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A b s t r a c t .  A user /s tudent  model must be revised when new information about  the 
user /s tudent  is obtained. But a sophisticated user/s tudent  model is a complex struc- 
ture that  contains different types of knowledge. Different techniques may be needed for 
revising different types of knowledge. This paper presents a student model maintenance 
system (SMMS) which deals with revision of two impor tant  types of knowledge in student 
models: deductive knowledge and stereotypical knowledge. In the SMMS, deductive knowl- 
edge is represented by justified beliefs. Its revision is accomplished by a combination of 
techniques involving reason maintenance and formal diagnosis. Stereotypical knowledge is 
represented in the Default Package Network (DPN). The DPN is a knowledge parti t ioning 
hierarchy in which each node contains concepts in a sub-domain. Revision of stereotypical  
knowledge is realized by propagating new information through the DPN to change default 
packages (stereotypes) of the nodes in the DPN. A revision of deductive knowledge may 
trigger a revision of stereotypical knowledge, which results in a desirable student  model 
in which the two types of knowledge exist harmoniously. 

K e y  w o r d s :  user /s tudent  model revision, deductive knowledge, stereotypical knowledge, 
reason maintenance, diagnosis, default package network 

1. I n t r o d u c t i o n  

An intelligent tutoring system (ITS) usually has a knowledge base containing 
its knowledge (or beliefs) about the student called the student model (Slee- 
man and Brown, 1982; Wenger, 1987). The tutoring system can obtain this 
knowledge by analysing the student's responses to the system. This is called 
student knowledge analysis) In fact, most research in student modeling fo- 
cuses on the task of student knowledge analysis (Clancey, 1986; Wenger, 
1987). However, a student model would be more useful if the information 
extracted during analysis could be recorded and re-used in succeeding inter- 
actions. This paper addresses the task of representing knowledge about the 
student and maintaining the student model, or the task of student model 

1 Student knowledge analysis is normally referred to as diagnosing in the ITS li terature.  
We rename it to avoid confusion since a component of SMMS is also called the diagnostic 
system. 
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management (McCalla et al., 1988). In particular, we focus on the issue of 
revising the student model when the tutoring system obtains new beliefs 
about the student. 

The task of revising a student model would be simple if all beliefs in 
the student model were obtained by analysing the student's behavior (we 
call these analyses observations), since then there would be no data de- 
pendency among the beliefs, or at least we could assume that there is no 
such data dependency. Revision can be done by trivially adding or deleting 
corresponding beliefs in the student model, or by increasing or decreasing 
credibility of the corresponding beliefs (Burton and Brown, 1982; Kimball, 
1982; Clancey, 1987). However, usually a tutor's knowledge about a student 
obtained from observations (by the student knowledge analysing system) is 
very limited. This limitation is magnified in an intelligent tutoring system 
because of the narrow input channel of the computer. One way to augment 
the knowledge is to install some deductive inference rules in the system. 
By applying these rules to the existing student model the system can (in- 
ternally) generate new knowledge about the student. For example, assume 
that a mathematics tutoring system has an inference rule stating that a stu- 
dent who knows subtraction must also know addition (represented by a logic 
implication rule knows(sub) D knows(add)). Now if it believes that the stu- 
dent knows subtraction (i.e., knows(sub) is true), then it could infer that the 
student also knows addition (i.e., knows(add) is also true). This approach 
has been used in some student modeling systems and user modeling systems 
(Sleeman, 1985; Kass and Finin, 1987; Kobsa, 1990). Generally, we refer to 
knowledge obtained from observations and its augmentation by deductive 
inferences, as deductive knowledge. 

Although deductive knowledge is an augmentation of knowledge from di- 
rect observation, usually it is still insufficient. People make many default 
assumptions about others' beliefs during a dialogue. In particular, during a 
tutoring interaction, a tutor must make many assumptions about the stu- 
dent's knowledge to design advice to the student. There may be many dif- 
ferent types of assumptions in user/student modeling (Wahlster and Kobsa, 
1989). Stereotypical assumptions are one of the most important types (Rich, 
1979). A stereotype is a package of defaults about a certain group of users. 
Default assumptions about a user are stored in a stereotype that models 
the group to which that user belongs. Stereotypical knowledge is important 
for user/student modeling because it provides a vast amount of knowledge 
about the user/student based merely on evidence for membership in a cer- 
tain group(s). 

Unlike revision of independent beliefs, revision of deductive knowledge 
and revision of stereotypical knowledge are difficult. These difficulties and 
related problems have been extensively studied by research in a theoretical 
AI area known as belief revision (Doyle, 1979; de Kleer, 1986; Martins and 
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Shapiro, 1988; Makinson, 1985). However, the issue of how to apply tech- 
niques of belief revision to user/student model revision has not been studied. 
On the other hand, although stereotypes are widely used in user model- 
ing systems (Rich, 1979; Finin, 1989; Chin, 1989), revision of stereotypical 
knowledge remains difficult. 2 Our present goal is to investigate revision of 
these two types of knowledge in a student model, as well as the relationship 
between the two revision processes. 

The paper presents the student model maintenance system (SMMS) 
shown in Figure 1. During interaction with the student, the student knowl- 
edge analysing system (SKAS) analyses the student's responses to generate 
the tutoring system's new beliefs about the student. New beliefs generated 
by such "observations" are sent to the SMMS which then revises the student 
model to accommodate the new beliefs. The updated information about the 
student in the student model, such as whether the student knows a particular 
concept or believes a particular misconception, is provided for other compo- 
nents of the tutoring system, including the SKAS, whenever they query the 
SMMS. 

The student model consists of two knowledge bases. The deductive knowl- 
edge base contains knowledge generated from "observations" and knowledge 
generated by applying the inference rules. The stereotypical knowledge base 
contains knowledge in the active stereotypes. (The stereotype hierarchy of 
SMMS is discussed in Section 3.) Since deductive knowledge comes from 
a more concrete information source than stereotypical knowledge does, the 
former may override the latter when they are in conflict. Using the ter- 
minology of default reasoning, deductive knowledge contains "facts", while 
stereotypical knowledge contains "defaults" (Reiter, 1980; Finin, 1989). 

A revision occurs when a set of new beliefs is generated by the SKAS and 
sent to the SMMS. The SMMS enters these new beliefs into its deductive 
knowledge base and makes the necessary revisions to maintain consistency 
of the deductive knowledge base. It then checks its stereotype hierarchy. If 
the activating conditions of some deactivated stereotypes or the retraction 
conditions of some activated stereotypes are satisfied due to revision of de- 
ductive knowledge, then corresponding stereotypes would be activated or 
retracted, thus revising the stereotypical knowledge base. This results in a 
consistent student model. 

The rest of the paper is organized as follows: Section 2 discusses revision 
of deductive knowledge. Section 3 discusses revision of stereotypical knowl- 
edge. A comparison of the SMMS with related work is given in Section 4. 
Section 5 concludes the paper. Note that although the research is reported 
in the context of student modeling, the issues studied pertain to general user 
modeling to a greater or lesser degree. 

2 A recent paper (Kobsa, 1990) desribes a user modeling shell called BGP-MS that 
tackles this difficult problem. 
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Fig. 1. SMMS in an Intelligent Tutoring System 

2. R e v i s i o n  o f  D e d u c t i v e  K n o w l e d g e :  A n  E v o l u t i o n a r y  P r o c e s s  

In this section we discuss how techniques developed in the area of belief 
revision can be used for revising deductive knowledge in a student model. 
As a result, a system called the evolutionary belief revision system (EBRS) 
is developed to accomplish the desired revision. 

2.1. COHERENCE BELIEF REVISION VS. FOUNDATIONS BELIEF REVISION 

There are two basic approaches to revision of deductive knowledge. One is 
called coherence belief revision, and the other called foundations belief revi- 
sion. A common goal of both approaches is maintaining consistency of the 
knowledge base in response to new information. A fundamental  difference 
between the two approaches is on the issue of whether justifications of beliefs 
should be taken into account during belief revision. Coherencists focus on 
minimal change to maintain logical consistency of the belief base, regard- 
less of the justifications (Alchourron et al., 1985; Dalai, 1988; Gardenfors, 
1990). Foundationalists insist that  all beliefs must be well justified, namely, 
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each belief must be either directly assumed by the system (beliefs obtained 
from observations belong to this group) or supported by other justified be- 
liefs (Doyle, 1979; Martins and Shapiro, 1988). Thus, a belief that  has no 
valid justification must be removed, no matter  whether or not it logically 
contradicts any other beliefs in the belief base. 

In our early example of the inference of a mathematics tutor,  the tutor  
derives the belief knows(add) from its beliefs knows(sub) and knows(sub) D 
knows(add). Thus, the latter two beliefs justify the former one. If later the 
tutor  observes that  the student does not know subtraction, then a new belief 
-1 knows(sub) is added to the belief base, which forces removal of an old be- 
lief knows(sub). Both coherencists and foundationalists agree on this point. 
The controversial problem is, however, whether another belief, knows(add), 
should be removed as well. The coherence theory argues that  it should stay 
since the knowledge base after removal of knows(sub), namely (knows(sub) 
D knows(add), knows(add), -~ knows(sub)), is already consistent. Removing 
knows(add) violates the principle of minimal change. But the foundations 
theory says that  knows(add) should be removed, since it no longer has any 
valid justification. 

Which approach is more appropriate? Although the argumen t into this 
problem remains inconclusive, many philosophers and AI researchers tend 
to believe that  the foundations approach models how people ought to revise 
their beliefs, while the coherence approach models what people usually do in 
such situations (Harman, 1986; l~oss and Anderson, 1982; Gardenfors, 1990). 
This implies that  the approach chosen depends on the kinds of beliefs we 
are trying to model. The SMMS described here uses a foundations belief 
revision system. 

2.2. ATMS AND DIAGNOSIS 

Reason maintenance systems (RMS's) (Doyle, 1979; de Kleer, 1986; Martins 
and Shapiro, 1988) are usually considered implementations of foundations 
belief revision. An RMS is usually used to assist a problem solver. By record- 
ing data  dependencies (e.g., justifications) and inconsistent belief spaces, the 
RMS guides the problem solver to work in consistent and well justified be- 
lief spaces. However, in revising a belief base such as a student model, solely 
ensuring consistency is insufficient: the revision should not radically change 
the belief base. Most existing RMS's provide little information about how 
to minimally modify an old belief base to accommodate new beliefs. They 
do not deal with the culprit selection problem, the problem of how to select 
a subset of beliefs, among many possible subsets, to remove to maintain 
consistency of the belief base (Martins and Shapiro, 1988). 

A sub-system of SMMS, called the Evolutionary Belief Revision System 
(EBRS), accomplishes foundations revision of deductive knowledge by com- 



92 XUEMING HUANG ET AL. 

bining a diagnostic system (de Kleer and Williams, 1987; Reiter, 1987) with 
an RMS, namely a modified ATMS (de Kleer, 1986), to achieve the minimal 
change property. The ATMS records data dependencies and contradictions, 
providing the collection of inconsistent belief spaces for the diagnostic sys- 
tem. The diagnostic system then uses this information to select a minimal 
subset of beliefs and to remove the subset from the belief base. Below we give 
a brief sketch of the ATMS and some concepts used in diagnostic systems, 
primarily to establish terminology. Then we discuss the EBRS. 

2.2.1. ATMS 

An ATMS-based problem solver usually consists of  two components: a prob- 
lem solver and an ATMS. The ATMS serves as an intelligent cache for the 
problem solver. First, the problem solver designates a set of ATMS nodes 
(data structures of the ATMS) to be assumptions (in what follows we will 
call both a node and the proposition stored in the node an assumption when 
no confusion Can be caused). An assumption is presumed to be true over the 
period of solving the problem, unless there is evidence to the contrary. Then 
the problem solver derives new beliefs from old ones, starting with the set 
of assumptions (which are special beliefs), and continuing until the problem 
solution is found. Each new belief is also assigned an ATMS node, and the 
set of antecedent nodes used in the derivation is recorded as a justification 
of the new beliefi 

An environment is a subset of assumptions. An ATMS node n holds in 
environment E if n can be derived from E using justifications of the nodes 
in the current knowledge base. An environment is inconsistent if a node rep- 
resenting a contradiction holds in it, otherwise it is consistent. Inconsistent 
environments (called nogoods) are recorded in a database. A consistent envi- 
ronment is minimal with respect to a node n if and only if n holds in it and 
in no proper subset of it. In an ATMS, in addition to the justifications, the 
set of minimal consistent environments, called the label, is also recorded in 
the node. If a node holds in an environment, then it also holds in all super- 
sets of the environment. Thus, the label represents the whole environment 
space in which the node holds. With the label, the query as to whether a 
node n holds in an environment E can be quickly answered. 

When the problem solver makes a new inference, it creates a new jus- 
tification for the consequent node using the set of antecedent nodes of the 
inference, which awakes the ATMS to carry out a process of label updating 
to accommodate the new information. Label updating propagates over the 
knowledge base via justifications of nodes, changing the consistent environ- 
ment space of each node in the knowledge base. 
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2.2.2. The Diagnostic Problem 

Assume that one is first given a description of a system and then an obser- 
vation of the system's behavior that conflicts with the expected behavior of 
the system. The diagnostic problem is to determine the abnormal compo- 
nents of the system which cause the conflicts. The concepts defined below 
follow de Kleer and Williams (1987). 

In a diagnostic system, a symptom is an inconsistency detected by a 
higher level reasoning system. An assumption is a proposition that describes 
the normal behavior of a component of the system. A conflict is a set of 
assumptions from which a symptom can be derived. A conflict is minimal if 
no proper subset of it is also a conflict. A candidate of the diagnosis is a set of 
assumptions such that by removing the set, the system becomes consistent. 
A candidate is minimal if no proper subset of it is also a candidate. Any 
superset of a conflict is a conflict, and any superset of a candidate is a 
candidate. Therefore, the conflict space and the candidate space can be 
represented by the set of minimal conflicts and the set of minimal candidates, 
respectively. The goal of a diagnostic process is to find the set of minimal 
candidates. This usually requires recognition of the set of minimal conflicts 
first. 

In a belief revision system, if we view a contradiction in the belief base as 
a symptom, then a set of assumptions that eventually derives a contradiction 
is a conflict. The problem in belief revision of finding the minimal changes of 
the old belief base so that the updated belief base is consistent with the new 
beliefs is thus reduced to the problem of finding the minimal candidates 
in diagnosis. This is our basic idea of using a diagnostic system in belief 
revision. 

2.3. BASIC CONCEPTS OF THE EBRS 

As mentioned in Section 1, deductive knowledge of the student model comes 
from "observations" by the SKAS and deductive inferences over the exist- 
ing knowledge. Information in the deductive knowledge base is represented 
by propositional formulas recorded in EBRS nodes. In particular, contradic- 
tions discovered (denoted by _1_) are recorded in some distinguished EBRS 
nodes called contradiction nodes. The propositions believed by the system 
are called the system's beliefs (or beliefs for short). Beliefs considered true 
without depending on other beliefs are called base beliefs (akin to assump- 
tions in the ATMS). Two kinds of beliefs are treated as base beliefs: the 
beliefs obtained from observations and the inference rules. The beliefs that 
are.derived from the inferences are called derived beliefs. 

The belief revision procedure is invoked after each observation or infer- 
ence so that the new information is merged into the knowledge base which is 
then adjusted to accommodate the new information. This is called a revision 
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session. The belief set (the set of the system's beliefs) is updated in each 
revision session. The EBRS uses a modified ATMS to maintain consistency 
of its knowledge base. An ATMS is useful since it records data dependen- 
cies among beliefs and filters out inconsistent environments. However, the 
original ATMS is oriented towards finding all solutions in a problem solving 
process. It simultaneously works on all self-consistent environments (but the 
union of them may not be consistent). Thus, the ATMS has no concept of the 
system's beliefs. In the EBRS, we use the set of base beliefs from which all 
beliefs are derived to represent the system's beliefs. This set of base beliefs 
is called the system's environment. A subset of the system's environment is 
called an active environment. Thus, there are three kinds of environments 
in the EBRS (in contrast to two kinds in the ATMS): inconsistent envi- 
ronments, consistent environments, and active environments (which are also 
consistent). A proposition is currently believed if and only if the label of its 
EBRS node contains an active environment. 

2.4. ACCOMMODATING NEW INFORMATION 

Belief revision occurs when a set of beliefs is generated by an observation 
of the SKAS or by a deductive inference made by the EBRS. The EBRS 
puts these just-generated beliefs into its knowledge base. Note that a just- 
generated belief may not be a new beliefi It may have been generated in 
some previous observations/inferences. The EBRS creates a new node for 
a just-generated belief only if the belief is new, but it usually adds a new 
justification to the node of the just-generated belief to record the new data 
dependency. If the just-generated belief is a base belief, then the justification 
contains only the belief itself. If it is a derived belief, then the justification 
contains all the beliefs and the rules used in the derivation. After a justifi- 
cation is added, the label updating procedure described in (de Kleer, 1986) 
is invoked to propagate the effects of the new information, generating an 
updated label for each EBRS node in the knowledge base. 

The just-generated beliefs may conflict with old beliefs in the belief set, 
bringing contradictions into the knowledge base. Some contradictions were 
discovered and removed from the belief set in some previous revision session. 
They arise again since they get new supports after label updating. This 
kind of contradiction can be discovered by checking whether there is an 
active environment in the label of the contradiction nodes in the knowledge 
base. The other contradictions are new and discovered when a just-generated 
belief p is the negation of an old belief -~p. The EBRS creates a new node 
to record each newly discovered contradiction. (Note that the EBRS may 
not discover M1 contradictions in the beliefs. The EBRS used here discovers 
a contradiction when a proposition and its negation both are believed, but 
discovered beliefs may be re-defined in other applications.) 
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Once contradictions are detected and recorded, the EBRS updates the 
system's belief set in two steps. First, all new beliefs are added into the belief 
set. This is done by simply put t ing all new base beliefs into the system's 
environment. The second step, removing all contradictions discovered from 
the system's belief set, is more difficult. This requires selecting a subset of 
base beliefs (called the obsolete base belief set) such that  once the subset is 
removed from the system's environment, all contradictions in the belief set 
would be removed. There are, however, usually many such subsets (called 
candidates) in the system's environment. One way to filter out many unlikely 
candidates is to identify minimal candidates. If by removing a subset S we 
can remove all contradictions, then there is little reason to remove a proper 
superset of S instead (Gardenfors, 1984; Harman, 1986). Thus, the obsolete 
base belief set is chosen from the minimal candidates. For this reason, we 
call the revision accomplished by EBRS the evolutionary belief revision, in 
contrast to the revolutionary belief revision discussed in Section 3. The next 
section discusses a procedure in the EBRS that  removes the obsolete base 
belief set from the system's environment. We now present an example, using 
beliefs about a student 's knowledge of Lisp programming, to clarify what 
we have done so far. 

In the example, we use propositional letters (e.g., A, B, . . . )  to represent 
a belief of the tutor  about the student such as "The student believes that  
the Lisp function car returns a list containing the first element of the given 
list" (a misconception) or "The student knows the concept of recursion' .  
Negation of a proposition (e.g., ~A, . . . )  represents a negative belief such 
as "The student does not know the concept of recursion", rather than a 
disbelief such as "It is not the case that  the student knows the concept of 
recursion." The latter is handled by the assumption that  everything that  is 
not derivable from the student model is not believed by the tutor.  Inference 
rules such as "if the student knows the function mapcar, then she/he must  
also know the function car", "if the student believes that  append is the same 
function as list (a misconception), then she/he must not know that  append 
requires lists as its arguments" are represented by logic implication rules 
such asS  D T a n d U  D ~ V .  

Assume that  the SKAS has obtained the beliefs A and B in the first 
observation O1. Then the EBRS applies the inference rule A D S to derive 
S, the rule B A S D -~ T to derive ~ T, the rule S D U and the rule A AB 
D U to derive U, and the rule B A U D V to derive V. At this moment  
(time t l) ,  the deductive knowledge base contains the following EBRS nodes 
(like an ATMS node, an EBRS node is of the form: [assertion, (label}, 
(justifications}]): 



96 XUEMING HUANG ET AL. 

1. [A, {{1}}, {(1)}] 
2. [B, {{2}}, {(2)}] 
3. [A s, {{3}}, {(3)}] 
4. [BAS D -~T, {{4}}, {(4)}] 
5. [s u, {{5}}, {(5)}] 
6. [AAB D U, {{6}}, {(6)}] 
7. [B^U V, {{7}}, {(7)}] 
8. [S, {{1, 3}}, {(1, 3)}] 
9. [T, {{1, 2, 3, 4}}, {(2, 4, 8)}] 

10. [U, {{1, 3, 5}, {1, 2, 6}}, {(5, 8), (1, 2, 6)}] 
11. [V, {{1, 2, 3, 5, 7}, {1, 2, 6}}, {(2, 7, 10)}] 

Here, nodes 1-7 are base beliefs, while nodes 8-11 are derived beliefs. The 
system's environment is {1, 2, 3, 4, 5, 6, 7}. Note that every node in the 
knowledge base has an active environment (a subset of the system's envi- 
ronment) in its label. This reflects the fact that at t l  all EBRS nodes in the 
knowledge base are believed. Users of the student model (usually other com- 
ponents of the tutoring system) are usually interested in the subset of beliefs 
about which specific concepts/misconceptions the student believes. We use 
SDB (for Specific Deductive Beliefs) to denote this subset. SDB contains 
factual knowledge about the student, excluding inference rules. Thus, at t l  
it contains beliefs in nodes 1, 2, 8, 9, 10 and 11: 

SDB(tl) = {A, B, S, ~ T, U, V}. 

Next the SKAS makes the second observation 02 from which three new 
beliefs, C, T and -~ U, are obtained. Three nodes are then created to record 
the new belief set: 

12. [C, {{12}}, {(12)}] 
13. [T, {{13}}, ((13)}] 
14. [- U, {{14}}, {(14)}] 

There is not much for the label updating procedure to do here because 
there are no data dependencies between the new beliefs and the old ones. (For 
examples of label updating see de Kleer, 1986.) Since all three new beliefs 
are base beliefs, they are entered into the system's environment which then 
becomes {1, 2, 3, 4, 5, 6, 7, 12, 13, 14}. Two contradictions among beliefs, 
(--T, T) and (U, --U), are discovered. They are recorded in the contradiction 
nodes: 

cont-l: [_l_, {{1, 2, 3, 4, 13}}, {(9, 13)}] 
cont-2: [_L, {{1, 3, 5, 14}, {1, 2, 6, 14}}, {(10, 14)}]. 

To remove these contradictions, the procedure described in the next sec- 
tion is called to identify and to remove the obsolete base belief set. 
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2.5. REMOVING DISCOVERED CONTRADICTIONS 

The EBRS uses a diagnostic procedure to identify and to remove the obsolete 
beliefs. Precisely, the task of the diagnostic system is to return the set of 
minimal candidates of the obsolete base belief set, given the set of minimal 
inconsistent sets of base beliefs (called minimal conflicts following de Kleer 
and Williams (1987)). The set of minimal conflicts is exactly the collection 
of active environments in the labels of the contradiction nodes. 

A candidate is a hitting set 3 of the set of minimal conflicts (Reiter,  1987). 
Thus, the problem of finding the set of minimal candidates is reduced to the 
problem of finding all minimal hitting sets of the set of minimal conflicts. 
The EBRS uses Reiter 's  HS-tree approach to solve the problem, bu t  we 
introduce two new tree pruning strategies to improve efficiency of the algo- 
ri thm. 

DEFINITION 1: An HS-tree for the given set family F is an edge-labeled and 
vertex-labeled tree T with the following properties: 

(1) The root is labeled by A if F is empty. Otherwise, it is labeled by a 
set in F. 

(2) For each vertex vi of T, define H(vi) to be the set of edge labels on the 
pa th  from the root to vi. If vi is labeled by A, then it has no descendant.  If vi 
is labeled by a set S 5 in F, then for each element a ES j, vi has a descendant 
vertex v~ connected with vi by an edge labeled by a. The label for v~ is a 
set Sk e F such that  Sk N H(va) = { ) if such an Sk exists. Otherwise, v~ is 
labeled by A. 

(3) For each vertex vi labeled A, H(vi) is a hitting set. 

In Reiter 's  algorithm, vertices of the HS-tree are generated breadth-first .  
To reduce the size of the HS-tree, the algorithm uses the following two tree 
pruning strategies: 4 

(1) If vi is a vertex labeled A, then any vj ~ vi such that  H(vi) C_ H(v5) 
is not explored, since further exploration of vj generates only supersets of a 
hitt ing set H(vi) which is already generated. A vertex not explored and not 
labeled A is labeled "X". 

(2) If vi is a vertex generated before vj and H(vi) = H(vj),  then v 5 is 
labeled X, since further exploration of vi and exploration of vj will generate 
two identical subtrees which contain the same set of hit t ing sets. 

3 Given a set family F = {Si [ i = 1, . . . ,  n}, where each Si is a set, a hitting set H 
for F is a set that contains at least one element of each set in F (see Garey and Johnson, 
1979). For the diagnostic problem here, the set of minimal conflicts is a set family since 
each conflict is a set of base beliefs. 

4 There are actually three tree pruning strategies in Reiter's algorithm. The other one 
is irrelevant to our problem (see Huang, 1989). 
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We use the following new pruning strategies to further reduce the size of 
the HS-tree: 

(3) Let vi be the vertex being generated. If vj is a vertex generated before 
vi and labeled by a set in F, and if H(vj) C_ H(vi), then vl is labeled X. 

(4) If v~ and vj are siblings (having the same parent) and if the label of 
vl has an element ej identical to the label of the edge that  connects vj and 
their parent,  then ej should be removed from the label of vi. However, if 
the label of vj also contains el, the label of the edge connecting vl and their 
parent,  then remove only one element (ej or ei). 

{1, 3, 5, 14} 

A {2, 6} {2, 6} {2, 3, 4, 13} 

A A A {1, 3, 4, 13} A A A A /3/ ~ 4 ~ 3  

X X A A 

Fig. 2. The tIS-Tree in the Example 

THEOREM 1: Given a set family F, the HS-tree generated by the modified 
algorithm with pruning strategies (1)-(4) contains all minimal hit t ing sets 
of F which axe exactly those H(vi)'s such that  vi is labeled A. 5 

Strategy (2) in Reiter's algorithm is subsumed by strategy (3), so our 
algorithm actually uses only strategies (1), (3) and (4). The size of the 
HS-tree can be still reduced by pre-ordering the minimal conflicts so that  
smaller conflicts are put  before larger conflicts, and that  the conflicts having 
common elements are put  together whenever it is possible. In this order, 
the vertices at the higher levels of the tree have fewer descendants, so fewer 
redundant  subtrees are generated. 

We summarize the Mgorithm of the diagnostic procedure below: 
(1) Collect the active environments in the labels of the contradiction 

nodes to form the set of minimal conflicts. 
(2) Pre-order the minimal conflicts in the way described above. 
(3) Breadth-first generate the HS-tree of the set of minimal conflicts, 

using the three tree pruning strategies. The resulting set of minimal hitt ing 
sets is the set of minimal candidates. 

s A proof of the theorem is provided in the Appendix. 
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(4) Select the obsolete base belief set from the minimal candidates (details 
are discussed below) and remove it from the system's environment. 

Now we continue the example started in Section 2.4. The active environ- 
ments in the labels of cont-1 and cont-2 are the minimal conflicts (step 1 of 
the algorithm). After pre-ordering (step 2), the set of minimal conflicts is: 

{{1, 3, 14}, {1, 2, 6, 1@ {i, 2, 3, 4, 13}}. 
Using the three pruning strategies, the diagnostic procedure generates the 
HS-tree shown in Figure 2 (step 3). The resulting set of minimal candidates 
is: 

{{1}, {2, 3}, {3, 6}, {2, 5}, {2, 14}, {3, 14}, {4, 14}, {13, 14}, 
{4, 5, 6}, {5, 6, 13}}. 

Usually selection of the obsolete base belief set can be made from the 
minimal candidates if priorities are assigned to the beliefs. For example, in 
user/student modeling systems, normally we can assume that inference rules 
are more stable than factual beliefs (i.e., observed beliefs and derived beliefs) 
and thus assign a higher priority to the rules (see van Arragon (1990a) for use 
of priorities of beliefs in user modeling, and Fagin et al. (1983); Gardenfors 
and Makinson (1988) for priorities in general belief revision). Then the sets 
containing an inference rule are not considered. 6 In the example, only three 
minimal candidates are left: 

{{1}, {2, 14}, {13, 14}}. 

Furthermore, since new beliefs reflect the student's current knowledge 
state, they are assigned a higher priority than the old beliefs. Thus, the 
sets {2, 14} and {13, 14} can also be ruled out. The set {1} is the only 
minimal candidate left and thus is selected as the obsolete base belief set. 
It is removed from the system's environment, which results in retraction of 
EBRS nodes 1, 8, 9, 10, 11 (i.e., propositions A, S, -~T, U and V) from 
the belief s e t / N o w  consider the updated Specific Deductive Beliefs (SDB). 
By excluding the inference rules of the belief set, SDB after revision is the 
beliefs corresponding to nodes 2, 12, 13 and 14, so 

SDB(t2) = {B, C, T,-1 U}. 

In some cases there may be several minimal candidates at the same prior- 

6 In fact ,  if we assume  t h a t  inference rules are always t rue,  we could  even remove t h e m  
earl ier .  We can  remove t h e m  f rom each m i n i m a l  conflict  before  the  HS-t ree  a l g o r i t h m  is 
executed .  T h e n  the  HS-t ree  would be  smal le r  and  g e n e r a t e d  faster .  

7 Recal l  t h a t  the  EBRS removes only discovered con t rad ic t ions ,  so the re  m i g h t  be  st i l l  
some undiscovered  con t r ad i c t i ons  in  the  u p d a t e d  bel ief  set ,  a l t h o u g h  th is  is no t  the  case 
in  th i s  example .  
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ity level (such cases would be rare if the priorities were designed carefully). 
In these cases, further measuring (e.g., directly questioning the student)  may 
be necessary. A good discussion of the measurements and some techniques 
to design them can be found in de Kleer and Williams (1987). 

3. Revision of Stereotypical Knowledge: A Revolutionary Process 

3.1. THE DEFAULT PACKAGE NETWORK (DPN)  

Although many stereotype structures have been used in user modeling sys- 
tems, they don't  seem to be suitable for modeling a student 's  changing 
knowledge. Grundy's  stereotypes provide information about the users' per- 
sonal traits (Rich, 1979). They group users by their social status (e.g., sex, 
age, occupation, etc.). At the beginning of each session Grundy asks the 
user for a self description. Stereotypes whose "triggers" match with the so- 
cial status described by the user are then applied to the user. This approach 
may work well for modeling personal traits, but it does not carry over to 
modeling student knowledge. Students may not know how much they know 
in a domain they are learning. Even if they know, their measurement may 
be different from the system's. For example, a student 's self description as 
a "novice" programmer likely does not coincide with the system's concept 
of a "novice" programmer. 

Being aware of the unsuitability of using Grundy's approach to model 
knowledge, KNOME (Chin, 1989) does not ask the user for self description. 
It infers the user's knowledge level (the stereotype appropriate to the user) 
by looking for evidence that  the user knows or doesn't  know some key con- 
cepts. It collects this evidence during the first few interaction sessions with 
each particular user. (The evidence is akin to SMMS's observed beliefs, a 
part  of deductive knowledge.) The evidence is matched with a number of 
pre-stored tables which indicate the user's likelihood of being at each knowl- 
edge level. However, once the user's knowledge level is determined, KNOME 
does not change it any more. This is not suitable for student modeling since 
a student 's  knowledge level changes constantly during the learning process. 
Also, KNOME has difficulty in dealing with stereotypes in related domains. 
This is more serious than it seems since usually a knowledge domain consists 
of several related sub-domains. 

Stereotypes in GUMS are also used to model user knowledge (Finin, 
1989). GUMS at tempts  the problem of revising stereotypical knowledge. In 
GUMS, user knowledge is organized in a stereotype tree where each node 
represents a class of users. The class inherits knowledge from all ancestor 
classes. The user model is revised when the application system observes new 
facts that  conflict with the active stereotype. This is done by replacing the 
active stereotype with its closest ancestor that  does not conflict with the 
observed facts. This t reatment is often inappropriate, since revisions only 
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b2,1: function name b2~: parameters b2,3: function body 
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ba.l: loops b4,2: local variables bs,l: recursive case 
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b6,1: search key b6,2: exploration 

Fig. 3. A Fragment of a DPN for Lisp Programming Knowledge 

decrease stereotypical knowledge about a user. After several interactions, 
even the root may conflict with the observed facts. Then the active stereo- 
type becomes an empty set which is no longer useful. Also, GUMS allows 
only one active stereotype for each user. However, a user model often doesn't 
fit a single stereotype, but a combination of several stereotypes. For exam- 
ple, if the application system happened to know that the user is an "expert" 
in Unix and an "average" Lisp programmer, GUMS would have to give up 
information in one of these two stereotypes. 

The stereotype structure in SMMS presented below is intended to over- 
come such difficulties in modeling knowledge. It handles relations between 
related stereotypes in different sub-domains and relations between stereotyp- 
ical knowledge and deductive knowledge in a student model. In particular, it 
handles the dynamic properties of stereotypical knowledge in student model- 
ing, providing an efficient revision algorithm for the knowledge which ensures 
that the revision activates and retains as many stereotypes as possible. 

SMMS's stereotypical knowledge is represented in a directed acyclic graph 
called a default package network (DPN). A DPN contains concepts and skills 
in a certain domain. The domain is divided into sub-domains each of which 
is further divided into smaller sub-domains. This forms a sub-domain hi- 
erarchy - -  the DPN in which each sub-domain is represented by a node, 
and the general/specific (super-domain/sub-domain) relations between the 
sub-domains are represented by the links. A link points from a specific node 
(a child) to a more general node (a parent). Figure 3 shows a segment of a 
DPN representing knowledge of Lisp programming. 

Each sub-domain contains a subset of concepts (including misconcep- 
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tions) and skills. Each concept is described by a propositional formula 
(represented by a small circle in Figure 3) called a d-proposition (because 
stereotypical knowledge is used as defaults). In Figure 3, for example, the 
d-proposition knows(S-expression-evaluation) is labeled "S-expr evaluation" 
and denoted by b0,1 (for it is the first d-proposition of V0). Concepts in 
a sub-domain are divided into groups. Each group belongs to a child of 
the sub-domain, except for the group of the most general concepts in the 
sub-domain which belongs to the whole sub-domain. Thus, d-propositions 
in a DPN are parti t ioned into subsets. Each subset is attached to the node 
representing the most general sub-domain to which it belongs. For exam- 
ple, the d-proposition "knows(function-body)" (i.e, b2,3) is attached to the 
"user-defined functions" node but  not the "recursive functions" node. 

Corresponding to an estimate of the tutoring system about a student 's  
knowledge state in a sub-domain, a node in a DPN can be assigned a node 
value in a designated value range (e.g., (NV, AV, EX) for "novice", "aver- 
age" and "expert"). A node value determines a package of d-propositions in 
the sub-domain which are assumed to be believed by the student at the cor- 
responding knowledge level. Such a package is called a d-proposition package 
which is actually a local stereotype of the sub-domain). In particular, the 
d-proposition package corresponding to the value that  is currently assigned 
to the student is called the d-belief package (the active stereotype of the sub- 
domain), d-propositions in the d-belief package are d-beliefs. For example, if 
we assign the value EX to the node V3, then all three d-propositions of the 
node might be in the d-belief package. If we assign AV to V3, however, then 
only b3, 2 and b3,3 might be d-beliefs. Thus, the stereotypical beliefs (STB) 
of the student model are determined by the current value assignment of the 
nodes of the DPN. To account for the case that  the system has no idea 
about the student 's  knowledge level in some sub-domains, a distinguished 
value "unknown" (denoted by UN) is defined. If a node has an UN value, 
then its d-belief package would be empty. 

An estimate for a student 's knowledge level in a specific sub-domain may 
be made according to the student 's knowledge level in a more general sub- 
domain. Thus, the value of a node may determine the values of its children 
by default. In other words, the active stereotypes in a parent sub-domain 
may suggest the active stereotype for a child sub-domain. For example, if the 
student has an EX value in V3, it might be reasonable to assign AV to V5 
and EX to V6 (its two children) by default. These defaults reflect relations 
between stereotypes. 

On the other hand, after a revision of deductive knowledge the student 
model, which is the union of the specific deductive beliefs (SDB) and the 
stereotypical beliefs (STB) with removal of each d-belief in the STB whose 
negation is a deductive belief in the SDB, may not be consistent with the ac- 
tive stereotype in a sub-domain any more. In this case, the active stereotype 
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in the sub-domain must be changed. Of course, revising deductive knowl- 
edge may not force the active stereotype to change if the conditions that 
the stereotypes remain active are not violated. These conditions are repre- 
sented as constraints associated with the corresponding value of the node. 
The value may be assigned to the node only if the student model satisfies this 
set of constraints. These constraints represent relations between deductive 
knowledge and stereotypical knowledge in a student model. If the student 
model satisfies the constraint sets of several values of a node, then the value 
closest to the previous one should be chosen (so the value is changed only 
when necessary). The value of a node is not only constrained by the student 
model, but also by the values of its children. For example, we would not es- 
timate a student to be an expert Lisp programmer if we believe that she/he 
has little knowledge of Lisp built-in functions. These constraints also reflect 
relations between stereotypes. Note that if a value of a node were flexible 
enough such that with this value any set of d-propositions could be believed 
and any value could be assigned to its children, then this value of the node 
would have no constraint. 

Table I shows an example list of defaults and constraints correspond- 
ing to the DPN in Figure 3 (except those for V1 and V6 which are not 
relevant in the following discussion). We use the relations <, = and _> to 
express constraints among nodes, based on a total ordering of the node val- 
ues: NV < AV < EX. Also, we use SM, STBi and bi,j to denote the student 
model, the d-belief package of Vi and the jth d-proposition of Vi, respec- 
tively. Designing the table of defaults and constraints seems to introduce 
more overhead to knowledge engineering of a DPN than other stereotype 
structures, but this may not be true. Other stereotype-based user modeling 
systems also must deal with relations between deductive knowledge (usu- 
ally only observed information) and stereotypical knowledge and relations 
between stereotypes (Chin, 1989; Finin, 1989; Kobsa, 1990). The difference 
is that normally in these systems the constraints and defaults are repre- 
sented implicitly in the procedures that deactivate and activate stereotypes, 
while in SMMS they are represented explicitly and manipulated by two sim- 
ple and efficient constraint satisfaction and default propagation procedures, 
described in the next sub-section. 

Also, since there is no overlapping d-propositions between nodes, design- 
ing constraints and defaults for a DPN is actually not difficult and quite 
flexible. In fact, only two conditions must be checked: (1) a default must not 
violate the constraints of the same value of the same node; (2) for each node, 
the defaults (and constraints) of a node must be weaker (containing fewer 
correct concepts and more misconceptions) than the values succeeding it in 
the total ordering of values. It is very easy to build an efficient program to 
automatically check the constraints and defaults for these two conditions. 
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TABLE I 
Defaults and Constraints of the DPN in Figure 3 

VO: EX: defaults: 
coflstJ'aints: 

AV: defaulls: 
constraints: 

NV: defaults: 

constraints: 

V2: EX: defaults: 
constraints: 

AV: defattlls: 
constraints: 

NV: defaults: 
consWainm: 

V3: EX: d~faults: 

AV: defaults: 
constraints: 

NV: defaults: 

collsll'aints: 

STB0={bo,1, b0, 2, b0,3}, VI=AV, V2=EX, V3=EX; 
({boa , bo.2} c SM)v ({bo. 1, b0,3} C: SM), V 1 _>AV, V2=EX, V 3 -> AV; 
STB0={bo, 1, bo,2}, VI=AV, V2=EX, V3=AV; 
{b0,1} ~SM, V2->AV, V3-<AV; 
STB0={b0,1}, VI=UN, V2=NV, V3=AV; 
{b03 } r V2_<AV, V3=NV; 

STB2=ib2.1, b2,2}, V4=EX, Vs=EX; 
{b2,1, b2,2} ~ SM, V 4 -AV, V 5-AV; 
STB2=Ib2. I, h2.2}, V4=AV, V5=AV; 
({b2,1} ~$M) ^ ({b2.3} ~SM, V4-<AV, V5~AV; 
STB2={}, V4=NV, V5=NV; 
({b2,2} ~ SM) ^ ([b2.3} r SM), V4=NV, V 5 < AV; 

STB3={b3.1, I)3, 2, b3,3}, V5=EX, V6=EX; 
{b3,2, b3,3} c: SM, V 5 _AV, V6=EX; 
STB3={b3,2, b3,3}, V5=AV, V6=EX; 
({b3,1} ~SM) A ({b3.2] c:SM), Vs->AV; 
STB3={ }, V5=NV, V6=AV; 
({b3,1} r ) ̂  ({b3,2} r V5-<AV, V6<AV; 

V4: EX: defaults: STB4~{b4.1, b4,2}; 
conswaints: {b4A } ~ SM; 

AV: defaults: STB4={b4A }; 
constraints: ({I)4,1} r SM) ^ ({b4.2} a" SM); 

NV: defaults: STB4={}; 

constraints: ({b4,11 ~:SM) A ({b4,2} ~SM); 

Vs: EX: defaults: STBs={bs.t. b5.2, bs,4}; 
constraints: {b5,2, b5,4} ~ SM; 

AV: defaults: STBs={bs, I, b5.2}; 
constraints: ({I)5.2 } c:: SM) ^ ({b5,3} ~ SM); 

NV: defaults: STB5={bs.2}; 
constraints: ({bs,1} ~: SM) ^ ({b5,3} r SM). 

3.2. C O N S T R A I N T  S A T I S F A C T I O N  AND D E F A U L T  P R O P A G A T I O N  

A revision of stereotypical knowledge occurs when a revision of deductive 
knowledge violates a constraint of the value of a DPN node, namely the 
activation conditions of an active stereotype. In this case, the value of the 
node must be changed (i.e., the active stereotype of the sub-domain must 
be changed). After the change, however, the node's new value may violate 
a constraint of the value of its parents. Thus, value change may propagate 
upwards. This process is called constraint satisfaction. For example, using 
Figure 3 and Table I, assume Vo = EX, V3 = AV, V6 = AV. If V6's value is 
forced to change to NV, then a constraint of V3's AV value would be violated. 
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Thus, V 3 must be changed to NV as well, which in turn would force V0 to 
change to AV. On the other hand, the value of a node may determine the 
values of its children by default, so changing the value of a node may cause 
the value of a child to be changed if the child's current value is "unknown" or 
was determined by a default of the previous value of the node. For example, if 
V4's AV value was determined by V2's previous value AV and now V2's value 
is changed to EX, then V4's value would be changed to EX because of the 
default assignment of V2's new EX value. Thus, value assignment in a DPN 
may also propagate downwards. This process is called default propagation. 
Note that when a value resulting from constraint satisfaction conflicts with a 
value resulting from default propagation, the result of constraint satisfaction 
has a higher priority since it comes from a more concrete information source 
(i.e., deductive knowledge). 

In general, an evolutionary revision of a student model that occurs in 
its deductive knowledge may force changes of active stereotypes in some 
sub-domains. This is a local revolutionary revision of the student model. 
In addition, changing active stereotypes in these sub-domains may trig- 
ger a bottom-up constraint satisfaction process, followed by a top-down 
default propagation process, changing active stereotypes in many other sub- 
domains. Then, the stereotypical knowledge base (and thus also the whole 
student model) undergoes a global revolutionary revision. The ratio of revo- 
lutionary revisions to evolutionary revisions depends on the tolerance of the 
constraints designed for the DPN. 

Even if the constraints are designed carefully, there might be cases in 
which the student model doesn't satisfy the constraint set of any value of 
a node. This usually happens when a node, say Vi, is forced to change 
value during constraint satisfaction, while the new value to be assigned also 
has some constraint not satisfied (called a second violation). If the second 
violation comes from a child whose current value was determined by the 
previous value of Vi, then the second violation would be removed in the next 
default propagation, and thus ignored, so the new value is still assigned. 
Otherwise, Vi is assigned the value "unknown". Here "unknown" means 
"unclassifiable", which may be slightly different from its original intuition 
"having no idea", but the same semantics applies. An important property of 
the "unknown" value is that it is a "wild card" value which can satisfy any 
constraints and that itself has no constraint. Thus, the value of a node is not 
affected by its parents or its children with an "unknown" value. This has 
the advantage that failure of the system can be restricted to the local level, 
namely a single sub-domain, similar to what has been achieved in using a 
granularity hierarchy for recognition (Greet and McCalla, 1989). 

Another use of the "unknown" value is to avoid circularity. Assume that 
the value of a node Va is revised in the constraint satisfaction process. Then 
in the default propagation process, a child Vr of Va with the "unknown" 
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Fig. 4. A Revision Circle in a DPN 

value might be set to a new value. But if this new value violates the con- 
straints of a parent, Vb, of Vc, then Vc's value would remain "unknown". 
This avoids another constraint satisfaction process which might cause a re- 
vision circle shown in Figure 4. 

3.3. THE ALGORITHM ['OR REVISION OF STEREOTYPICAL KNOWLEDGE 

We now summarize the algorithm for revision of stereotypical knowledge in 
a student model. To clarify how a revision of deductive knowledge triggers a 
revision of stereotypical knowledge, we present the whole algorithm for the 
SMMS, but abstract the part for the revision of deductive knowledge into 
the first two lines (recall that  SDB is the set of specific deductive beliefs and 
STB is the set of stereotypical beliefs): 

Algorithm SMMS: 
- Compute  the updated SDB in response to new information (using EBRS) 
- Compute the student model (from the updated SDB and the current STB) 
- Satisfy the constraints in the DPN (bottom-up) 
- Propagate value changes along with the DPN according to the defaults 

(top-down) 
- If any change in the DPN is made, then 

* Compute  the updated  STB (according to the updated  DPN) 
* Compute  the student model again (from the updated  SDB and the 

updated  STB) 
End. {of the SMMS algorithm} 

Each step of the algorithm is a procedure. The procedure for updat ing 
SDB (i.e., the EBRS algorithm) has been discussed in Sections 2.3-2.5. 
Since an ATMS and a diagnostic system are used, the EBI~S requires time 
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exponential  in the size of the knowledge base in the worst case. STB is the 
union of the d-belief packages of the nodes in the DPN. The union operation 
costs at most O(M log M) time, where M is the size of the DPN. The student  
model is the union of SDB and STB after removing every stereotypical belief 
in the STB which directly contradicts a deductive belief in SDB (i.e., if p is 
in STB while -~p is in SDB, then p is removed). By sorting STB and SDB, 
the operations of union and contradiction removal (the computat ion of the 
new student model) can be done in O(N log N) time, where N = L + M, 
and L is the size of SDB (Sedgewick, 1988). 

Now we present the two procedures that  update  the DPN. In the proce- 
dures, we assume that  the part  of student model related to a node Vi of the 
DPN is accessed by the function SM(i). Each node has a flag "dp". If the 
current value of Vi was determined by the default of one of its parents,  say 
Vp, then dp(Vi) = Vp. Otherwise, dp(Vi) = 0. Also, the function children(i) 
returns the set of values of Vi's children. The function child(i, j) returns 
the value of Vi's j th child. We further assume the nodes in the DPN to be 
numbered  in the order of top (i.e., the root) to bot tom,  and at the same 
level from left to right, as is shown in Figure 3. 

Procedure Constraint-Satisfaction (bottom-up) 
For i := N down to 0, do 

If neither SM(i) nor children(i) is changed, or if the changes do not violate any 
constraint of the value of Vi, then 
do nothing 

else 
- Compute the new value of Vi according to new SM(i) and new children(i) 
- If a constraint of the new value of Vi is violated and the violation is not from 

a child Vr such that dp(Vr = Vi, then 
Vi ~- UN 

- dp(Vi) ~-- 0 
End; {constraint-satisfaction} 

Procedure Default-Propagation (top-down) 
For i:= 0 to N, do 

If the value of Vi is not changed, then 
do nothing 

else for each child of Vi (note: child(i, j) is the one being dealt with), do 
If child(i, j) = UN or dp(child(i, j)) = Vi, then 

- Assign a new value to child(i, j) according to the default of the new value of Vi 
- dp(child(i, j)) ~ Vi 

Check whether child(i, j) violates a constraint of the value of each of 
child(i, j)'s parents (except Vi) or not 

- If a violation occurs, then 
- child(i, j) ~ UN 
- alp(child(i, j)) ~ 0 

End; {default-propagation) 
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Both procedures use computational time linear in the size of the DPN, 
if the degree of each node (the number of links associated with the node) is 
limited by some constant which does not depend on the size of the DPN. 
This is the case with most student modeling and user modeling systems. 
Thus, excluding the first step at which the EBRS is executed, the rest of the 
SMMS algorithm requires time O(N log N). If the condition that the degree 
of each node is not greater than a constant is not true, then each procedure 
above requires time O(M2). The SMMS algorithm (excluding the first step) 
requires time O(M 2 + L log L). This analytical result tells that if a more 
efficient algorithm for revising deductive knowledge is developed s, then the 
SMMS algorithm would be very efficient, using the current DPN for revision 
of stereotypical knowledge. 

3.4. AN EXAMPLE 

Here we give an example of revising stereotypical knowledge in a student 
model. The revision is triggered by an evolutionary revision of the deductive 
knowledge. The example uses the DPN displayed in Figure 3 and its defaults 
and constraints defined in Table I. We first assume that at time to, before 
the revision happens, the set of deductive beliefs SDB is 

SDB(to) = {bo,1, -1 b2,1, b3,1, b5,2), 

and the value assignment to the DPN at time to is: 

Vo = AV, V1 = UN, V2 = AV, V3 = NV, 

V4 = UN, V5 = AV, V6 = UN. 

The set of stereotypical beliefs STB is the union of the d-belief packages 
of the nodes determined by the defaults of this value assignment. Thus, we 
have 

STB(to) = {bo,1, bo,2, b2,1, b2,2, bs,1, b5,2}. 

The student model is the union of SDB and STB with removal of each d- 
belief in STB that directly contradicts a deductive belief in SDB. Therefore, 

SM(to) = {bo,1, bo,2, ~b2,1, b2,2, b3,1, bs,1, b5,2}. 

At time t l ,  assume that three new deductive beliefs, -~b5,1, b5,3 and b5,4, 
are obtained, and that EBRS removes a deductive belief ~b2,1 to maintain 
consistency of the deductive knowledge base. Then SDB becomes: 

SDB(tl) = {bo,1, b3,1, ~b5,1, b5,2, bs,3, b5,4}. 

s Such an efficient algorithm has been recently developed in (Huang et al., 1991). 
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The stereotypical beliefs are not yet revised at tl .  Thus, STB(tl) = STB(to). 
The student model at tl  is: 

SM(h) = {b0,1, b0,2, b2,1, b2,2, b3,1, -~bs,1, bs,2, b5,3, b5,4}. 

This shows an evolutionary revision of the student model. 
Now, revision of stereotypical beliefs starts. By checking Table I, one can 

find that a constraint for assigning AV to Vs is violated since SM contains 
bs,3 now. Thus, Vs is upgraded and assigned an EX value. Constraint satis- 
faction propagates from V5 to V2 and V3. The value of V2 changes from AV 
to EX as well, since a constraint for V2 to keep its AV value, "Vs _< AV", is 
violated. For V3, a constraint of its NV value, "Vs _< AV", is also violated. 
However, an AV value cannot be assigned to it (nor can an EX value, of 
course), since SM does not contain 53,2, which also violates a constraint for 
V3 to have an AV value. Thus, V3 is assigned UN, which means that the 
system cannot classify the student's knowledge level in this sub-domain. Al- 
though two children of Vo have their values changed, no constraint for its 
AV value is violated. Thus, Vo keeps the value unchanged. 

Then the default propagation procedure is executed. Since V2's first child 
V4 has an UN value at this time, it is assigned an EX value according to a 
default of V2's EX value. Thus, at time t2 when revision is completed, the 
value assignment to the DPN is 

Vo = AV, V1 = UN, V2 = EX, V3 = UN, 
V4 = EX, V5 = EX, V 6 = UN. 

By taking the union of corresponding d-belief packages of the nodes, 

STB(t2) = (boj ,  bo,2, b2j, b2,2, b4j,  b4,2, bs,1, b5,2, bs,4). 

Finally, since SDB(t2) = SDB(tl), the updated student model is 

SM(t2) = {boj, b0,2, b2,1, b2,2, b3,1, b4,,, b4,2, ~b5,1, b5,2, b5,3, b5,4). 

Thus, by changing values of V2, V3, V4 and V5 (active stereotypes in the 
corresponding sub-domains), a drastic change, or a revolutionary revision, 
has occurred in the student model. 

4. C o m p a r i s o n  wi th  Re l a t e d  W o r k  

This section compares the SMMS with related work in four aspects of 
user/student modeling: (1) handling deductive knowledge; (2) activation 
and deactivation of stereotypes; (3) stereotypes in related knowledge do- 
mains; (4) conflicts between deductive knowledge and stereotypical knowl- 
edge. Since most student modeling systems developed by ITS researchers do 
not deal with inferences over the existing student model and revision of the 
student model formed by such inferences, most of the related work discussed 
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here is from the area of general user modeling. In particular, we consider 
four important user modeling systems: Grundy (Rich, 1979, 1989), KNOME 
(Chin, 1989), GUMS (Finin and Drager, 1986; Finin, 1989) and BGP-MS 
(Kobsa, 1990). 

(1) Handling deductive knowledge 
Many user modeling systems restrict their deductive knowledge to observed 
information (Rich, 1989; Chin, 1989). They do not make inferences to aug- 
meat deductive knowledge. But this kind of inference is especially important 
for a student modeling system since concepts in a subject that a student 
is learning are usually more structural (Goldstein, 1979; Sleeman, 1985). 
Knowing a concept usually implies knowing some other concepts and not 
holding certain related misconceptions. Similarly, believing a misconception 
may be evidence of believing other misconceptions. GUMS's deductive in- 
ference rules are built only inside stereotypes. This may allow better control 
of the inference rules in that they are applied to only certain classes of users. 
However, most of these inference rules seem to be stereotype-independent 
(Kass and Finin, 1987; Kass, 1990; Sleeman, 1985). Installing rules inside 
stereotypes may unnecessarily increase complexity of the stereotype struc- 

t u r e  and create duplicate inference rules. BGP-MS's approach is similar to 
ours except that  we provide only a framework that allows installing the 
inference rules, while BGP-MS actually builds a set of rules in the system. 

None of these systems, except GUMS, deals with revision of deductive 
knowledge. GUMS accomplishes revision by using observed facts to override 
defaults. This approach is studied more extensively by van Arragon (1990a, 
1990b). However, the approach does not always work. In particular, it is 
inappropriate for applications such as intelligent tutoring in which a user's 
knowledge state may change during interactions. For example, if yesterday 
the tutor knew very surely that the student did not know how to login 
to the computer, then ~ knows(login) is a fact, entered yesterday, in the 
student model. However, if today the tutor observes that the student has 
learned how to login, then knows(login) is also a fact, entered today, in the 
student model. Which fact should override the other? Obviously, a simple 
solution for this situation is to remove the obsolete belief ~ knows(login), 
as the EBRS does, rather than an overriding scheme provided by a default 
reasoning system. 

(2) Activation and deactivation of stereotypes 
How to activate and deactivate stereotypes is a central problem in many 
stereotype-based systems. We have given a related discussion of this prob- 
lem in Section 3.1, so duplicate material will be presented briefly in the 
following discussion. Grundy relies on the user's input about her/his social 
status to activate stereotypes. An active stereotype is not retracted during 
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interaction. This approach may work for modeling personal traits, but  it is 
not suitable for modeling knowledge. KNOME's approach is closer to ours 
in that  it uses deductive knowledge (only observed information) to deter- 
mine active stereotypes, but  still it does not retract activated stereotypes. 
GUMS classifies beliefs in a stereotype into two groups: definite beliefs and 
default beliefs. If the observed information conflicts with a definite belief 
in the active stereotype, then the stereotype is deactivated. This approach 
is somewhat similar to our use of constraints. However, deactivating and 
activating stereotypes in GUMS is done using an overly simple method.  
The deactivated stereotype is trivially replaced by a more general stereo- 
type that  has no definite belief conflicting with the observed information. 
Thus, stereotypical knowledge in a user model constantly decreases. BGP- 
MS provides a set of functions for specifying activation and retraction con- 
ditions of each stereotype in terms of deductive beliefs in the user model. A 
stereotype would be activated if its activation conditions are satisfied and 
would be deactivated if its retraction conditions are satisfied. This set of 
pre-defined functions is very similar to SMMS's constraint language except 
that  the constraint language is more general and deals also with relations 
between stereotypes. In addition, activation and deactivation in the SMMS 
is accomplished by two well established and efficient procedures: constraint 
satisfaction and default propagation. 

(3) Stereotypes in related knowledge domains 
We must deal with the problem of how to activate stereotypes in related 
domains if we model the user's domain knowledge. This problem is not ad- 
dressed by Grundy and BGP-MS. KNOME recognizes the problem but  does 
not deal with it (Chin, 1989, p. 106). GUMS allows activating stereotype in 
only one domain. If a user is identified as a "Unix Hacker", for example, then 
GUMS is unable to use knowledge in stereotypes in other domains, such as 
"Lisp Machine Expert",  that  is also applicable to the user. The SMMS offers 
a better solution to this problem. Stereotypes in different domains may be 
activated simultaneously based on deductive knowledge and active stereo- 
types in related domains. A set of constraints is used to ensure consistency 
of active stereotypes. 

(4) Conflicts between deductive knowledge and stereotypical knowledge 
How to resolve conflicts between deductive knowledge and stereotypical 
knowledge is also a research issue in user modeling. Except for KNOME, 
all other systems cope with the problem, although deductive knowledge in 
some of these systems contains only observed beliefs. The three systems 
agree that  a deductive belief would override a stereotypical belief if they 
are in conflict. The discrepancy is in whether such a conflict can trigger 
deactivation of a stereotype. Grundy never retracts an activated stereotype 
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in response to a conflict, while GUMS and BGP-MS might deactivate some 
stereotypes if the conflict is serious enough to violate some conditions for 
keeping the stereotypes active. The lat ter  approach is also used by SMMS. 
The difference among the three systems (GUMS, BGP-MS and SMMS) is 
in their  representations of these conditions, as we mentioned during our 
discussion of issue (2) earlier in this section. 

5. C o n c l u s i o n s  

We have investigated the issue of revising deductive knowledge and stereo- 
typical knowledge in a s tudent  model and shown how to use reason main- 
tenance and formal diagnosis techniques to accomplish revision of the de- 
ductive knowledge base. The DPN has been developed to account for the 
tutor 's  stereotypical knowledge. An efficient algorithm that  satisfies con- 
straints and propagate defaults of the DPN is designed for revising the 
stereotypical knowledge base. We have also shown how a revision of deduc- 
tive knowledge triggers a revision of stereotypical knowledge, resulting in 
a desirable upda ted  student model  in which two types of knowledge exist 
harmoniously. The student model maintenance system (SMMS) described 
in the paper  is domain independent .  Its research results apply to a variety 
of s tudent  models and user models. 

A p p e n d i x :  P r o o f  o f  C o r r e c t n e s s  o f  t h e  H S - T r e e  A l g o r i t h m  

Kere we prove that the modified HS-tree algorithm presented in Section 2.5 correctly 
returns the set of all minimal hitting sets of the given set family F, providing that 
each set in F is a minimal conflict (Theorem 1). In other words, we prove that for 
a vertex vi, H(vi) is a minimal hitting set of F if and only if vi is labeled by A. 

Proof: we first prove correctness of Reiter's algorithm with pruning strategies (1) 
and (2). 

LEMMA 1: A minimal hitting set of F must equal K(vi) for some v i labeled by A 
in the KS-tree generated by Reiter's algorithm with pruning strategies (1) and (2). 

Proof: First, if the algorithm uses no pruning strategy, Lemma 1 is trivially 
true by construction of the HS-tree. Pruning strategy (1) prunes only supersets of 
generated minimal hitting sets, and strategy (2) removes only duplicate branches, 
so the two strategies remove no minimal hitting set. [] 

LEMMA 2: In an KS-tree generated by Reiter's algorithm with pruning strategies 
(1) and (2), for every vertex vi labeled A, H(vi) is a minimal hitting set. 

Proof: First, K(vi) is a hitting set by definition. Second, H(vi) is not a superset 
of H(vj) for any previously generated vertex vj labeled A, for otherwise vi would 
be labeled X. Third, because the HS-tree is generated breadth-first, no K(vk) is 
smaller than H(vi) for any subsequently generated vertex v k labeled A, so H(vi) is 
not a proper superset of H(vk). Note that all minimal hitting sets are contained in 
the resulting HS-tree (Lemma 1). Thus, K(vi) is minimal. [] 
Now we show that the other two pruning strategies, (3) and (4) used in the modified 
KS-tree algorithm, preserve the results of Lemma 1-2. The result of Lemma 2 
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is obviously preserved since since by applying pruning strategies, no new vertex 
labeled A can be generated. Thus, we need only to show the result of Lemma 1 for 
the modified algorithm, that  is, to show that  pruning strategies (3) and (4) preserve 
every minimal hitting set. 

LEMMA 3: Pruning strategy (3) preserves every minimal hitting set. 
Proof: With no pruning strategy (3), whenever H(vj) is not a hitting set but is 

a subset of some minimal hitting set, the leaves of the subtree rooted at vj include 
every vl such that H(vl) is a minimal hitting set containing H(vj). But then vj 
also generates all minimal hitting sets containing tt(vi), if any, since tt(vj) C H(vi). 
Thus, there is no harm in pruning vi. The other cases are trivial: if II(vj) is a hitting 
set, then expanding H(vi) is a waste; if H(vj) is not a subset of any minimal hitting 
set, then H(vi) yields no minimal hitting set, and no harm is done pruning vi. [] 

LEMMA 4: Pruning strategy (4) preserves every minimal hitting set. 
Proof: Let vi and vj be siblings connected to parent Vp by edges labeled ei and 

ej, respectively. Note that  the algorithm does not depend on the order that  the 
vertices generated, so suppose vi is generated before v., and its label contains e- J .1" 
Let vr be the child of vi that  would be connected to vi by the edge labeled ej. Then 
H(vc) = H(vp) U {ei, ej} and II(vj) = II(vp) U {ej), so H(vj) C H(vc). By Lemma 
3, vc can be pruned. Equally, we can remove ej from the label of vi. On the other 
hand, suppose vj is generated before vi, a similar argument applies. Note that  we 
obviously cannot remove both. [] 

By combining Lemma 1-4, we have completed the proof of Theorem 1. [] 
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