive knowledge. One is
called coherence belief revision, and the other called foundations belief revi-
sion. A common goal of both approaches is maintaining consistency of the
knowledge base in response to new information. A fundamental difference
between the two approaches is on the issue of whether justifications of beliefs
should be taken into account during belief revision. Coherencists focus on
minimal change to maintain logical consistency of the belief base, regard-
less of the justifications (Alchourron et al., 1985; Dalai, 1988; Gardenfors,
1990). Foundationalists insist that all beliefs must be well justified, namely,

REVISING DEDUCTIVE KNOWLEDGE AND STEREOTYPICAL KNOWLEDGE 91

each belief must be either directly assumed by the system (beliefs obtained
from observations belong to this group) or supported by other justified be-
liefs (Doyle, 1979; Martins and Shapiro, 1988). Thus, a belief that has no
valid justification must be removed, no matter whether or not it logically
contradicts any other beliefs in the belief base.

In our early example of the inference of a mathematics tutor, the tutor
derives the belief knows(add) from its beliefs knows(sub) and knows(sub) D
knows(add). Thus, the latter two beliefs justify the former one. If later the
tutor observes that the student does not know subtraction, then a new belief
-1 knows(sub) is added to the belief base, which forces removal of an old be-
lief knows(sub). Both coherencists and foundationalists agree on this point.
The controversial problem is, however, whether another belief, knows(add),
should be removed as well. The coherence theory argues that it should stay
since the knowledge base after removal of knows(sub), namely (knows(sub)
D knows(add), knows(add), -~ knows(sub)), is already consistent. Removing
knows(add) violates the principle of minimal change. But the foundations
theory says that knows(add) should be removed, since it no longer has any
valid justification.

Which approach is more appropriate? Although the argumen t into this
problem remains inconclusive, many philosophers and AI researchers tend
to believe that the foundations approach models how people ought to revise
their beliefs, while the coherence approach models what people usually do in
such situations (Harman, 1986; l~oss and Anderson, 1982; Gardenfors, 1990).
This implies that the approach chosen depends on the kinds of beliefs we
are trying to model. The SMMS described here uses a foundations belief
revision system.

2.2. ATMS AND DIAGNOSIS

Reason maintenance systems (RMS's) (Doyle, 1979; de Kleer, 1986; Martins
and Shapiro, 1988) are usually considered implementations of foundations
belief revision. An RMS is usually used to assist a problem solver. By record-
ing data dependencies (e.g., justifications) and inconsistent belief spaces, the
RMS guides the problem solver to work in consistent and well justified be-
lief spaces. However, in revising a belief base such as a student model, solely
ensuring consistency is insufficient: the revision should not radically change
the belief base. Most existing RMS's provide little information about how
to minimally modify an old belief base to accommodate new beliefs. They
do not deal with the culprit selection problem, the problem of how to select
a subset of beliefs, among many possible subsets, to remove to maintain
consistency of the belief base (Martins and Shapiro, 1988).

A sub-system of SMMS, called the Evolutionary Belief Revision System
(EBRS), accomplishes foundations revision of deductive knowledge by com-

92 XUEMING HUANG ET AL.

bining a diagnostic system (de Kleer and Williams, 1987; Reiter, 1987) with
an RMS, namely a modified ATMS (de Kleer, 1986), to achieve the minimal
change property. The ATMS records data dependencies and contradictions,
providing the collection of inconsistent belief spaces for the diagnostic sys-
tem. The diagnostic system then uses this information to select a minimal
subset of beliefs and to remove the subset from the belief base. Below we give
a brief sketch of the ATMS and some concepts used in diagnostic systems,
primarily to establish terminology. Then we discuss the EBRS.

2.2.1. ATMS

An ATMS-based problem solver usually consists of two components: a prob-
lem solver and an ATMS. The ATMS serves as an intelligent cache for the
problem solver. First, the problem solver designates a set of ATMS nodes
(data structures of the ATMS) to be assumptions (in what follows we will
call both a node and the proposition stored in the node an assumption when
no confusion Can be caused). An assumption is presumed to be true over the
period of solving the problem, unless there is evidence to the contrary. Then
the problem solver derives new beliefs from old ones, starting with the set
of assumptions (which are special beliefs), and continuing until the problem
solution is found. Each new belief is also assigned an ATMS node, and the
set of antecedent nodes used in the derivation is recorded as a justification
of the new beliefi

An environment is a subset of assumptions. An ATMS node n holds in
environment E if n can be derived from E using justifications of the nodes
in the current knowledge base. An environment is inconsistent if a node rep-
resenting a contradiction holds in it, otherwise it is consistent. Inconsistent
environments (called nogoods) are recorded in a database. A consistent envi-
ronment is minimal with respect to a node n if and only if n holds in it and
in no proper subset of it. In an ATMS, in addition to the justifications, the
set of minimal consistent environments, called the label, is also recorded in
the node. If a node holds in an environment, then it also holds in all super-
sets of the environment. Thus, the label represents the whole environment
space in which the node holds. With the label, the query as to whether a
node n holds in an environment E can be quickly answered.

When the problem solver makes a new inference, it creates a new jus-
tification for the consequent node using the set of antecedent nodes of the
inference, which awakes the ATMS to carry out a process of label updating
to accommodate the new information. Label updating propagates over the
knowledge base via justifications of nodes, changing the consistent environ-
ment space of each node in the knowledge base.

REVISING DEDUCTIVE KNOWLEDGE AND STEREOTYPICAL KNOWLEDGE 93

2.2.2. The Diagnostic Problem

Assume that one is first given a description of a system and then an obser-
vation of the system's behavior that conflicts with the expected behavior of
the system. The diagnostic problem is to determine the abnormal compo-
nents of the system which cause the conflicts. The concepts defined below
follow de Kleer and Williams (1987).

In a diagnostic system, a symptom is an inconsistency detected by a
higher level reasoning system. An assumption is a proposition that describes
the normal behavior of a component of the system. A conflict is a set of
assumptions from which a symptom can be derived. A conflict is minimal if
no proper subset of it is also a conflict. A candidate of the diagnosis is a set of
assumptions such that by removing the set, the system becomes consistent.
A candidate is minimal if no proper subset of it is also a candidate. Any
superset of a conflict is a conflict, and any superset of a candidate is a
candidate. Therefore, the conflict space and the candidate space can be
represented by the set of minimal conflicts and the set of minimal candidates,
respectively. The goal of a diagnostic process is to find the set of minimal
candidates. This usually requires recognition of the set of minimal conflicts
first.

In a belief revision system, if we view a contradiction in the belief base as
a symptom, then a set of assumptions that eventually derives a contradiction
is a conflict. The problem in belief revision of finding the minimal changes of
the old belief base so that the updated belief base is consistent with the new
beliefs is thus reduced to the problem of finding the minimal candidates
in diagnosis. This is our basic idea of using a diagnostic system in belief
revision.

2.3. BASIC CONCEPTS OF THE EBRS

As mentioned in Section 1, deductive knowledge of the student model comes
from "observations" by the SKAS and deductive inferences over the exist-
ing knowledge. Information in the deductive knowledge base is represented
by propositional formulas recorded in EBRS nodes. In particular, contradic-
tions discovered (denoted by _1_) are recorded in some distinguished EBRS
nodes called contradiction nodes. The propositions believed by the system
are called the system's beliefs (or beliefs for short). Beliefs considered true
without depending on other beliefs are called base beliefs (akin to assump-
tions in the ATMS). Two kinds of beliefs are treated as base beliefs: the
beliefs obtained from observations and the inference rules. The beliefs that
are.derived from the inferences are called derived beliefs.

The belief revision procedure is invoked after each observation or infer-
ence so that the new information is merged into the knowledge base which is
then adjusted to accommodate the new information. This is called a revision

94 XUEMING HUANG ET AL.

session. The belief set (the set of the system's beliefs) is updated in each
revision session. The EBRS uses a modified ATMS to maintain consistency
of its knowledge base. An ATMS is useful since it records data dependen-
cies among beliefs and filters out inconsistent environments. However, the
original ATMS is oriented towards finding all solutions in a problem solving
process. It simultaneously works on all self-consistent environments (but the
union of them may not be consistent). Thus, the ATMS has no concept of the
system's beliefs. In the EBRS, we use the set of base beliefs from which all
beliefs are derived to represent the system's beliefs. This set of base beliefs
is called the system's environment. A subset of the system's environment is
called an active environment. Thus, there are three kinds of environments
in the EBRS (in contrast to two kinds in the ATMS): inconsistent envi-
ronments, consistent environments, and active environments (which are also
consistent). A proposition is currently believed if and only if the label of its
EBRS node contains an active environment.

2.4. ACCOMMODATING NEW INFORMATION

Belief revision occurs when a set of beliefs is generated by an observation
of the SKAS or by a deductive inference made by the EBRS. The EBRS
puts these just-generated beliefs into its knowledge base. Note that a just-
generated belief may not be a new beliefi It may have been generated in
some previous observations/inferences. The EBRS creates a new node for
a just-generated belief only if the belief is new, but it usually adds a new
justification to the node of the just-generated belief to record the new data
dependency. If the just-generated belief is a base belief, then the justification
contains only the belief itself. If it is a derived belief, then the justification
contains all the beliefs and the rules used in the derivation. After a justifi-
cation is added, the label updating procedure described in (de Kleer, 1986)
is invoked to propagate the effects of the new information, generating an
updated label for each EBRS node in the knowledge base.

The just-generated beliefs may conflict with old beliefs in the belief set,
bringing contradictions into the knowledge base. Some contradictions were
discovered and removed from the belief set in some previous revision session.
They arise again since they get new supports after label updating. This
kind of contradiction can be discovered by checking whether there is an
active environment in the label of the contradiction nodes in the knowledge
base. The other contradictions are new and discovered when a just-generated
belief p is the negation of an old belief -~p. The EBRS creates a new node
to record each newly discovered contradiction. (Note that the EBRS may
not discover M1 contradictions in the beliefs. The EBRS used here discovers
a contradiction when a proposition and its negation both are believed, but
discovered beliefs may be re-defined in other applications.)

REVISING DEDUCTIVE KNOWLEDGE AND STEREOTYPICAL KNOWLEDGE 95

Once contradictions are detected and recorded, the EBRS updates the
system's belief set in two steps. First, all new beliefs are added into the belief
set. This is done by simply put t ing all new base beliefs into the system's
environment. The second step, removing all contradictions discovered from
the system's belief set, is more difficult. This requires selecting a subset of
base beliefs (called the obsolete base belief set) such that once the subset is
removed from the system's environment, all contradictions in the belief set
would be removed. There are, however, usually many such subsets (called
candidates) in the system's environment. One way to filter out many unlikely
candidates is to identify minimal candidates. If by removing a subset S we
can remove all contradictions, then there is little reason to remove a proper
superset of S instead (Gardenfors, 1984; Harman, 1986). Thus, the obsolete
base belief set is chosen from the minimal candidates. For this reason, we
call the revision accomplished by EBRS the evolutionary belief revision, in
contrast to the revolutionary belief revision discussed in Section 3. The next
section discusses a procedure in the EBRS that removes the obsolete base
belief set from the system's environment. We now present an example, using
beliefs about a student 's knowledge of Lisp programming, to clarify what
we have done so far.

In the example, we use propositional letters (e.g., A, B, . . .) to represent
a belief of the tutor about the student such as "The student believes that
the Lisp function car returns a list containing the first element of the given
list" (a misconception) or "The student knows the concept of recursion' .
Negation of a proposition (e.g., ~A, . . .) represents a negative belief such
as "The student does not know the concept of recursion", rather than a
disbelief such as "It is not the case that the student knows the concept of
recursion." The latter is handled by the assumption that everything that is
not derivable from the student model is not believed by the tutor. Inference
rules such as "if the student knows the function mapcar, then she/he must
also know the function car", "if the student believes that append is the same
function as list (a misconception), then she/he must not know that append
requires lists as its arguments" are represented by logic implication rules
such asS D T a n d U D ~ V .

Assume that the SKAS has obtained the beliefs A and B in the first
observation O1. Then the EBRS applies the inference rule A D S to derive
S, the rule B A S D -~ T to derive ~ T, the rule S D U and the rule A AB
D U to derive U, and the rule B A U D V to derive V. At this moment
(time t l) , the deductive knowledge base contains the following EBRS nodes
(like an ATMS node, an EBRS node is of the form: [assertion, (label},
(justifications}]):

96 XUEMING HUANG ET AL.

1. [A, {{1}}, {(1)}]
2. [B, {{2}}, {(2)}]
3. [A s, {{3}}, {(3)}]
4. [BAS D -~T, {{4}}, {(4)}]
5. [s u, {{5}}, {(5)}]
6. [AAB D U, {{6}}, {(6)}]
7. [B^U V, {{7}}, {(7)}]
8. [S, {{1, 3}}, {(1, 3)}]
9. [T, {{1, 2, 3, 4}}, {(2, 4, 8)}]

10. [U, {{1, 3, 5}, {1, 2, 6}}, {(5, 8), (1, 2, 6)}]
11. [V, {{1, 2, 3, 5, 7}, {1, 2, 6}}, {(2, 7, 10)}]

Here, nodes 1-7 are base beliefs, while nodes 8-11 are derived beliefs. The
system's environment is {1, 2, 3, 4, 5, 6, 7}. Note that every node in the
knowledge base has an active environment (a subset of the system's envi-
ronment) in its label. This reflects the fact that at t l all EBRS nodes in the
knowledge base are believed. Users of the student model (usually other com-
ponents of the tutoring system) are usually interested in the subset of beliefs
about which specific concepts/misconceptions the student believes. We use
SDB (for Specific Deductive Beliefs) to denote this subset. SDB contains
factual knowledge about the student, excluding inference rules. Thus, at t l
it contains beliefs in nodes 1, 2, 8, 9, 10 and 11:

SDB(tl) = {A, B, S, ~ T, U, V}.

Next the SKAS makes the second observation 02 from which three new
beliefs, C, T and -~ U, are obtained. Three nodes are then created to record
the new belief set:

12. [C, {{12}}, {(12)}]
13. [T, {{13}}, ((13)}]
14. [- U, {{14}}, {(14)}]

There is not much for the label updating procedure to do here because
there are no data dependencies between the new beliefs and the old ones. (For
examples of label updating see de Kleer, 1986.) Since all three new beliefs
are base beliefs, they are entered into the system's environment which then
becomes {1, 2, 3, 4, 5, 6, 7, 12, 13, 14}. Two contradictions among beliefs,
(--T, T) and (U, --U), are discovered. They are recorded in the contradiction
nodes:

cont-l: [_l_, {{1, 2, 3, 4, 13}}, {(9, 13)}]
cont-2: [_L, {{1, 3, 5, 14}, {1, 2, 6, 14}}, {(10, 14)}].

To remove these contradictions, the procedure described in the next sec-
tion is called to identify and to remove the obsolete base belief set.

REVISING DEDUCTIVE KNOWLEDGE AND STEREOTYPICAL KNOWLEDGE 97

2.5. REMOVING DISCOVERED CONTRADICTIONS

The EBRS uses a diagnostic procedure to identify and to remove the obsolete
beliefs. Precisely, the task of the diagnostic system is to return the set of
minimal candidates of the obsolete base belief set, given the set of minimal
inconsistent sets of base beliefs (called minimal conflicts following de Kleer
and Williams (1987)). The set of minimal conflicts is exactly the collection
of active environments in the labels of the contradiction nodes.

A candidate is a hitting set 3 of the set of minimal conflicts (Reiter, 1987).
Thus, the problem of finding the set of minimal candidates is reduced to the
problem of finding all minimal hitting sets of the set of minimal conflicts.
The EBRS uses Reiter 's HS-tree approach to solve the problem, bu t we
introduce two new tree pruning strategies to improve efficiency of the algo-
ri thm.

DEFINITION 1: An HS-tree for the given set family F is an edge-labeled and
vertex-labeled tree T with the following properties:

(1) The root is labeled by A if F is empty. Otherwise, it is labeled by a
set in F.

(2) For each vertex vi of T, define H(vi) to be the set of edge labels on the
pa th from the root to vi. If vi is labeled by A, then it has no descendant. If vi
is labeled by a set S 5 in F, then for each element a ES j, vi has a descendant
vertex v~ connected with vi by an edge labeled by a. The label for v~ is a
set Sk e F such that Sk N H(va) = {) if such an Sk exists. Otherwise, v~ is
labeled by A.

(3) For each vertex vi labeled A, H(vi) is a hitting set.

In Reiter 's algorithm, vertices of the HS-tree are generated breadth-first .
To reduce the size of the HS-tree, the algorithm uses the following two tree
pruning strategies: 4

(1) If vi is a vertex labeled A, then any vj ~ vi such that H(vi) C_ H(v5)
is not explored, since further exploration of vj generates only supersets of a
hitt ing set H(vi) which is already generated. A vertex not explored and not
labeled A is labeled "X".

(2) If vi is a vertex generated before vj and H(vi) = H(vj), then v 5 is
labeled X, since further exploration of vi and exploration of vj will generate
two identical subtrees which contain the same set of hit t ing sets.

3 Given a set family F = {Si [i = 1, . . . , n}, where each Si is a set, a hitting set H
for F is a set that contains at least one element of each set in F (see Garey and Johnson,
1979). For the diagnostic problem here, the set of minimal conflicts is a set family since
each conflict is a set of base beliefs.

4 There are actually three tree pruning strategies in Reiter's algorithm. The other one
is irrelevant to our problem (see Huang, 1989).

98 XUEMING HUANG ET AL.

We use the following new pruning strategies to further reduce the size of
the HS-tree:

(3) Let vi be the vertex being generated. If vj is a vertex generated before
vi and labeled by a set in F, and if H(vj) C_ H(vi), then vl is labeled X.

(4) If v~ and vj are siblings (having the same parent) and if the label of
vl has an element ej identical to the label of the edge that connects vj and
their parent, then ej should be removed from the label of vi. However, if
the label of vj also contains el, the label of the edge connecting vl and their
parent, then remove only one element (ej or ei).

{1, 3, 5, 14}

A {2, 6} {2, 6} {2, 3, 4, 13}

A A A {1, 3, 4, 13} A A A A /3/ ~ 4 ~ 3

X X A A

Fig. 2. The tIS-Tree in the Example

THEOREM 1: Given a set family F, the HS-tree generated by the modified
algorithm with pruning strategies (1)-(4) contains all minimal hit t ing sets
of F which axe exactly those H(vi)'s such that vi is labeled A. 5

Strategy (2) in Reiter's algorithm is subsumed by strategy (3), so our
algorithm actually uses only strategies (1), (3) and (4). The size of the
HS-tree can be still reduced by pre-ordering the minimal conflicts so that
smaller conflicts are put before larger conflicts, and that the conflicts having
common elements are put together whenever it is possible. In this order,
the vertices at the higher levels of the tree have fewer descendants, so fewer
redundant subtrees are generated.

We summarize the Mgorithm of the diagnostic procedure below:
(1) Collect the active environments in the labels of the contradiction

nodes to form the set of minimal conflicts.
(2) Pre-order the minimal conflicts in the way described above.
(3) Breadth-first generate the HS-tree of the set of minimal conflicts,

using the three tree pruning strategies. The resulting set of minimal hitt ing
sets is the set of minimal candidates.

s A proof of the theorem is provided in the Appendix.

REVISING DEDUCTIVE KNOWLEDGE AND STEREOTYPICAL KNOWLEDGE 99

(4) Select the obsolete base belief set from the minimal candidates (details
are discussed below) and remove it from the system's environment.

Now we continue the example started in Section 2.4. The active environ-
ments in the labels of cont-1 and cont-2 are the minimal conflicts (step 1 of
the algorithm). After pre-ordering (step 2), the set of minimal conflicts is:

{{1, 3, 14}, {1, 2, 6, 1@ {i, 2, 3, 4, 13}}.
Using the three pruning strategies, the diagnostic procedure generates the
HS-tree shown in Figure 2 (step 3). The resulting set of minimal candidates
is:

{{1}, {2, 3}, {3, 6}, {2, 5}, {2, 14}, {3, 14}, {4, 14}, {13, 14},
{4, 5, 6}, {5, 6, 13}}.

Usually selection of the obsolete base belief set can be made from the
minimal candidates if priorities are assigned to the beliefs. For example, in
user/student modeling systems, normally we can assume that inference rules
are more stable than factual beliefs (i.e., observed beliefs and derived beliefs)
and thus assign a higher priority to the rules (see van Arragon (1990a) for use
of priorities of beliefs in user modeling, and Fagin et al. (1983); Gardenfors
and Makinson (1988) for priorities in general belief revision). Then the sets
containing an inference rule are not considered. 6 In the example, only three
minimal candidates are left:

{{1}, {2, 14}, {13, 14}}.

Furthermore, since new beliefs reflect the student's current knowledge
state, they are assigned a higher priority than the old beliefs. Thus, the
sets {2, 14} and {13, 14} can also be ruled out. The set {1} is the only
minimal candidate left and thus is selected as the obsolete base belief set.
It is removed from the system's environment, which results in retraction of
EBRS nodes 1, 8, 9, 10, 11 (i.e., propositions A, S, -~T, U and V) from
the belief s e t / N o w consider the updated Specific Deductive Beliefs (SDB).
By excluding the inference rules of the belief set, SDB after revision is the
beliefs corresponding to nodes 2, 12, 13 and 14, so

SDB(t2) = {B, C, T,-1 U}.

In some cases there may be several minimal candidates at the same prior-

6 In fact , if we assume t h a t inference rules are always t rue, we could even remove t h e m
earl ier . We can remove t h e m f rom each m i n i m a l conflict before the HS-t ree a l g o r i t h m is
executed . T h e n the HS-t ree would be smal le r and g e n e r a t e d faster .

7 Recal l t h a t the EBRS removes only discovered con t rad ic t ions , so the re m i g h t be st i l l
some undiscovered con t r ad i c t i ons in the u p d a t e d bel ief set , a l t h o u g h th is is no t the case
in th i s example .

100 XUEMING HUANG ET AL.

ity level (such cases would be rare if the priorities were designed carefully).
In these cases, further measuring (e.g., directly questioning the student) may
be necessary. A good discussion of the measurements and some techniques
to design them can be found in de Kleer and Williams (1987).

3. Revision of Stereotypical Knowledge: A Revolutionary Process

3.1. THE DEFAULT PACKAGE NETWORK (DPN)

Although many stereotype structures have been used in user modeling sys-
tems, they don't seem to be suitable for modeling a student 's changing
knowledge. Grundy's stereotypes provide information about the users' per-
sonal traits (Rich, 1979). They group users by their social status (e.g., sex,
age, occupation, etc.). At the beginning of each session Grundy asks the
user for a self description. Stereotypes whose "triggers" match with the so-
cial status described by the user are then applied to the user. This approach
may work well for modeling personal traits, but it does not carry over to
modeling student knowledge. Students may not know how much they know
in a domain they are learning. Even if they know, their measurement may
be different from the system's. For example, a student 's self description as
a "novice" programmer likely does not coincide with the system's concept
of a "novice" programmer.

Being aware of the unsuitability of using Grundy's approach to model
knowledge, KNOME (Chin, 1989) does not ask the user for self description.
It infers the user's knowledge level (the stereotype appropriate to the user)
by looking for evidence that the user knows or doesn't know some key con-
cepts. It collects this evidence during the first few interaction sessions with
each particular user. (The evidence is akin to SMMS's observed beliefs, a
part of deductive knowledge.) The evidence is matched with a number of
pre-stored tables which indicate the user's likelihood of being at each knowl-
edge level. However, once the user's knowledge level is determined, KNOME
does not change it any more. This is not suitable for student modeling since
a student 's knowledge level changes constantly during the learning process.
Also, KNOME has difficulty in dealing with stereotypes in related domains.
This is more serious than it seems since usually a knowledge domain consists
of several related sub-domains.

Stereotypes in GUMS are also used to model user knowledge (Finin,
1989). GUMS at tempts the problem of revising stereotypical knowledge. In
GUMS, user knowledge is organized in a stereotype tree where each node
represents a class of users. The class inherits knowledge from all ancestor
classes. The user model is revised when the application system observes new
facts that conflict with the active stereotype. This is done by replacing the
active stereotype with its closest ancestor that does not conflict with the
observed facts. This t reatment is often inappropriate, since revisions only

REVISING DEDUCTIVE KNOWLEDGE AND STEREOTYPICAL K N O W L E D G E 101

V 0

" - - - - ~ . . 2 - - %

b5,4

b09: S-r evaluation b02: calling functions bO,3: nested functions
bLl: car bl,2: cdr bl,3: c o n s

b2,1: function name b2~: parameters b2,3: function body
b3.i: algorithms b3,2: data structure b3,3: efficiency
ba.l: loops b4,2: local variables bs,l: recursive case
b5,2: base case b53: reduction b5,4: action
b6,1: search key b6,2: exploration

Fig. 3. A Fragment of a DPN for Lisp Programming Knowledge

decrease stereotypical knowledge about a user. After several interactions,
even the root may conflict with the observed facts. Then the active stereo-
type becomes an empty set which is no longer useful. Also, GUMS allows
only one active stereotype for each user. However, a user model often doesn't
fit a single stereotype, but a combination of several stereotypes. For exam-
ple, if the application system happened to know that the user is an "expert"
in Unix and an "average" Lisp programmer, GUMS would have to give up
information in one of these two stereotypes.

The stereotype structure in SMMS presented below is intended to over-
come such difficulties in modeling knowledge. It handles relations between
related stereotypes in different sub-domains and relations between stereotyp-
ical knowledge and deductive knowledge in a student model. In particular, it
handles the dynamic properties of stereotypical knowledge in student model-
ing, providing an efficient revision algorithm for the knowledge which ensures
that the revision activates and retains as many stereotypes as possible.

SMMS's stereotypical knowledge is represented in a directed acyclic graph
called a default package network (DPN). A DPN contains concepts and skills
in a certain domain. The domain is divided into sub-domains each of which
is further divided into smaller sub-domains. This forms a sub-domain hi-
erarchy - - the DPN in which each sub-domain is represented by a node,
and the general/specific (super-domain/sub-domain) relations between the
sub-domains are represented by the links. A link points from a specific node
(a child) to a more general node (a parent). Figure 3 shows a segment of a
DPN representing knowledge of Lisp programming.

Each sub-domain contains a subset of concepts (including misconcep-

102 XUEMING HUANG ET AL.

tions) and skills. Each concept is described by a propositional formula
(represented by a small circle in Figure 3) called a d-proposition (because
stereotypical knowledge is used as defaults). In Figure 3, for example, the
d-proposition knows(S-expression-evaluation) is labeled "S-expr evaluation"
and denoted by b0,1 (for it is the first d-proposition of V0). Concepts in
a sub-domain are divided into groups. Each group belongs to a child of
the sub-domain, except for the group of the most general concepts in the
sub-domain which belongs to the whole sub-domain. Thus, d-propositions
in a DPN are parti t ioned into subsets. Each subset is attached to the node
representing the most general sub-domain to which it belongs. For exam-
ple, the d-proposition "knows(function-body)" (i.e, b2,3) is attached to the
"user-defined functions" node but not the "recursive functions" node.

Corresponding to an estimate of the tutoring system about a student 's
knowledge state in a sub-domain, a node in a DPN can be assigned a node
value in a designated value range (e.g., (NV, AV, EX) for "novice", "aver-
age" and "expert"). A node value determines a package of d-propositions in
the sub-domain which are assumed to be believed by the student at the cor-
responding knowledge level. Such a package is called a d-proposition package
which is actually a local stereotype of the sub-domain). In particular, the
d-proposition package corresponding to the value that is currently assigned
to the student is called the d-belief package (the active stereotype of the sub-
domain), d-propositions in the d-belief package are d-beliefs. For example, if
we assign the value EX to the node V3, then all three d-propositions of the
node might be in the d-belief package. If we assign AV to V3, however, then
only b3, 2 and b3,3 might be d-beliefs. Thus, the stereotypical beliefs (STB)
of the student model are determined by the current value assignment of the
nodes of the DPN. To account for the case that the system has no idea
about the student 's knowledge level in some sub-domains, a distinguished
value "unknown" (denoted by UN) is defined. If a node has an UN value,
then its d-belief package would be empty.

An estimate for a student 's knowledge level in a specific sub-domain may
be made according to the student 's knowledge level in a more general sub-
domain. Thus, the value of a node may determine the values of its children
by default. In other words, the active stereotypes in a parent sub-domain
may suggest the active stereotype for a child sub-domain. For example, if the
student has an EX value in V3, it might be reasonable to assign AV to V5
and EX to V6 (its two children) by default. These defaults reflect relations
between stereotypes.

On the other hand, after a revision of deductive knowledge the student
model, which is the union of the specific deductive beliefs (SDB) and the
stereotypical beliefs (STB) with removal of each d-belief in the STB whose
negation is a deductive belief in the SDB, may not be consistent with the ac-
tive stereotype in a sub-domain any more. In this case, the active stereotype

REVISING DEDUCTIVE KNOWLEDGE AND STEREOTYPICAL KNOWLEDGE 103

in the sub-domain must be changed. Of course, revising deductive knowl-
edge may not force the active stereotype to change if the conditions that
the stereotypes remain active are not violated. These conditions are repre-
sented as constraints associated with the corresponding value of the node.
The value may be assigned to the node only if the student model satisfies this
set of constraints. These constraints represent relations between deductive
knowledge and stereotypical knowledge in a student model. If the student
model satisfies the constraint sets of several values of a node, then the value
closest to the previous one should be chosen (so the value is changed only
when necessary). The value of a node is not only constrained by the student
model, but also by the values of its children. For example, we would not es-
timate a student to be an expert Lisp programmer if we believe that she/he
has little knowledge of Lisp built-in functions. These constraints also reflect
relations between stereotypes. Note that if a value of a node were flexible
enough such that with this value any set of d-propositions could be believed
and any value could be assigned to its children, then this value of the node
would have no constraint.

Table I shows an example list of defaults and constraints correspond-
ing to the DPN in Figure 3 (except those for V1 and V6 which are not
relevant in the following discussion). We use the relations <, = and _> to
express constraints among nodes, based on a total ordering of the node val-
ues: NV < AV < EX. Also, we use SM, STBi and bi,j to denote the student
model, the d-belief package of Vi and the jth d-proposition of Vi, respec-
tively. Designing the table of defaults and constraints seems to introduce
more overhead to knowledge engineering of a DPN than other stereotype
structures, but this may not be true. Other stereotype-based user modeling
systems also must deal with relations between deductive knowledge (usu-
ally only observed information) and stereotypical knowledge and relations
between stereotypes (Chin, 1989; Finin, 1989; Kobsa, 1990). The difference
is that normally in these systems the constraints and defaults are repre-
sented implicitly in the procedures that deactivate and activate stereotypes,
while in SMMS they are represented explicitly and manipulated by two sim-
ple and efficient constraint satisfaction and default propagation procedures,
described in the next sub-section.

Also, since there is no overlapping d-propositions between nodes, design-
ing constraints and defaults for a DPN is actually not difficult and quite
flexible. In fact, only two conditions must be checked: (1) a default must not
violate the constraints of the same value of the same node; (2) for each node,
the defaults (and constraints) of a node must be weaker (containing fewer
correct concepts and more misconceptions) than the values succeeding it in
the total ordering of values. It is very easy to build an efficient program to
automatically check the constraints and defaults for these two conditions.

104 X U E M I N G H U A N G ET A L .

TABLE I
Defaults and Constraints of the DPN in Figure 3

VO: EX: defaults:
coflstJ'aints:

AV: defaulls:
constraints:

NV: defaults:

constraints:

V2: EX: defaults:
constraints:

AV: defattlls:
constraints:

NV: defaults:
consWainm:

V3: EX: d~faults:

AV: defaults:
constraints:

NV: defaults:

collsll'aints:

STB0={bo,1, b0, 2, b0,3}, VI=AV, V2=EX, V3=EX;
({boa , bo.2} c SM)v ({bo. 1, b0,3} C: SM), V 1 _>AV, V2=EX, V 3 -> AV;
STB0={bo, 1, bo,2}, VI=AV, V2=EX, V3=AV;
{b0,1} ~SM, V2->AV, V3-<AV;
STB0={b0,1}, VI=UN, V2=NV, V3=AV;
{b03 } r V2_<AV, V3=NV;

STB2=ib2.1, b2,2}, V4=EX, Vs=EX;
{b2,1, b2,2} ~ SM, V 4 -AV, V 5-AV;
STB2=Ib2. I, h2.2}, V4=AV, V5=AV;
({b2,1} ~$M) ^ ({b2.3} ~SM, V4-<AV, V5~AV;
STB2={}, V4=NV, V5=NV;
({b2,2} ~ SM) ^ ([b2.3} r SM), V4=NV, V 5 < AV;

STB3={b3.1, I)3, 2, b3,3}, V5=EX, V6=EX;
{b3,2, b3,3} c: SM, V 5 _AV, V6=EX;
STB3={b3,2, b3,3}, V5=AV, V6=EX;
({b3,1} ~SM) A ({b3.2] c:SM), Vs->AV;
STB3={ }, V5=NV, V6=AV;
({b3,1} r) ̂ ({b3,2} r V5-<AV, V6<AV;

V4: EX: defaults: STB4~{b4.1, b4,2};
conswaints: {b4A } ~ SM;

AV: defaults: STB4={b4A };
constraints: ({I)4,1} r SM) ^ ({b4.2} a" SM);

NV: defaults: STB4={};

constraints: ({b4,11 ~:SM) A ({b4,2} ~SM);

Vs: EX: defaults: STBs={bs.t. b5.2, bs,4};
constraints: {b5,2, b5,4} ~ SM;

AV: defaults: STBs={bs, I, b5.2};
constraints: ({I)5.2 } c:: SM) ^ ({b5,3} ~ SM);

NV: defaults: STB5={bs.2};
constraints: ({bs,1} ~: SM) ^ ({b5,3} r SM).

3.2. C O N S T R A I N T S A T I S F A C T I O N AND D E F A U L T P R O P A G A T I O N

A revision of stereotypical knowledge occurs when a revision of deductive
knowledge violates a constraint of the value of a DPN node, namely the
activation conditions of an active stereotype. In this case, the value of the
node must be changed (i.e., the active stereotype of the sub-domain must
be changed). After the change, however, the node's new value may violate
a constraint of the value of its parents. Thus, value change may propagate
upwards. This process is called constraint satisfaction. For example, using
Figure 3 and Table I, assume Vo = EX, V3 = AV, V6 = AV. If V6's value is
forced to change to NV, then a constraint of V3's AV value would be violated.

REVISING DEDUCTIVE KNOWLEDGE AND STEREOTYPICAL KNOWLEDGE 105

Thus, V 3 must be changed to NV as well, which in turn would force V0 to
change to AV. On the other hand, the value of a node may determine the
values of its children by default, so changing the value of a node may cause
the value of a child to be changed if the child's current value is "unknown" or
was determined by a default of the previous value of the node. For example, if
V4's AV value was determined by V2's previous value AV and now V2's value
is changed to EX, then V4's value would be changed to EX because of the
default assignment of V2's new EX value. Thus, value assignment in a DPN
may also propagate downwards. This process is called default propagation.
Note that when a value resulting from constraint satisfaction conflicts with a
value resulting from default propagation, the result of constraint satisfaction
has a higher priority since it comes from a more concrete information source
(i.e., deductive knowledge).

In general, an evolutionary revision of a student model that occurs in
its deductive knowledge may force changes of active stereotypes in some
sub-domains. This is a local revolutionary revision of the student model.
In addition, changing active stereotypes in these sub-domains may trig-
ger a bottom-up constraint satisfaction process, followed by a top-down
default propagation process, changing active stereotypes in many other sub-
domains. Then, the stereotypical knowledge base (and thus also the whole
student model) undergoes a global revolutionary revision. The ratio of revo-
lutionary revisions to evolutionary revisions depends on the tolerance of the
constraints designed for the DPN.

Even if the constraints are designed carefully, there might be cases in
which the student model doesn't satisfy the constraint set of any value of
a node. This usually happens when a node, say Vi, is forced to change
value during constraint satisfaction, while the new value to be assigned also
has some constraint not satisfied (called a second violation). If the second
violation comes from a child whose current value was determined by the
previous value of Vi, then the second violation would be removed in the next
default propagation, and thus ignored, so the new value is still assigned.
Otherwise, Vi is assigned the value "unknown". Here "unknown" means
"unclassifiable", which may be slightly different from its original intuition
"having no idea", but the same semantics applies. An important property of
the "unknown" value is that it is a "wild card" value which can satisfy any
constraints and that itself has no constraint. Thus, the value of a node is not
affected by its parents or its children with an "unknown" value. This has
the advantage that failure of the system can be restricted to the local level,
namely a single sub-domain, similar to what has been achieved in using a
granularity hierarchy for recognition (Greet and McCalla, 1989).

Another use of the "unknown" value is to avoid circularity. Assume that
the value of a node Va is revised in the constraint satisfaction process. Then
in the default propagation process, a child Vr of Va with the "unknown"

106 XUEMING HUANG ET AL.

Fig. 4. A Revision Circle in a DPN

value might be set to a new value. But if this new value violates the con-
straints of a parent, Vb, of Vc, then Vc's value would remain "unknown".
This avoids another constraint satisfaction process which might cause a re-
vision circle shown in Figure 4.

3.3. THE ALGORITHM ['OR REVISION OF STEREOTYPICAL KNOWLEDGE

We now summarize the algorithm for revision of stereotypical knowledge in
a student model. To clarify how a revision of deductive knowledge triggers a
revision of stereotypical knowledge, we present the whole algorithm for the
SMMS, but abstract the part for the revision of deductive knowledge into
the first two lines (recall that SDB is the set of specific deductive beliefs and
STB is the set of stereotypical beliefs):

Algorithm SMMS:
- Compute the updated SDB in response to new information (using EBRS)
- Compute the student model (from the updated SDB and the current STB)
- Satisfy the constraints in the DPN (bottom-up)
- Propagate value changes along with the DPN according to the defaults

(top-down)
- If any change in the DPN is made, then

* Compute the updated STB (according to the updated DPN)
* Compute the student model again (from the updated SDB and the

updated STB)
End. {of the SMMS algorithm}

Each step of the algorithm is a procedure. The procedure for updat ing
SDB (i.e., the EBRS algorithm) has been discussed in Sections 2.3-2.5.
Since an ATMS and a diagnostic system are used, the EBI~S requires time

REVISING DEDUCTIVE KNOWLEDGE AND STEREOTYPICAL K N O W L E D G E 107

exponential in the size of the knowledge base in the worst case. STB is the
union of the d-belief packages of the nodes in the DPN. The union operation
costs at most O(M log M) time, where M is the size of the DPN. The student
model is the union of SDB and STB after removing every stereotypical belief
in the STB which directly contradicts a deductive belief in SDB (i.e., if p is
in STB while -~p is in SDB, then p is removed). By sorting STB and SDB,
the operations of union and contradiction removal (the computat ion of the
new student model) can be done in O(N log N) time, where N = L + M,
and L is the size of SDB (Sedgewick, 1988).

Now we present the two procedures that update the DPN. In the proce-
dures, we assume that the part of student model related to a node Vi of the
DPN is accessed by the function SM(i). Each node has a flag "dp". If the
current value of Vi was determined by the default of one of its parents, say
Vp, then dp(Vi) = Vp. Otherwise, dp(Vi) = 0. Also, the function children(i)
returns the set of values of Vi's children. The function child(i, j) returns
the value of Vi's j th child. We further assume the nodes in the DPN to be
numbered in the order of top (i.e., the root) to bot tom, and at the same
level from left to right, as is shown in Figure 3.

Procedure Constraint-Satisfaction (bottom-up)
For i := N down to 0, do

If neither SM(i) nor children(i) is changed, or if the changes do not violate any
constraint of the value of Vi, then
do nothing

else
- Compute the new value of Vi according to new SM(i) and new children(i)
- If a constraint of the new value of Vi is violated and the violation is not from

a child Vr such that dp(Vr = Vi, then
Vi ~- UN

- dp(Vi) ~-- 0
End; {constraint-satisfaction}

Procedure Default-Propagation (top-down)
For i:= 0 to N, do

If the value of Vi is not changed, then
do nothing

else for each child of Vi (note: child(i, j) is the one being dealt with), do
If child(i, j) = UN or dp(child(i, j)) = Vi, then

- Assign a new value to child(i, j) according to the default of the new value of Vi
- dp(child(i, j)) ~ Vi

Check whether child(i, j) violates a constraint of the value of each of
child(i, j)'s parents (except Vi) or not

- If a violation occurs, then
- child(i, j) ~ UN
- alp(child(i, j)) ~ 0

End; {default-propagation)

108 XUEMING HUANG ET AL.

Both procedures use computational time linear in the size of the DPN,
if the degree of each node (the number of links associated with the node) is
limited by some constant which does not depend on the size of the DPN.
This is the case with most student modeling and user modeling systems.
Thus, excluding the first step at which the EBRS is executed, the rest of the
SMMS algorithm requires time O(N log N). If the condition that the degree
of each node is not greater than a constant is not true, then each procedure
above requires time O(M2). The SMMS algorithm (excluding the first step)
requires time O(M 2 + L log L). This analytical result tells that if a more
efficient algorithm for revising deductive knowledge is developed s, then the
SMMS algorithm would be very efficient, using the current DPN for revision
of stereotypical knowledge.

3.4. AN EXAMPLE

Here we give an example of revising stereotypical knowledge in a student
model. The revision is triggered by an evolutionary revision of the deductive
knowledge. The example uses the DPN displayed in Figure 3 and its defaults
and constraints defined in Table I. We first assume that at time to, before
the revision happens, the set of deductive beliefs SDB is

SDB(to) = {bo,1, -1 b2,1, b3,1, b5,2),

and the value assignment to the DPN at time to is:

Vo = AV, V1 = UN, V2 = AV, V3 = NV,

V4 = UN, V5 = AV, V6 = UN.

The set of stereotypical beliefs STB is the union of the d-belief packages
of the nodes determined by the defaults of this value assignment. Thus, we
have

STB(to) = {bo,1, bo,2, b2,1, b2,2, bs,1, b5,2}.

The student model is the union of SDB and STB with removal of each d-
belief in STB that directly contradicts a deductive belief in SDB. Therefore,

SM(to) = {bo,1, bo,2, ~b2,1, b2,2, b3,1, bs,1, b5,2}.

At time t l , assume that three new deductive beliefs, -~b5,1, b5,3 and b5,4,
are obtained, and that EBRS removes a deductive belief ~b2,1 to maintain
consistency of the deductive knowledge base. Then SDB becomes:

SDB(tl) = {bo,1, b3,1, ~b5,1, b5,2, bs,3, b5,4}.

s Such an efficient algorithm has been recently developed in (Huang et al., 1991).

REVISING DEDUCTIVE KNOWLEDGE AND STEREOTYPICAL KNOWLEDGE 109

The stereotypical beliefs are not yet revised at tl . Thus, STB(tl) = STB(to).
The student model at tl is:

SM(h) = {b0,1, b0,2, b2,1, b2,2, b3,1, -~bs,1, bs,2, b5,3, b5,4}.

This shows an evolutionary revision of the student model.
Now, revision of stereotypical beliefs starts. By checking Table I, one can

find that a constraint for assigning AV to Vs is violated since SM contains
bs,3 now. Thus, Vs is upgraded and assigned an EX value. Constraint satis-
faction propagates from V5 to V2 and V3. The value of V2 changes from AV
to EX as well, since a constraint for V2 to keep its AV value, "Vs _< AV", is
violated. For V3, a constraint of its NV value, "Vs _< AV", is also violated.
However, an AV value cannot be assigned to it (nor can an EX value, of
course), since SM does not contain 53,2, which also violates a constraint for
V3 to have an AV value. Thus, V3 is assigned UN, which means that the
system cannot classify the student's knowledge level in this sub-domain. Al-
though two children of Vo have their values changed, no constraint for its
AV value is violated. Thus, Vo keeps the value unchanged.

Then the default propagation procedure is executed. Since V2's first child
V4 has an UN value at this time, it is assigned an EX value according to a
default of V2's EX value. Thus, at time t2 when revision is completed, the
value assignment to the DPN is

Vo = AV, V1 = UN, V2 = EX, V3 = UN,
V4 = EX, V5 = EX, V 6 = UN.

By taking the union of corresponding d-belief packages of the nodes,

STB(t2) = (boj , bo,2, b2j, b2,2, b4j, b4,2, bs,1, b5,2, bs,4).

Finally, since SDB(t2) = SDB(tl), the updated student model is

SM(t2) = {boj, b0,2, b2,1, b2,2, b3,1, b4,,, b4,2, ~b5,1, b5,2, b5,3, b5,4).

Thus, by changing values of V2, V3, V4 and V5 (active stereotypes in the
corresponding sub-domains), a drastic change, or a revolutionary revision,
has occurred in the student model.

4. C o m p a r i s o n wi th Re l a t e d W o r k

This section compares the SMMS with related work in four aspects of
user/student modeling: (1) handling deductive knowledge; (2) activation
and deactivation of stereotypes; (3) stereotypes in related knowledge do-
mains; (4) conflicts between deductive knowledge and stereotypical knowl-
edge. Since most student modeling systems developed by ITS researchers do
not deal with inferences over the existing student model and revision of the
student model formed by such inferences, most of the related work discussed

110 XUEMING HUANG ET AL.

here is from the area of general user modeling. In particular, we consider
four important user modeling systems: Grundy (Rich, 1979, 1989), KNOME
(Chin, 1989), GUMS (Finin and Drager, 1986; Finin, 1989) and BGP-MS
(Kobsa, 1990).

(1) Handling deductive knowledge
Many user modeling systems restrict their deductive knowledge to observed
information (Rich, 1989; Chin, 1989). They do not make inferences to aug-
meat deductive knowledge. But this kind of inference is especially important
for a student modeling system since concepts in a subject that a student
is learning are usually more structural (Goldstein, 1979; Sleeman, 1985).
Knowing a concept usually implies knowing some other concepts and not
holding certain related misconceptions. Similarly, believing a misconception
may be evidence of believing other misconceptions. GUMS's deductive in-
ference rules are built only inside stereotypes. This may allow better control
of the inference rules in that they are applied to only certain classes of users.
However, most of these inference rules seem to be stereotype-independent
(Kass and Finin, 1987; Kass, 1990; Sleeman, 1985). Installing rules inside
stereotypes may unnecessarily increase complexity of the stereotype struc-

t u r e and create duplicate inference rules. BGP-MS's approach is similar to
ours except that we provide only a framework that allows installing the
inference rules, while BGP-MS actually builds a set of rules in the system.

None of these systems, except GUMS, deals with revision of deductive
knowledge. GUMS accomplishes revision by using observed facts to override
defaults. This approach is studied more extensively by van Arragon (1990a,
1990b). However, the approach does not always work. In particular, it is
inappropriate for applications such as intelligent tutoring in which a user's
knowledge state may change during interactions. For example, if yesterday
the tutor knew very surely that the student did not know how to login
to the computer, then ~ knows(login) is a fact, entered yesterday, in the
student model. However, if today the tutor observes that the student has
learned how to login, then knows(login) is also a fact, entered today, in the
student model. Which fact should override the other? Obviously, a simple
solution for this situation is to remove the obsolete belief ~ knows(login),
as the EBRS does, rather than an overriding scheme provided by a default
reasoning system.

(2) Activation and deactivation of stereotypes
How to activate and deactivate stereotypes is a central problem in many
stereotype-based systems. We have given a related discussion of this prob-
lem in Section 3.1, so duplicate material will be presented briefly in the
following discussion. Grundy relies on the user's input about her/his social
status to activate stereotypes. An active stereotype is not retracted during

REVISING DEDUCTIVE KNOWLEDGE AND STEREOTYPICAL KNOWLEDGE 111

interaction. This approach may work for modeling personal traits, but it is
not suitable for modeling knowledge. KNOME's approach is closer to ours
in that it uses deductive knowledge (only observed information) to deter-
mine active stereotypes, but still it does not retract activated stereotypes.
GUMS classifies beliefs in a stereotype into two groups: definite beliefs and
default beliefs. If the observed information conflicts with a definite belief
in the active stereotype, then the stereotype is deactivated. This approach
is somewhat similar to our use of constraints. However, deactivating and
activating stereotypes in GUMS is done using an overly simple method.
The deactivated stereotype is trivially replaced by a more general stereo-
type that has no definite belief conflicting with the observed information.
Thus, stereotypical knowledge in a user model constantly decreases. BGP-
MS provides a set of functions for specifying activation and retraction con-
ditions of each stereotype in terms of deductive beliefs in the user model. A
stereotype would be activated if its activation conditions are satisfied and
would be deactivated if its retraction conditions are satisfied. This set of
pre-defined functions is very similar to SMMS's constraint language except
that the constraint language is more general and deals also with relations
between stereotypes. In addition, activation and deactivation in the SMMS
is accomplished by two well established and efficient procedures: constraint
satisfaction and default propagation.

(3) Stereotypes in related knowledge domains
We must deal with the problem of how to activate stereotypes in related
domains if we model the user's domain knowledge. This problem is not ad-
dressed by Grundy and BGP-MS. KNOME recognizes the problem but does
not deal with it (Chin, 1989, p. 106). GUMS allows activating stereotype in
only one domain. If a user is identified as a "Unix Hacker", for example, then
GUMS is unable to use knowledge in stereotypes in other domains, such as
"Lisp Machine Expert", that is also applicable to the user. The SMMS offers
a better solution to this problem. Stereotypes in different domains may be
activated simultaneously based on deductive knowledge and active stereo-
types in related domains. A set of constraints is used to ensure consistency
of active stereotypes.

(4) Conflicts between deductive knowledge and stereotypical knowledge
How to resolve conflicts between deductive knowledge and stereotypical
knowledge is also a research issue in user modeling. Except for KNOME,
all other systems cope with the problem, although deductive knowledge in
some of these systems contains only observed beliefs. The three systems
agree that a deductive belief would override a stereotypical belief if they
are in conflict. The discrepancy is in whether such a conflict can trigger
deactivation of a stereotype. Grundy never retracts an activated stereotype

112 XUEMING HUANG ET AL.

in response to a conflict, while GUMS and BGP-MS might deactivate some
stereotypes if the conflict is serious enough to violate some conditions for
keeping the stereotypes active. The lat ter approach is also used by SMMS.
The difference among the three systems (GUMS, BGP-MS and SMMS) is
in their representations of these conditions, as we mentioned during our
discussion of issue (2) earlier in this section.

5. C o n c l u s i o n s

We have investigated the issue of revising deductive knowledge and stereo-
typical knowledge in a s tudent model and shown how to use reason main-
tenance and formal diagnosis techniques to accomplish revision of the de-
ductive knowledge base. The DPN has been developed to account for the
tutor 's stereotypical knowledge. An efficient algorithm that satisfies con-
straints and propagate defaults of the DPN is designed for revising the
stereotypical knowledge base. We have also shown how a revision of deduc-
tive knowledge triggers a revision of stereotypical knowledge, resulting in
a desirable upda ted student model in which two types of knowledge exist
harmoniously. The student model maintenance system (SMMS) described
in the paper is domain independent . Its research results apply to a variety
of s tudent models and user models.

A p p e n d i x : P r o o f o f C o r r e c t n e s s o f t h e H S - T r e e A l g o r i t h m

Kere we prove that the modified HS-tree algorithm presented in Section 2.5 correctly
returns the set of all minimal hitting sets of the given set family F, providing that
each set in F is a minimal conflict (Theorem 1). In other words, we prove that for
a vertex vi, H(vi) is a minimal hitting set of F if and only if vi is labeled by A.

Proof: we first prove correctness of Reiter's algorithm with pruning strategies (1)
and (2).

LEMMA 1: A minimal hitting set of F must equal K(vi) for some v i labeled by A
in the KS-tree generated by Reiter's algorithm with pruning strategies (1) and (2).

Proof: First, if the algorithm uses no pruning strategy, Lemma 1 is trivially
true by construction of the HS-tree. Pruning strategy (1) prunes only supersets of
generated minimal hitting sets, and strategy (2) removes only duplicate branches,
so the two strategies remove no minimal hitting set. []

LEMMA 2: In an KS-tree generated by Reiter's algorithm with pruning strategies
(1) and (2), for every vertex vi labeled A, H(vi) is a minimal hitting set.

Proof: First, K(vi) is a hitting set by definition. Second, H(vi) is not a superset
of H(vj) for any previously generated vertex vj labeled A, for otherwise vi would
be labeled X. Third, because the HS-tree is generated breadth-first, no K(vk) is
smaller than H(vi) for any subsequently generated vertex v k labeled A, so H(vi) is
not a proper superset of H(vk). Note that all minimal hitting sets are contained in
the resulting HS-tree (Lemma 1). Thus, K(vi) is minimal. []
Now we show that the other two pruning strategies, (3) and (4) used in the modified
KS-tree algorithm, preserve the results of Lemma 1-2. The result of Lemma 2

REVISING DEDUCTIVE KNOWLEDGE AND STEREOTYPICAL KNOWLEDGE 113

is obviously preserved since since by applying pruning strategies, no new vertex
labeled A can be generated. Thus, we need only to show the result of Lemma 1 for
the modified algorithm, that is, to show that pruning strategies (3) and (4) preserve
every minimal hitting set.

LEMMA 3: Pruning strategy (3) preserves every minimal hitting set.
Proof: With no pruning strategy (3), whenever H(vj) is not a hitting set but is

a subset of some minimal hitting set, the leaves of the subtree rooted at vj include
every vl such that H(vl) is a minimal hitting set containing H(vj). But then vj
also generates all minimal hitting sets containing tt(vi), if any, since tt(vj) C H(vi).
Thus, there is no harm in pruning vi. The other cases are trivial: if II(vj) is a hitting
set, then expanding H(vi) is a waste; if H(vj) is not a subset of any minimal hitting
set, then H(vi) yields no minimal hitting set, and no harm is done pruning vi. []

LEMMA 4: Pruning strategy (4) preserves every minimal hitting set.
Proof: Let vi and vj be siblings connected to parent Vp by edges labeled ei and

ej, respectively. Note that the algorithm does not depend on the order that the
vertices generated, so suppose vi is generated before v., and its label contains e- J .1"
Let vr be the child of vi that would be connected to vi by the edge labeled ej. Then
H(vc) = H(vp) U {ei, ej} and II(vj) = II(vp) U {ej), so H(vj) C H(vc). By Lemma
3, vc can be pruned. Equally, we can remove ej from the label of vi. On the other
hand, suppose vj is generated before vi, a similar argument applies. Note that we
obviously cannot remove both. []

By combining Lemma 1-4, we have completed the proof of Theorem 1. []

A c k n o w l e d g e m e n t s

T h a n k s to the Univers i ty of Saska tchewan and the N a tu r a l Sciences and
Engineer ing Research Counci l for the i r f inancial suppor t . Also thanks to the
reviewers of this p a p e r for the i r va luable comment s and suggest ions.

R e f e r e n c e s

Alchourron, C. and D. Makinson: 1982, 'On the Logic of Theory Change: Contraction
Functions and Their Associated Revision Functions'. Theoria 48, 14-37.

Alchourron, C., P. Gardenfors, and D. Makinson: 1985, 'On the Logic of Theory Change:
Partial Meeting Contraction and Revision Functions. Journal o] Symbolic Logic 50(2),
510-530.

Burton, R. R. and J. S. Brown: 1982, 'An Investigation of Computer Coaching for Infor-
mal Learning Activities'. In: D. Sleeman and J. S. Brown (eds.), Intelligent Tutoring
Systems, Harcourt Brace Jovanovich, pp. 79-98.

Chin, D. N.: 1989, 'KNOME: Modeling What the User Knows in UC'. In: A. Kobsa and
W. Wahlster (eds.), User Models in Dialog Systems, Springer-Verlag, pp. 74-107.

Clancey, W. J.: 1986, 'Qualitative Student Models'. In: :I. F. Traub (ed.), Annual Review
of Computer Science 1, pp. 381-450.

Clancey, W. J.: 1987, Knowledge-Based Tutoring: The GUIDON Program, The MIT Press.
Dalai, M.: 1988, Investigation into a Theory o] Knowledge Base Revision: Preliminary

Report. Proceedings AAAI-88, Saint Paul, MN, pp. 475-479.
de Kleer, J.: 1986, 'An Assumption-Based TMS'. Artificial Intelligence 28(2), 127-162.

114 XUEMING HUANG ET AL.

de Kleer, J. and B. C. Williams: 1987, 'Diagnosing Multiple Faults'. Artificial Intelligence
32, 97-130.

Doyle, J.: 1979, 'A Truth Maintenance System'. Artificial Intelligence 12, 231-272.
Fagin, R., J. D. UUman, and M. Y. Vardi: 1983, 'On the Semantics of Updates in

Databases'. Proceedings of the Second A CM SIGA CT-SIGMOD-SIGART Symposium
on Principles of Database Systems, Atlanta, pp. 352-365.

Finin, T.: 1989, 'GUMS - - A General User Modeling Shell'. In: A. Kobsa and W. Wahlster
(eds.), User Models in Dialog Systems, Springer-Verlag, pp. 411-430.

Finin, T. and D. Drager: 1986, GUMS1: A General User Modelling System. Proceedings
CSCSI-86, Montreal, Canada, pp. 24-30.

Gardenfors, P.: 1984, 'Epistemic Importance and Minimal Changes of Belief'. Australasian
Journal of Philosophy 62(2), 136-157.

Gardenfors, P.: 1990, 'The Dynamics of Belief Systems: Foundations vs. Coherence The-
ories'. Revue Internationale de Philosophic, to appear.

Gardenfors, P. and D. Makinson: 1988, 'Revision of Knowledge Systems Using Epistemic
Entrenchment'. In: M. Y. Vardi (ed.), Proceedings of the Second Conferences on The-
oretical Aspects of Reasoning about Knowledge, Morgan Kaufmann Publishers,Inc.,
pp. 83-95.

Garey, M. R. and D. S. Johnson: 1979, Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company.

Goldstein, I. P.: 1979, 'The Genetic Graph: A Representation for the Evolution of Proce-
dural Knowledge'. Int. J. Man-Machine Studies 11, 51-77.

Greet, J. E. and G. I. McCalla: 1989, A Computational Framework for Granularity and
Its Application to Educational Diagnosis. Proceedings IJCAI-89, Detroit, Michigan,
pp. 477-482.

Harman, G.: 1986, Change in View: Principles of Reasoning. MIT Press, Cambridge,
Massachusetts.

I-Iuang, X.: 1989, 'A Study of the Hitting Set Problem'. Manuscript, Department of Com-
putational Science, University of Saskatchewan.

Huang, X., G. I. McCalla and E. Neufeld: 1991, 'Using Attention in Belief Revision'.
proceedings AAAI-91, Anaheim, California (to appear).

Kass, R.: 1990, 'Building a User Model Implicitly from a Cooperative Advisory Dialog'.
Advance Papers of the $nd International Workshop on User Modeling, Honolulu, HI.

Kass, R. and T. Finis: 1987, Rules for the Implicit Acquisition of Knowledge about the
User. Proceedings AAAI-87, Seattle, pp. 295-300.

Kimball, R.: 1982, 'A Self-Improving Tutor for Symbolic Integration'. In: D. Sleeman and
J. S. Brown (eds.), Intelligent Tutoring Systems Harcourt Brace Jovanovich.

Kobsa, A.: 1990, 'Modeling the User's Conceptual Knowledge in BGP-MS, a User Mod-
eling Shell System'. Computational Intelligence 6(4).

Makinsou, D.: 1985, 'How to Give It Up: A Survey of Some Formal Aspects of the Logic
of Theory Change'. Synthese 62, 347-363.

Maxtins, J. P. and S. C. Shapiro: 1988, 'A Model for Belief Revision'. Artificial Intelligence
35(1), 25-79.

McCalla, G. I., J. E. Greet, and the SCENT Research Team: 1988, Intelligent Advising in
Problem Solving Domains: The SCENT-3 Architecture. Proceedings ITS-88, Montreal,
pp. 124-131.

Reiter, It.: 1980, 'A Logic for Default Reasoning'. Artificial Intelligence 13, 81-132.
Reiter, R.: 1987, 'The Theory of Diagnosis from First Principles'. Artificial Intelligence

32(1), 57-95.
Rich, E.: 1979, 'User Modelling via Stereotypes'. Cognitive Science 3, 329-354.
Rich, E.: 1989, 'Stereotypes and User Modeling'. In: A. Kobsa and W. Wahlster (eds.),

User Models in Dialog Systems, Springer-Verlag, pp. 35-51.
Ross, L. and C. A. Anderson: 1982, 'Shortcomings in the Attribution Process: on the Ori-

gins and Maintenance of Erroneous Social Assessments'. In: D. Kahneman, P. Slovic,
and A. Tversky (eds.), Judgement Under Uncertainty: Heuristics and Biases, Cam-
bridge University Press, Cambridge, pp. 129-152.

REVISING DEDUCTIVE KNOWLEDGE AND STEREOTYPICAL KNOWLEDGE 115

Sedgewick, R.: 1988, Algorithm. Addison-Wesley Publishing Company.
Sleeman, D.: 1985, 'UMFE: A User Modelling Front-End Subsystem'. International Jour-

nal of Man-Machine Studies 23, 71-88.
Sleeman, D. and J. S. Brown (eds.): 1982, Intelligent Tutoring Systems, Harcourt Brace

Jovanovich.
van Arragon, P.: 1990a, Nested Default Reasoning with Priority Levels. Proceedings

CSCSI-90, Ottawa, pp. 77-83.
van Arragon, P.: 1990b, Nested Default Reasoning for User Modeling. Research Report

CS-90-25, Department of Computer Science, University of Waterloo.
Wahlster, W. and A. Kobsa: 1989, 'User Models in Dialog Systems'. In: A. Kobsa and W.

Wahlster (eds.), User Models in Dialog Systems, Springer-Verlag, pp. 5-34.
Wenger, E.: 1987, Artificial Intelligence and Tutoring Systems, Morgan Kanfmann Pub-

lishers, Inc., Los Altos, CA.

