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Abstract 

Fifty-five metrics of  landscape pattern and structure were calculated for 85 maps of land use and land cover. 
A multivariate factor analysis was used to identify the common axes (or dimensions) of  pattern and structure 
which were measured by a reduced set of  26 metrics. The first six factors explained about 87% of the variation 
in the 26 landscape metrics. These factors were interpreted as composite measures of average patch compac- 
tion, overall image texture, average patch shape, patch perimeter-area scaling, number of attribute classes, 
and large-patch density-area scaling. We suggest that these factors can be represented in a simpler way by 
six univariate metrics - average perimeter-area ratio, contagion, standardized patch shape, patch perimeter- 
area scaling, number of  attribute classes, and large-patch density-area scaling. 

Introduction 

Over the past century, technological advances have 
greatly improved the standard of  living in the United 
States. But these same advances have caused sweep- 
ing environmental changes, often unforeseen and 
potentially irreparable. The time has come when 
stewardship of the environment requires that we 
monitor and assess environmental changes at the 
national scale with a view toward the conservation 
and wise management of  our natural resources. 

Some of  the most important aspects of  environ- 
mental change occur at the broad spatial scale of 
whole landscapes. Obvious examples include de- 
forestation, loss of wetlands, and conversion of  
prairies into crop and grazing systems. The poten- 
tial now exists to begin landscape monitoring and 
assessment by combining remote satellite imagery 
of landcover, geographic information system (GIS) 
technology, and recent advances in the science of 

landscape ecology (Forman and Godron 1986). 
Not all environmental changes can be monitored 

at the landscape scale. Stream pollution or the re- 
placement of native wildlife with introduced species 
may cause little or no change in landscapes that can 
be detected in remote imagery. To achieve complete 
assessments, landscape monitoring must be inte- 
grated with field studies in large programs such 
as the Environmental Protection Agency's Envi- 
ronmental Monitoring and Assessment Program 
(EMAP). Nevertheless, we can begin immediately 
to evaluate some important changes at continental 
scales. By integrating available technology, the ef- 
fort can be rendered practical, economic, and 
rapid, relative to any field-based approach. 

The purpose of this study was to help choose a set 
of landscape metrics for monitoring landscape con- 
dition in terms of land use pattern and structure. 
Analysis of landscape pattern and structure can 
consider a large number of metrics such as con- 
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Table 1. Descriptions of LUDA land use and land cover attrib- 
ute class codes (Anderson et al. 1976). 

LUDA 
class Anderson Level II 
code attribute class description 

11 Residential 
12 Commercial, service, institutional 
13 Industrial 
14 Transportation 
15 Industrial and commercial complex 
16 Mixed urban and built-up 
17 Other urban or built-up 
21 Cropland and pasture 
22 Orchards, vineyards, and nurseries 
23 Confined feeding operations 
24 Other agricultural lands 
31 Herbaceous rangeland 
32 Shrub-brush rangeland 
33 Mixed rangeland types 
41 Deciduous forest 
42 Evergreen forest 
43 Mixed forest types 
51 Streams and canals 
52 Natural lakes 
53 Reservoirs 
54 Bays and estuaries 
61 Forested wetlands 
62 Non-forested wetlands 
71 Dry salt flats 
72 Beach 
73 Non-beach sandy area 
74 Bare exposed rock 
75 Strip mine, quarry, and borrow areas 
76 Transitional (disturbed, little cover, not agricultural) 
77 Mixed barren lands 
81 Shrub-brush tundra 
82 Herbaceous tundra 
83 Bare ground tundra 
84 Wet tundra 
85 Mixed tundra 
91 Perennial snowfield 
92 Glacier 

tag ion ,  evenness,  and  f rac ta l  d imens ion  (Turner  

and  G a r d n e r  1991). Ideal ly ,  there  is a small  set o f  

metr ics  which span the i m p o r t a n t  d imens ions  o f  

pa t t e rn  and s t ructure ,  but  which are not  r edundan t  

(U.S.  Env i ronmen ta l  P ro t ec t ion  Agency  1994). 

There  were two mot iva t ing  quest ions  for  this s tudy:  

(1) how many  independen t  axes o f  l andscape  pat-  

tern and  s t ructure  are measu red  by typical  land-  

scape metr ics? (2) which metr ics  or combina t ions  o f  

metr ics  are  best  sui ted for  quant i fy ing  those  axes? 

Star t ing f rom a large n u m b e r  o f  cand ida te  metr ics  

ca lcu la ted  for  a col lec t ion o f  l and  use and  land  

cover  maps ,  a mul t iva r i a te  fac tor  analysis  was used 

to  iden t i fy  a smal ler  number  o f  appa ren t ly  indepen-  

dent  axes. Such an analysis  will suggest  a m i n i m u m  

subset  o f  ind iv idua l  metr ics  for  mon i to r ing  land-  

scapes.  

Methods 

U S G S  L U D A  m a p s  

Eighty- f ive  maps  were selected f rom the U,S.  Geo-  

logical  Survey L a n d  Use Da ta  Analys i s  ( L U D A )  

da t abase  o f  l and  use and  land  cover  der ived  f rom 

h igh-a l t i tude  aer ia l  p h o t o g r a p h y  (Fegeas e t  al.  

1983). The  select ion was in teded  to  represent  a 

rough  t ransect  o f  l andscape  pa t te rns  across  phys io-  

g raphic  regions o f  the  Uni ted  States  (Hunsake r  e t  al .  

1994). Each  L U D A  m a p  covers a 1:250000 qua-  

drangle  ( -  120 km x 180 km)  and ,  in ras ter  for-  

mat ,  has an extent  o f  a b o u t  500 • 800 cells with a 

gra in  size o f  200 m (Hunsake r  e t  al .  1994). Each  cell 

is classif ied into one o f  37 poss ib le  a t t r ibu te  classes 

(Table  1). 

L a n d s c a p e  m e t r i c s  

New sof tware  was wri t ten  to process  the L U D A  

maps  and to calculate  l andscape  metr ics .  The  com-  

put ing  fo rmulas  for  the  55 landscape  metr ics  con- 

s idered in this s tudy are given in an A p p e n d i x .  The 

fo l lowing image proacess ing  steps p rov ided  the in- 

f o r m a t i o n  necessary to calculate  the  metr ics  for  

each map .  Fi rs t ,  the  frequencies  o f  d i f ferent  a t t r ib-  

ute classes (Fi, i = 1 . . .  t) and  the number  o f  at-  

t r ibu te  classes (t)  were de te rmined  by  count ing  

cells. Next ,  the a t t r ibu te  ad jacency  mat r ix  (A) was 

cons t ruc ted  by  count ing  the edges be tween cells. 

Aij ( i , j  = 1 . . . t )  denotes  the  f requency  o f  a t t r ib-  

ute class i being loca ted  ad jacen t  to a t t r ibu te  class 

j in a ca rd ina l  d i rect ion.  Because each edge was 

coun ted  once,  A is wi thou t  r egard  to the  o rder ing  

o f  the two cells tha t  def ine an edge. 



Individual patches were then delineated as sets of  
contiguous cells of  the same attribute class. Only 
cardinal directions were considered when evalu- 
ating contiguity. Let m be the total number of  
patches, and S k (k = 1 . . .  m) denote the number 
of cells of the k-th patch. Patch area is the number 
of cells in a patch. Patch perimeters were deter- 
mined in three different ways as: (1) the number of 
edges enclosing a patch (OEk); (2) the number of 
cells enclosing a patch (OCk), and; (3) the number 
of edges between patch k and all inclusions ('is- 
lands' of  different attribute classes) contained with- 

in patch k (IEk). The sum of I E  k and O E  k measures 
total perimeter edge length. 

Patch centroids (CTk) were calculated as the 
average row and column of the cells that are part of 
patch k. The rectangle which bounds patch k was 
defined by the maximum and minimum rows 

(rmax,k, rmin,k) and columns (Cmax, k, Cmin,k) which 
were occupied by cells that are part of the patch. 
The longest axis across patch k (LAk) was twice the 
radius of the circle which contains all cells that are 
part of the patch (an approximate algorithm by 
Ritter [1990] was used). Finally, each patch was 
scored according to whether or not it touched the 
border of the map. These procedures provided the 
information necessary to calculate the landscape 
metrics shown in the Appendix. 

The fractal metrics require some elaboration 
here. In general, fractal analyses quantify scaling 
relations, of  the form y - xr of  a landscape 
property y over a range of scale x. The scaling fac- 
tor (r is estimated by the slope from a double 
logarithmic linear regression of the form lnCv) = o~ 
+ /31n(x). A fractal dimension is then found by 
transforming/3 (e.g., Falconer 1990). Depending on 
the choices o f y  and x, and the transformation of  r 
the dimension may have a geometric interpretation. 
For example, in the classic 'coastline length' algo- 
rithm (Mandelbrot 1967), y is the apparent peri- 
meter length of  an island as measured by a divider 
(or ruler) of  length x, and the transformation 1-/3 
estimates a geometric dimension corresponding to 
perimeter complexity. 

Although the mere presence of scaling does not 
imply a geometric dimension (Mandelbrot 1983), 
the general procedure can be used to quantify pat- 
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tern and shapes in an image (Falconer 1990). The 
term 'dimension' is used in this study as a con- 
venience. Furthermore, we considered statistical 
scaling as opposed to exact fractal mathematics (see 
discussion by Voss 1988). For this reason, it was ap- 
propriate to test the hypothesized scaling relation- 
ships; F-tests were made of the linear regression, 
and of the evidence for lack-of-fit to the linear 
model (e.g., Steel and Torrie 1980). 

This analysis was also concerned with overall 
map pattern and structure without regard to partic- 
ular attribute classes. Some integrative, area-based 
metrics such as attribute diversity are naturally cal- 
culated for an entire map. But some other metrics 
are normally calculated on a per-patch or per- 
attribute class basis. In those cases, it was necessary 
to average, over patches or attribute classes, in 
order to obtain a comparable value for an entire 
map. Patches with fewer than four cells were ex- 
cluded from average patch metrics because most 
patch-level metrics are fixed for small patch sizes 
(Hunsaker et al. 1994). When appropriate, averages 
over attribute classes were weighted by attribute 
class frequencies. 

In the Appendix, each of 55 landscape metrics is 
described by a four-character acronym, a short 
verbal description, and a defining formula using 
the previous notation. For example, the acronyms 
N T Y P  and N P A  T refer to the numbers of  attribute 
classes (t) and patches (m) in the map. Some sup- 
plemental methodological information is provided 
where appropriate. 

Factor  analysis 

Because many of the 55 metrics are so closely relat- 
ed, some of  them were immediately eliminated 
(their definitions are retained in the Appendix for 
reference only). To accomplish this, all pair-wise 
correlation coefficients were calculated among the 
55 metrics. Groups of  metrics were then formed, 
such that all within-group correlations were larger 
than + 0.9. One metric was then selected to repre- 
sent each group (Table 2). One selection criterion 
was apparent normality, but sometimes the choice 
was arbitrary. This process eliminated 29 metrics, 
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Table 2. Groups of metrics derived from correlation, coefficients, and the representative metrics selected for factor analysis. See text 

for explanation of methods,  and appendix for definitions of  metrics. 

Group Group 
number  members Representative metric 

1 NTYP * NTYP - 

2 SIDI, SIEV, SHDI, SHEV, SHEV - 

MCDI,  MCEV, SHHO,  SIHO 

3 KT-Q KT-Q - 

4 PMAX,  SHCO, SICO SHCO - 

5 SUMD, TENT,  TMAS,  TVAR, SUMD - 

P050, P500 

6 TLAC T L AC  - 

7 P005 P005 - 

8 OEFC, OFIC, OCFC OCFC - 

9 OEFT, OIFT, OCFT OCFT - 

10 ABFT, BCFT BCFT - 

11 BETL BETL - 

12 PENT,  PMAS,  PVAR PMAS - 

13 PLAC P L AC  - 

14 NPAT N P A T  - 

15 PSIZ PSIZ - 
16 OEDG, TEDG, OPER,  RGYR, RGYR - 

LOAX 
17 IEDG IEDG - Average 

18 PA-1 PA-1 - Average 

19 PA-2 PA-2 - Average 

20 NACI,  NASQ, BRRA NASQ - Average 
21 NFTD NFTD - Average 

22 PORO PORO - Average 

23 DSTA, ABRA DSTA - Average 

24 CCRA CCRA - Average 

25 RGLA, LARA RGLA - Average 

26 OPOE OPOE - Average 

Number  of  attribute classes 

Shannon evenness of  attribute classes 

Kempton-Taylor  Q-statistic 

Shannon contagion 

Sum of  diagonal elements of  adjacency matrix 

Average attribute class lacunarity f rom the scaling of  at~xibute density 

with neighborhood size 

Average proportion of  area in patches larger than 5 cells 

Perimeter-area scaling, patch perimeter complexity 

Perimeter-area scaling, patch topology t ransformat ion,  enclosing cells 

basis 

Patch area-bounding circle scaling 

Patch perimeter complexity f rom the scaling of  Euclidean distance to actu- 

al distance along large patch perimeters 

Metric of  large-patch 'mass '  f rom the scaling of  patch density with neigh- 

borhood size 

Average large-patch lacunarity f rom the scaling of  patch density with 

neighborhood size 

Number  of patches 

Average patch size or area 

Average patch radius of  gyration 

number  of  inside edges per patch 

patch perimeter-area ratio 
patch adjusted perimeter-area ratio 

patch normalized area, square model 

patch topology ratio 

patch ratio of  number  of  inside edges to area 

patch adjusted perimeter-area ratio 

ratio of  patch area to area of the circumscribing circle 

ratio of  patch radius of  gyration to long axis length 

patch ratio of  perimeter cells to perimeter edges 

leaving 26 to be used in the factor analysis. Some- 
times the grouping criterion retained some pairs of 
metrics with a correlation less than -0 .9 ;  this is im- 
portant for reasons given later. 

The general purpose of factor analysis is to de- 
scribe the covariance structure among many vari- 
ables in terms of a few underlying (but not directly 
observable) quantities which are called 'factors'. 
Among others, Morrison (1976) and McDonald 
(1985) provide mathematical treatments of factor 
analysis; Pimentel (1979) and Johnson and Wichern 

(1982) describe typical procedures and limitations 
of the approach. In this study, factor analysis pro- 
ceeds by grouping the 26 metrics such that within- 
group correlations are large and between-group 
correlations are small. This step was accomplished 
by applying the principal components method to 
the correlation matrix. The number of  such groups 
to consider further was then chosen based on (a) the 
eigenvalues associated with each group, (b) the plot 
of eigenvalue versus component number, and (c) 
the cumulative proportion of variance explained by 



Table 3. Summary statistics for 26 selected metrics from 85 

maps. 

Statistic 
Normally 

Variable Mean Std DevaCV b Min. Max. distributed? c 

(070) 
NTYP 22.541 3.030 13 17 34 No 

SHEV 0.379 0.132 35 0.067 0.716 Yes 

KT-Q 3.582 1.369 38 1.364 8.177 No 

SHCO 0.745 0.095 13 0.488 0.951 Yes 

SUMD 0.903 0.056 6 0.767 0.987 No 

TLAC 0.040 0.018 45 0.001 0.081 Yes 

P005 0.992 0.007 1 0.956 1.000 No 

OCFC 1.242 0.049 4 1.102 1.351 Yes 

OCFT 1.349 0.074 5 1.094 1.573 Yes 

BCFT 1.349 0.074 5 1.094 1.573 Yes 

BETL 1.358 0.079 6 1.188 1.604 Yes 

PMAS 1.581 0.062 4 1.488 1.994 No 

PLAC 0.008 0.004 50 0.000 0.018 Yes 

NPAT 2627 2103 80 190 9061 No 

PSIZ 361.5 405.1 112 48.2 2614.5 No 

RGYR 3.636 1.062 29 2.207 6.963 No 

IEDG 19.040 9.687 51 3.324 51.578 No 

PA-1 1.400 0.148 11 1 . 0 5 1  1.785 Yes 

PA-2 1.726 0.084 5 1.518 1.933 No 

NASQ 0.532 0.037 7 0.448 0.637 Yes 

NFTD 1.890 0.032 2 1.782 1.964 Yes 

PORO 0.004 0.001 25 0.001 0.007 Yes 

DSTA 1.342 0.027 2 1.283 1.419 Yes 

CCRA 0.649 0.049 8 0.522 0.755 Yes 

RGLA 0.664 0.014 2 0.627 0.698 Yes 

OPOE 0.809 0.022 3 0.775 0.892 Yes 

a Standard deviation. 

b Coefficient of variation. 

c Normality was tested by the W-statistic with a p-value of 0.05. 

including additional groups. Each group corre- 
sponds to one axis in metric state space. To check 

the results of  the principal components method,  the 
maximum likelihood method was also applied, and 
the results were compared.  

It is a common practice to interpret the axes by 
examining the common characteristics of  metrics 
which form a group associated with a given axis, 

and the correlations ( ' loadings')  of  metrics with 
that axis. In an artificial example, suppose that all 
of  the fractal metrics had high loadings on just one 
axis. It would be plausible to interpret the under- 
lying factor associated with that axis as ' fractal  
dimension' .  In general, any such interpretation is at 
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least partly subjective because there is no rigorous 

procedure. 
Recall that some pairs of  the 26 metrics had large, 

but negative, correlations. A factor analysis should 
place those pairs in the same group, but give them 
loadings of  opposite sign. The rationale for retain- 
ing these pairs was that it would help to interpret 
the resulting groups of  metrics. It would have also 
been reasonable to exclude one member  of  each of 
these pairs f rom further analysis. The choice of  
metrics to consider in a factor analysis will affect 

the results, but whether or not some highly-corre- 
lated pairs are retained will make little difference at 
the interpretation stage. The most interesting fea- 
ture of  the analysis will be how pairs of  metrics with 

medium and small correlations will be grouped. 
To help elucidate the underlying factors, it is 

also a common practice to ' ro ta te '  the selected 
axes. Both orthogonal and oblique rotations are 
possible. An orthogonal rotation, such as the vari- 
max rotation, preserves the relative orientation be- 
tween axes, but an oblique rotation does not. In this 
study, both orthogonal  and oblique rotations were 
performed; however, all of  the results are presented 
in terms of  the orthogonal varimax rotation. 

Representative maps were then chosen to illus- 
trate the results of  the factor analysis. These choices 
were based on the factor scores for each map.  For 
a given map and factor, a factor score is calculated 
as the weighted sum of all 26 metrics, where the 
weights are the loadings for that factor. In geo- 
metric terms, the scores are the relative positions of  
different maps along the axis corresponding to a 

given factor. 

Results and discussion 

Simple summary statistics for 26 metrics are shown 
in Table 3. The number  of  attribute classes per map 
varied f rom 17 to 34, the number  of  patches f rom 
190 to 9061, and the average patch size f rom 48 to 
2615 cells. The patch statistics cited here are for 
patches larger than 3 cells. When all patches are 
considered (this case is not shown in Table 3), their 
total number  varied f rom 247 to 16610, and their 
average sizes were smaller. 
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Table 4. Pearson correlation coefficients (n = 85) among the metrics chosen for factor analysis. Absolute values > 0.27 are significant 

at p = 0.01 and are underlined. 

Metric 
number/ 
acronym 

I 
I NTYP - - 2 
2 SHEV 0,24 -- 3 
3 I(T-Q 0.5__I -0.27 -- 4 
4 SHCO -0.16 -0.97 0.29 -- 5 
5 SUMD -0.00 -0.73 0.26 0.8__6 -- 6 
6 TLAC 0.12 0,86 -0.30 -0.82 -0.53 -- 7 
7 P005 -0.19 -0,57 -0.02 0.68 0,78 -0.35 -- 8 
B OCFC -0.14 0.32 -0.23 -0.45 -0.67 0.17 -0,39 -- 9 
9 OCFT D.12 -0,33 0.22 0.46 0.67 -0.19 0.40 -1.00 -- 
10 BI]FT 0.00 0.33 -0.30 -0.24 0.00 0.38 0.24 -0.36 0.37 
11 BETL -0,05 0.25 -0.05 -0.40 -0.67 0.15 -0.54 0.72 -0.73 
12 PMAS 0.08 -0.21 0.15 0.28 0.36 -0.18 0.22 -0.28 0.28 
13 PLAC 0.10 0.14 -0.01 0.02 0.35 0.21 0.39 2_0.43 0.43 
14 NPAT 0.00 0.64 -0.22 -0.78 -0.95 0.48 -0.81 0.57 -0.57 
15 PSIZ -0.23 -0.49 -0.02 0.56 0,63 -0.41 0.52 -0.65 0.68 
16 RGYR -0.24 -0,14 -0.19 0.27 0.51 -0,04 0,60 -0.48 0.50 
17 IEDG -0.35 -0.68 -0.03 0.75 0.74 -0.53 0.67 -0,46 0.48 

%18 PA-I 0.22 0.04 0.18 -0.18 -0.45 -0.12 -0.65 0.51 -0,52 
19 PA-2 -0.10 0.38 /0,39 -0.40 -0.40 0.26 -0,08 0.57 -0.56 
20 NASQ -0.02 -0.32 0.33 0.35 0.39 -0.21 0.19 -0.47 0.46 
21 NFTD -0.14 0.15 -0.17 -0,06 0.16 0.27 0.40 -0.33 0.33 
22 PORO 0.33 0.41 0.09 -0.45 -0.48 0.27 -0.42 0.26 -0.27 
23 DSTA -0.20 -0,16 -0.05 0.30 0.56 0:02 0.64 -0.65 0.66 
24 CCRA 0.09 -0.12 0.30 0.07 -0.04 -0.14 -0.21 -0,06 0.06 - -  
25 RGLA 0.17 -0.12 0.34 0.01 -0,22 -0,22 -0.47 0.22 -0.24 _ _  _ _  
26 OPOE -0.05 _-0.43 0.33 0.47 0.47 -0.34 0.24 -0.36 0.36 

10 
-- 11 

-0.42 -- 12 
"0.03 0.03 -- 13 
0.51 -0.66 0.18 -- 14 

"0.08 0.68 -0.34 -0.44 -- 15 
0.40 -0.59 0.34 0.31 "0.58 -- 16 
0.63 -0,71 0.19 0.68 -0.39 0.74 -- 17 
0.19 -0.52 0.20 0.26 2_0.74 0.74 0.61 -- 18 

-0.72 0.65 -0.06 -0.65 0.50 -0.58 -0.86 -0.52 -" 19 
0.28 0.17 -0.21 0.08 0.19 T0.22 0.20 -0,15 -0.02 -- 20 

-0.22 -0.20 0.20 0.08 -0.24 0.23 -0.02 0.20 -0.18 -0,91 -- 21 
0.62 -0.36 0.05 0.43 -0.14 0.36 0,46 0.23 -0.73 -0.20 0.33 -- 22 
0.00 0.28 -0.24 -0.13 0,39 -0.53 -0.38 -0.52 0.30 0.15 -0.13 -0.19 -- 
0.58 "0.67 0.14 0.61 -0.54 0.63 0.79 0.56 -0.95 -0.29 0.47 0.73 -0.33 

23 
-- 24 

-0.42 0.27 0.14 -0.30 0.19 -0.08 -0.47 -0.16 0.31 -0.79 0.79 0.16 0.06 -0.04 -- 25 
-0.74 0.52 0.07 -0.54 0.34 -0.36 -0.76 -0.36 0.75 -0.56 0.48 -0.37 0.20 -0.52 0.84 -- 26 
-0.35 "0.23 0,15 0.09 -0.38 0.20 0.10 0.28 -0.16 -0.66 0.82 -0.07 -0.16 0.40 0.49 0.36 -- 

Table 5. Results of principal components factor analysis and varimax rotation of the first six factors. 

................... Component number .................... 
1 2 3 4 5 6 

Eigenvalues and cumulative proportion of variance explained 
by principal components analysis 

Eigenvalue 9.863 5.551 3.102 1.886 1.098 0.984 
Cum. variance 37.9 59.3 71.2 78.5 82.7 86.5 

Factor pattern after varimax rotation 

DSTA 
PLAC 
RGYR 
NFTD 
BCFT 
BETL 
RGLA 
PA- 1 
SHCO 
SUMD 

IEDG 
P005 
PORO 
NPAT 
TLAC 
SHEV 
NASQ 
CCRA 
OPOE 
PA- 2 
OCFT 
PSIZ 
OCFC 
NTYP 
KT-Q 
PMAS 

0.883 
0 814 
0 806 
0 706 
0 681 

-0 673 
-0 697 
-0 935 
0 035 
0 402 
0 360 
0 595 

-0 171 
-0 483 
0 296 
0 133 
0 182 

-0 287 
0 155 
0 046 
0 456 
0 401 

-0 452 
-0 064 
-0 140 
0 066 

0.201 0.271 
0 008 -0.097 
0 303 -0.255 

-0 216 0.252 
-0 292 -0.348 
-0 385 0.032 

-0 071 0.655 
-0 135 0.019 
0 955 0.183 
0 815 0.164 
0 752 -0.015 
0 658 -0.009 

-0 467 -0.027 
-0 790 -0.007 
-0 832 -0.107 
-0 933 -0.185 
0 170 0.958 

-0 114 0.903 
0 410 0.739 

-0 185 -0.883 
0 313 0.257 
0 507 0.005 

-0 304 -0.266 
-0 218 -0.006 
0 229 0.317 
0 199 0.106 

0.217 -0.161 
0.015 0.253 
0.196 -0.160 
0.176 -0.316 
0.408 -0.141 

-0.401 -0.191 
-0.114 0.134 
-0.143 0.201 
0.128 0.013 
0.179 0.182 
0.220 -0.278 

-0.097 -0.083 
-0.150 0.403 
-0.054 -0.223 
-0.104 0.006 
-0.i00 0.075 
0.i01 0.027 
0.031 -0.021 

-0.ii0 0.130 
-0.354 -0.112 
0.731 0.205 
0.569 -0.254 

-0.720 -0.229 
0.131 0.845 
0.051 0.684 
0.068 0.120 

0.005 
0.121 
0.104 
0 117 

0 011 
0 221 
0 070 
0 017 
0 062 
0 140 
0 052 
0 i00 

-0 324 
-0 125 
-0 006 
-0 017 

0 033 
0 128 

-0 086 
-0 055 
0 063 
0 237 

-0 062 
0 i00 
0 051 
0.921 

Variance explained by each factor after rotation 
6.626 6.247 4.180 2.178 2.050 1.204 

Communality 
0.97 
0.75 
0.88 
0.75 
0.86 
0.85 
0.96 
0.95 
0.97 
0.94 
0.82 
0.81 
0.54 
0.93 
0.80 
0.94 
0.99 
0.93 
0.77 
0.96 
0.95 
0.86 
0.94 
0.79 
0.65 
0.92 

Sum 22.48 



The correlation coefficients of  all pairs among 26 
metrics are shown in Table 4. The preliminary 
screening of metrics did not eliminate all statistical- 
ly significant correlations; roughly one-half of the 
coefficients exceed the critical value for statistical 
significance (_+ 0.27, p = 0.01). Some metrics 
(e.g., NTYP and KT-Q) have relatively fewer sig- 
nificant correlations with other metrics, while 
others (e.g., OCFT and OCFC) have relatively 
more. The number of significant correlations in 
Table 4 suggests that a multivariate approach to 
data reduction will be productive. 

After factoring the correlation matrix by the 
principal components method, the first six factors 
together explained about 87~ of the variation in 
the 26 landscape metrics (Table 5). A rule-of-thumb 
for retaining factors is that the associated eigen- 
value be greater than one. The first five factors met 
this criterion, and the sixth was retained because it 
appeared to be uniquely and strongly associated 
with just one of the landscape metrics (PMAS). The 
communality estimate for each metric (Table 5) is 
the squared multiple correlation for predicting that 
metric from the six factors; those metrics with low 
communality are associated with relatively more of 
the unexplained variance in the correlation matrix. 

The loadings of each metric on each of  the first 
six factors after orthogonal rotation are shown by 
the factor pattern in Table 5. For example, the 
fourth factor has relatively high loadings for the 
metrics OCFT (0.731) and OCFC (-0.720).  This 
means that in the rotated metric state space, both 
OCFT and OCFC lie near the fourth axis. Further- 
more, because the signs differ, those metrics lie 
near opposite ends of the fourth axis; either metric 
alone would characterize the fourth axis with al- 
most equal utility because their absolute values are 
approximately equal. This is an example of how a 
metric pair with high negative correlation is treated 
by a factor analysis. 

The dimensions were interpreted by examining 
the factor pattern in Table 5. The first axis was 
termed averagepatch compaction because it is most 
correlated with measures of average patch compac- 
tion (PA-1, DSTA, RGYR) and large-patch texture 
(PLAC). The second axis is most correlated with 
measures of whole-map attribute and edge-type fre- 
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quencies (SHCO, SHEV, TLAC, SUMD); overall 
this axis appears to measure image texture. The 
third axis (average patch shape) is most correlated 
with those average patch metrics which employ 
standardization to an assumed patch shape (NASQ, 
CCRA, PA-2). The fourth axis is associated with 
the perimeter-area fractal measures (OCFT and 
OCFC) leading to the name patch perimeter-area 
scaling. The fifth axis is most correlated with the 
number of attribute classes (NTYP) which is a 
convenient label. The sixth axis is correlated only 
with PMAS, a measure of large-patch density-area 
scaling. 

The oblique rotation did not change the orienta- 
tion of any axis by more than 10 ~ (these results are 
not shown), and as a result, the interpretations of 
factors did not change. The maximum likelihood 
method of  factoring did change the order of  the 
first five factors, but not the relative loadings of  
metrics on a given factor (these results are not 
shown), and the sixth axis was not retained. The 
change of  order implied a difference only in the 
relative importance of  the hypothesized factors. 
The loss of the sixth axis was traced to a single (out- 
lier) map which was essentially one large patch; the 
principal components method placed more impor- 
tance on this outlier map than did the maximum 
likelihood method. 

Eight maps which represent extremes along one 
or more of  the first four axes are shown in Figure 
1 (Table 6 gives the associated factor scores). The 
figure provides a visual impression of the types of 
pattern and structure corresponding to the first 
four factors. For example, the maps 'Sterling' and 
'Wilmington' (Case A in Figure 1) are at opposite 
ends of  the first axis (their factor scores have oppo- 
site signs in Table 6) and thus show differences in 
average patch compaction. Cases B, C, and D illus- 
trate differences in image texture, average patch 
shape, and patch perimeter-area scaling, respective- 
ly. The factor scores (Table 6) can be used to select 
additional pairs from these eight maps for other 
visual contrasts; some maps illustrate extremes of 
more than one axis. For example, the map 'Wil- 
mington'  illustrates extremes of  image texture as 
well as average patch compaction. 

It is easier to visualize the ordination of  each map 
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Table 6. F i r s t  f o u r  f a c t o r  s c o r e s  f o r  e i g h t  r e p r e s e n t a t i v e  L U D A  

m a p s .  

F a c t o r  

L U D A  m a p  1 2 3 4 

F a c t o r  s c o r e  

S t e r l i n g  2 .3  0 .3  2 .3  - 0 .7  

W i l m i n g t o n  - 2 .2  - 2 .2  - 1.0 1.8 

M a s o n  C i t y  - 2 .9  2 .2  0 .0  - 1 .0  

R a l e i g h  - 0 .3  - 2.1 1.9 0 .6  

F r e s n o  1.0 - 0 .7  2 . 2  - 0 .8  

J o r d a n  V a l l e y  - 0 . 4  1.0 2 . 4  0 .3  

D e a t h  V a l l e y  1.0 1.3 0 .5  3 .9  

A z t e c  0 .5  0 . 6  - 0 . 9  - 2.1 

in the first four dimensions by using a star symbol 
for each map (Figure 2). The first four factor scores 

are represented by a four-armed star; each arm re- 
presents a different factor, and the arm length is 
proportional to the factor score. Thus, ' f lattop'  

symbols correspond to small scores for factor 2, im- 
plying 'fine' texture (e.g., 'Raleigh' in Figure 1). 
Two maps with similar pattern and structure will 
have similar symbols, meaning that their factor 

scores place them closer together in four-space. 
By interpreting the star symbols according to the 

geographic location of the corresponding USGS 

quadrangle (as shown in Figure 2), larger spatial 
patterns of landscape pattern and structure condi- 
tion can be hypothesized. For example, the fine tex- 
ture maps occur most often in the southeast U.S., 

whereas the western maps more commonly had 
coarse texture. This supports a hypothesis that the 
southeast region has a relatively high degree of  
fragmentation (equivalently, low contagion) of land 
use in comparison to the western region. In another 
example, many of the midwestern maps are charac- 

terized by coarse texture, and linear patches with 
complicated perimeters. These patterns are consis- 
tent with a low fragmentation of  predominantly 
agricultural land uses, and the interspersion of lin- 
ear transportation corridors and meandering rivers 
among otherwise homogeneous landscapes. These 
geographic interpretations of whole-map metrics 
would probably be more robust if the maps had 
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been bounded by natural region boundaries (for 

example, by ecoregion or soil type boundaries) in- 

stead of  by latitude and longitude. Such interpreta- 
tions are also contingent on the data and proce- 
dures used to make the maps - other maps of  these 

same areas may or may not display the same geo- 
graphic trends. 

To simplify the mental model and to facilitate 
comparisons among different sets of maps, it is 
worth considering a choice of  single metrics which 
could be used as surrogates of  the first six factors. 
The use of  six metrics, instead of  55 or even 26 met- 
rics, is a simplification which ignores some poten- 
tial gain of  precision, but at the same time, it avoids 

both the difficulty of interpreting linear combina- 
tions of  many metrics, and the need to calculate 

them all for each map. Again, the choices are some- 
what arbitrary, but a simple rule is to choose the 
single metrics with the highest loading on each fac- 
tor (the criteria could include normality, relative 
coefficient of variation, or other considerations). 
This is reasonable when, as in the present case, 
these loadings are very high for at least one metric 
per factor, and that metric has a high loading for 
only that factor. In Table 5, the six metrics with the 

highest correlations with each of the six factors are 
PA-1 (-0.935),  SHCO (0.955), NASQ (0.958), 

OCFT (0.731), NTYP (0.845), and PMAS (0.921). 
Except for OCFT, the other five of  the six loadings 

for each metric are relatively small, indicating that 
those metrics are uniquely correlated with just one 
factor. 

Conclusion 

Through a multivariate factor analysis, the 55 met- 
rics of  landscape pattern and structure that were cal- 

culated for 85 maps were found to measure six com- 
mon and orthogonal factors or dimensions which 
were called 'average patch compaction, '  ' image tex- 
ture, '  'average patch shape,'  'patch perimeter-area 
scaling,' ' the number of  attribute classes,' and 
'large patch density-area scaling.'. The importance 
of the sixth factor was questioned because it served 
only to identify a single map, apparently an outlier, 
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SCALING 

AVERAGE 
PATCH 
SHAPE 

MEANING OF: 

FACTOR M I N I M U M  MAXIMUM 
VALUE VALUE 

A COMPACT NOT COMPACT 
PATCHES PATCHES 

B FINE IMAGE COARSE IMAGE 
TEXTURE TEXTURE 

C LINEAR PLANAR 
PATCHES PATCHES 

D COMPLICATED SIMPLE 
PERIMETERS PERIMETERS 

Fig. 2. The first four factor scores for each LUDA map are represented by a 'star'  symbol. Each arm of the star represents a different 

factor, and the length of an arm is proportional to the factor score for that map. The maps which are shown in Figure 1 are labeled 

here for comparison. See text for additional explanation. 

and because a statistical technique which is more 
resistant to outliers did not identify this sixth factor 
as important .  The factor pattern suggested that the 

first five factors may be adequately represented by 
five univariate metrics: average patch perimeter- 
area ratio (PA-1), Shannon contagion (SHCO), 
average patch area normalized to the area of  a 
square with the same perimeter (NASQ), patch 
perimeter-area scaling (OCFT), and the number  of  
attribute classes (NTYP). 

It is probable that other dimensions could be 
identified by considering maps of different scales 
(number of  attribute classes, map grain size, map 
extent), or by considering additional metrics which 
are not strongly correlated with those studied here, 

or by considering a different set of  maps.  These 
possibilities emphasize the role of  factor analysis as 
a descriptive tool. It would be incorrect to infer that 
a single factor analysis has identified all important  
dimensions of  landscape pattern that could be 
found. But, if the same sets of  landscape metrics are 
found through experience in many situations, then 
our confidence in using these results will be greater. 

There are other reasons for further research. One 
question which a factor analysis cannot answer is 
the relevance of any particular metric to a land use 
analyst. For example, while a factor analysis can 
show which metrics appear to measure image tex- 
ture or contagion, it cannot indicate whether or not 
contagion is worth measuring at all. The answer to 



that question depends upon the goal of the analysis. 
Another important but unanswered question for 
landscape monitoring is the relative sensitivity of 
similar metrics to real land use changes over time. 
For example, given that a change in average patch 
shape has occurred, it would be nice to know which 
of the several metrics of patch shape are most likely 
to change as a result. Finally, the statistical and 
sampling details of most landscape metrics need to 
be better-known if the metrics are to be used effec- 
tively for environmental monitoring. 
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Appendix: Computing formulas for landscape 
metrics 

Note: Useful review articles include Magurran 
(1988) for measures of attribute diversity and even- 
ness, Milne (1991) for the application of  many frac- 
tal measures to landscape analysis, and Musick and 
Grover (1991) for a discussion of image textural 

measures. Gonzales and Woods (1992) provide an 
introduction and overview of many metrics from 
the perspective of classical image analysis. Most of 
the metrics in this Appendix are from peer-reviewed 

literature, citations are intended to show where 
computing formulas are readily accessible. Original 
citations are given for only the relatively uncom- 

mon or new metrics. For yet other metrics, we can 
only provide a short description and manuscript 
title in this space. 

PMAX: The maximum attribute class proportion. 

where P M A X  = s u p { p i  } 

F, 
Pi - ~ !  

t=l Fi 

KT-Q: Kempton-Taylor Q statistic, the inter-quar- 
tile slope of the cumulative attribute abundance 
curve (e.g. ,  Magurran 1988). 

I'IR1 RR2 . 
+ ~  -e E R2-1 n R 

2 --R =R1 + 1 
K T - Q  = 

R 2  ln(~-]) 

where n R = the number of  attribute classes with 
abundance R ,  R1  and R 2  are the 25 th and 
75 th quartiles (see below), 

nRl = F i in the attribute class where R1  

falls, 

nR2 = F i in the attribute class where R 2  

falls. 

The quartiles are chosen such that 

and 

•RI-1 t R1 
n=l  nR < 4 <- ~'R=I nR 

•R2-1 3 t R2 nR 
R=I nR < 4- -< E n = l  

SIDI: Simpson diversity of attribute classes. 

S I D I  = 1 - ~ t  p2 
i=1 

SIEV: Simpson evenness of attribute classes, claljf 

S I E V -  S I D I  

1 _1_ 
t 

SHDI: Shannon diversity of attribute classes. 

S H D I  = - E(  ,= 1 (Pi tn(Pd) 

where  In denotes the base of the natural logarithms. 

SHEV: Shannon evenness of attribute classes. 

S H D I  
S H E V  - 

In(t) 

MCDI: McIntosh diversity of attribute classes 
(Magurran 1988). 

N - - ~  1 F2 
M C D I  = = 

N -  . f N  
where 

N =  E( t=l Fi 

MCEV: McIntosh evenness of  attribute classes. 

M C E V  = 
N - - ~ ] f  = 1 F/2 

N 
N - - -  

~t 

SUMD: Sum of diagonal elements of the adjacency 
matrix, A. 1 

l Wickham, J.D. and Riitters, K.H., Sensitivity of landscape 
metrics to pixel size. Unpublished manuscript. 



where 
S U M D  = ~,! l = 1 Vii 

A 6 
vii = Gt E t  

i=1 j = l  A i j  

SIItO: Simpson homogeneity of adjacency ma- 
trix 2. 

S I H O  = 1 -  ~,! ~ (  v 2 
l = l  j = l  

The complement of SIHO is sometimes called the 
angular second moment (e .g . ,  Musick and Grover 
1991). 
SICO: Simpson contagion 2. 

S I C O  = 1 S I H O  
1 

1 - -  - -  

t 2 

SICO is the complement of the Simpson evenness 
of the adjacency matrix. 
SIIHO: Shannon homogeneity of the adjacency 
matrix. 

S H H O  = - ~ t  ~ t  i= 1 j = 1 vij ln(vij)) 

S H C O :  Shannon contagion (O'Neill et  al. 1988; Li 
and Reynolds 1993). 

S H C O  = 1 
S H H O  
2 ln(t) 

SHCO is the complement of the Shannon evenness 
of the adjacency matrix. 
P S I Z :  Average patch area (number of cells). 

1 HI 
P S I Z  = ~ ~ k = l  Sk 

OEDG: Average number of edges enclosing a patch 
('outside edges'). 

1 m 
O E D G  = ~ E k = l  O E k  

O P E R :  Average number of pixels enclosing a patch 
('outside pixels'). 

2 Riitters, K.H., O'Neill, R.V., Wickham, J.D. and Jones, K.B. 
A note on contagion metrics for landscape analysis. Unpub- 
lished manuscript. 

35 

1 ~rn O C  k O P E R  = rn k= l 

IEDG: Average number of edges between a patch 
and its inclusions ('inside edges'). 

1 m 
I E D G  = -~  ~ k  = 1 I E k  

TEDG: Average total number of perimeter edges 
(or 'perimeter length') per patch. 

T E D G  = I E D G  + O E D G  

R G Y R :  Average radius of gyration (Pickover 1990). 

R G Y R  = _1 ~,r~= R G  k 
m 1 

where, given patch centroid CTk ,  the radius of gy- 
ration (RG) of patch k is: 

R G  k = ~ S k = l  d2o 

and d b is the distance from cell b to C T  k. 

LOAX: Average length of long axis. 

1 ~ m  L A  k L O A X  = m k= l 

P A - I :  Average perimeter-area ratio. 

1 rn O E k  
P A - 1  = ~ -~k= l  S k 

P A - 2 :  Average adjusted perimeter-area ratio (Baker 
and Cai 1992). 

O E  k 1 m 0.282 - -  P A - 2  = ~- ~2k= 1 .jSk 

NASQ: Average normalized area, square model. 

1 m 16 Sk 
N A S Q  = m ~ k =  l O E  2 

NASQ has a value of zero for linear patches and 
one for square patches, and it is sensitive to patch 
size. 
NACI: Average normalized area, circular model. 

N A C I  = 1 m 47c Sk m :Ok= 1 o 4  

B R R A :  Average bounding rectangle ratio. 
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where 

1 m Sk 
B R R A  = m ~ ' k :  1 X k  

X k = (rmaxk -- rmink ) X (Cmaxk -- Cmink ) 

NFTD: Average topology ratio 3. 

N F T D  = 1 m 
m ~ k = l  2 - 

where 

( O C  k -- OCrnink) 

(OCma~- OCmi%) 

OCmink = 4 S~ 

OCmaxk = (2 Sk) + 2 

PORO: Average ratio of number of inside edges to 
area. 

P O R O  = 1 m IEk  
m ] ~ k : l  S k 

DSTA: Average adjusted area-perimeter ratio 
(Gardner's D-statistic). 

1 m In(4 Sk) 
D S T A  = ~ ~ k =  1 ln (OEk)  

ABRA: Average ratio of area to largest bounding 
rectangle dimension. 

A B R A  = 1 m In(S/c) 
m~k:~ Yk 

where 

gk = Sup(rmax k - rmin k' Cmax k - Cmin k) 

CCRA: Average ratio of area to the area of a cir- 
cumscribing circle (Baker and Cai 1992). 

1 m Sk 
C C R A  = -~  ~ k =  l 

Z A  k 2 

OPOE: Average ratio of perimeter cells to peri- 
meter edges. 

1 rn OCk  
o p o ~  = ~ ~ 1 0 E  k 

3 Riitters, K.H. and O'Neill, R.V., Interpreting dimensions 
from perimeter-area scaling. Unpublished manuscript. 

RGLA: Average ratio of radius of gyration to long 
axis length. 

1 m 2 R G  k 
R G L A  = m ~ k =  l L A  k 

LARA: Average ratio of area to long axis length. 

1 m ln(Sk)  
L A R A  = m ~ k =  1 I n ( L A k )  

P005: Weighted average proportion of cells con- 
tained in patches with area > 5 cells (Jackson's 
contagion5 statistic) 4. 

~mi �9 
PO05 = ~ t  g= l Sg 

i = 1 W i  ~ 7 i l  Sg 

where g subscripts patches, m i is the total number 
of patches of type i, 

and 

S~ = 0 i f S g  < 6 
= Sg otherwise 

F, 
W i -  ~ t  

i=l  Fi 

P050: Weighted average proportion of cells con- 
tained in patches with area > 50 cells. 

where 

P050  = ~t. g= l S~ 
,=l w, z. ,l 

S~ = 0 i f S g  < 51 
= Sg otherwise 

P500: Weighted average proportion of cells con- 
tained in patches with area > 500 cells. 

where 

mi S ;  
P 5 0 0  = ~ !  g = 1 

t=l Wi ~ 7 i l  Sg 

S~ = 0 i f S g  < 501 
= Sg otherwise 

4 O'Neill, R.V., Hunsaker, C.T., Timmins, S.P., Jackson, 
B.L., Riitters, K.H. and Wickham, J.D. Quantifying landscape 
status and trends at the regional scale. Unpublished manuscript. 



OEFC: Fractal estimator of  patch perimeter com- 
plexity from perimeter-area scaling, enclosing edges 
basis (Lovejoy 1982). 

O E F C  = 2 /31  

where/31 is the estimated slope from the regression 
of  ln(OEk) on ln(Sk) for all patches with S k > 3 
that do not touch the border of the map. 
OEFT: Fractal estimator of  patch topology from 
perimeter-area scaling, enclosing edges basis 3. 

1 
O E F T  - 

/31 
OCFC: Fractal estimator of patch perimeter com- 
plexity from perimeter-area scaling, enclosing cells 
basis. 

O C F C  = 2 / 3 2  

where/32 is the estimated slope from the regression 
of ln(OC k on ln(Sk) for all patches with S k > 3 that 
do not touch the border of the map. 
OCFT: Fractal estimator of patch topology from 
perimeter-area scaling, enclosing cells basis, 

OIFC: Fractal estimator of patch perimeter com- 
plexity from perimeter-area scaling, all edges basis. 

1 
O C F T  - 

/32 

O I F C  = 2 /33  

where 83 is the estimated slope from the regression 
of ln(OE k + IEk) on ln(Sk) for all patches with 
S k > 3 that do not touch the border of the map. 
OIFT: Fractal estimator of  patch topology from 
perimeter-area scaling, all edges basis. 

1 
O I F T  - 

/33 
ABFT: Fractal estimator of patch topology from 
area-bounding rectangle scaling. 

A B F T  = /34 

where/34 is the estimated slope from the regression 
of  ln(Sk) on 
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for all patches with S k > 3 that do not touch the 
border of  the map. 
BCFT: Fractal estimator of  patch topology from 
area-bounding circle scaling. 

B C F T  = 35 

where/35 is the estimated slope from the regression 
of ln(Sk) on ln(LAk/2) for all patches with S k > 3 
that do not touch the border of the map. 
BETL: Fractal estimator of  perimeter complexity 
from the scaling of Euclidean distance to actual dis- 
tance along patch perimeters (Weins and Milne 
1989). 

B E T L  = 1 ~ u  1 
u v = 1 /36v 

where /36v is the estimated slope from the v-th 
regression (v = 1 . . .  u patches with area > 400) 
of In(Euclidean perimeter distance) on In(actual) 
perimeter distance). Riitters 5 describes the proce- 
dures as follows. For each patch meeting the mini- 
mum size constraint, the average Euclidean dis- 
tance (y) along the perimeter was found for actual 
distances (x) of  4, 8, 16, 32, 64, 128, and 512 cells. 
The portions of patch perimeters that touched the 
map border were excluded. 
PENT: Fractal estimator of patch configurational 
entropy from the scaling of patch density to the size 
of a neighborhood of  an arbitrary cell in the patch 
(Vos 1988). 

Let Z f ( L )  be the probability, for an arbitrary cell 
in a patch, of f ind ingfo ther  cells of the same patch 
within a square of side length L centered on the ar- 
bitrary cell. For example, Z2(5 ) is the probability 
of  finding two more cells of a patch in a 5 • 5 
square centered on an arbitrary cell in the patch. In 
general, 

sI, L 
Zj(L)- 

where the numerator is the number of  cells for 
w h ich fw as  realized for length L, and the denomi- 
nator is the number of cells sampled. 

Let N ( L )  be the maximum number of  ceils of  the 
same patch observed in any square of  size L Define 

5 Riitters, K.H. Fractal dimensions from partial perimters. Un- 
ln(max(rmaxk -- /'min k' Cmax k -- Cmink)) published manuscript. 
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M ~ (L) = ~;__(L)ln(f) zz(L) 

From each patch with size > 400 cells, a random 
sample of  at least 400 cells was selected. Square 
neighborhoods of size L = 5, 15, 25, 35, and 45 
were placed around each sample cell, and the occur- 
rences of cells of the same patch were counted for 
each neighborhood size. The values of Z f ( L )  and 
M~ were calculated after the counts are accumu- 
lated for all sampled cells. Let t37v be the estimated 
slope from the regression of M~ on ln(L) for the 
v-th patch. The fractal estimator is given by: 

1 Eu ~7v P E N T  = u v = 1 

P M A S :  Fractal estimator of patch mass from the 
scaling of patch density to the size of a neighbor- 
hood of  an arbitrary cell in the patch (Voss 1988). 

Define 

MI(L) = ~,;(=L1) f Z f ( L  ) 

Let r be the estimated slope from the regression 
of ln(MI(L) for the v-th patch. The fractal estima- 

tor is: 

1 ~ u  
P M A S  = u v = l  t38v 

P V A R :  Fractal estimator of patch variance from the 
scaling of patch density to the size of a neighbor- 
hood of an arbitrary cell in the patch (Voss 1988). 

Define 

M2(L) = ~ , ; ( L ) f 2  z (L) 

Let ~9v be the estimated slope from the regression 
of ln(MZ(L)) on In(L) for the v-th patch. The frac- 

tal estimator is: 

1 EU ~9v P V A R  = u v = 1 

P L A C :  Average large-patch lacunarity. (Note: this 
simple estimator of lacunarity is approximate at 
best, and it is different from the estimator described 
by Plotnik e t  al. [1993]). 

P L A C  = P V A R  - P E N T  

TENT: Average fractal estimator of attribute class 

configurational entropy from the scaling of  attri- 
bute class density to the size of a neighborhood of 
an arbitrary cell in the class. 

This development follows that presented for 
PENT,  except the metric applies to attribute classes 
rather than to patches. Let Qf(L) be the probabili- 
ty, for an arbitrary cell in an attribute class, of find- 
i n g f o t h e r  cells of the same class within a square of 
side length L centered on the arbitrary cell. In gen- 

eral, 
sz, L 

O f ( L ) -  Fi  

where the numerator is the number of cells for 
wh ich fwas  realized for length L, and the denomi- 
nator is the number od cells sampled. 

Let N ( L )  be the maximum number of  cells of the 
same class observed in any square of size L. Define 

M0(L) = Qs(L) 

From each attribute class with > 400 cells, a random 
sample of at least 400 cells was selected. Square 
neighborhoods of  size L = 5, 15, 25, 35, and 45 
were placed around each sampled cell, and the oc- 
currence of cells of  the same class were counted for 
each neighborhood size. The values of Qf(L) and 
M~ were calculated after the counts are accumu- 
lated for all sampled cells. Let ~10i be the estimated 
slope from the regression of M~ on ln(L) for the 
i-th attribute class. The fractal estimator is: 

T E N T  = ~ t  i= 1 Wi ~10i 

TMAS:  Fractal estimator of  attribute class mass 
from the scaling of attribute class density to the size 
of a neighborhood of an arbitrary cell in the class. 

Define 

MI(L) = Qs(L) 

Let ~lli be the estimated slope from the regression 
of ln(MI(L)) on ln(L) for the i-th attribute class. 
The fractal estimator is: 

T M A S  = E( wi /~11i l=l 

T V A R :  Fractal estimator of attribute class variance 



from the scaling of attribute class density to the size 
of a neighborhood of an arbitrary cell in the class. 

Define 

M2(L) = ~_N(L)f= l f 2  Q f ( L )  

Let/~12i be the estimated slope from the regression 
of ln(MZ(L)) on ln(L) for the i-th attribute class. 

The fractal estimator is: 

T V A R  = F,! wi /~12i t = l  

TLAC: Average attribute class lacunarity. 

T L A C  = T V A R -  T E N T  
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