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Abstract. We propose that magnetic flux loops in the subphotospheric layers of the Sun are seriously 
asymmetrical as a consequence of the drag force exerted on them because of the different rotational rate 
of the surrounding plasma. In numerical models of stationary slender flux loops in the plane parallel 
approximation we show that a serious tilt is both possible and probable. Observational facts (see van 
Driel-Gesztelyi and Petrovay, 1989; Paper I) strongly support the case for high asymmetry. The different 
stability ofp and f spots may also be related to such an asymmetry. 

The tilts are very sensitive to the rotational profile and to the magnetic field structure. Nevertheless the 
characteristic maximal tilts can be tentatively estimated to be 20 ~ for thin flux tubes and 5 ~ for thick tubes. 

For two of the five observational consequences of such a tilt (described in detail in Paper I) order-of- 
magnitude estimates of the effects are given. The estimates are in reasonable accord with observations. 

We also explore the possibilities of an inverse treatment of the problem whereby subphotospheric rotation 
and/or flux tube shapes can be inferred from observations of velocities of photospheric spot motions. In 
particular we demonstrate how analytic inverse solutions can be obtained in special cases. 

1. Introduction 

Available observational data seem to show that the average rotational rate of young 
sunspot groups is about 5 ~o (100 m s - l) faster than the rotational rate of nonmagnetic 
plasma from spectral Doppler measurements (see the detailed account and references 
of Paper I). This means that the v(z) average relative rotational velocity of the sur- 
rounding plasma and the flux loops forming the spots does not identically vanish (z 
is the depth measured from photosphere; so v(0)~ 0). Any flux loop in the solar 
convective zone must be distorted to some degree by the drag force arising because of 
this horizontal flow. This effect was already mentioned by Foukal (1977) who also 
estimated its order of magnitude in the special case of a stationary tube artificially 
anchored at a great depth, and found the distortion to be negligible (as in this case the 
Fd drag force must counteract both the Fm magnetic curvature force and the component 
F b of the buoyancy perpendicular to the tube). 

In this paper we estimate the significance of such a distortion for the quite different 
case of loop geometry. In line with the currently most widely held 'buoyant loop picture' 
of active region formation, we are going to neglect convective motions. In this picture, 
which is at present the only more or less coherent and quantitatively elaborated 
explanation of the basic mechanism of solar activity, the driving force of kink instability 
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is buoyancy: convective motions have only a secondary role. Supposing that the relative 
position of the loops and the convective cells is random, the convective drag will cause 
only a scatter in active region properties, not influencing the averages. (For the general 
features of, and the considerations underlying this 'buoyant loop picture' we refer to the 
fundamental paper by Moreno-Insertis, 1986.) 

Unfortunately, the estimate in the case of loop geometry is not so simple as in the 
case examined by Foukal (1977), as in a loop F b alaways acts against F m (Figure 1), so 
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Fig. 1. Forces acting on a stationary flux loop in the convective zone. (Plane parallel geometry; in a 
reference frame where the horizontal velocity of the loop is zero.) 

in a stationary state the absolute value of the F d drag force should be equal to the difference 
and not the sum of IFb] and I Fml. 

This means that the real significance of the distorting effect of different surrounding 

rotation rate on flux loops can only be appreciated by building detailed models of 
buoyant flux tubes in a horizontally shearing environment. On the other hand, this effect 
means that emergent flux tubes carry important information on subphotospheric rotation 
and flux tube dynamics. 

The simplest possible models describing flux loops are those with plane parallel 
geometry and in a stationary state, i.e., F b +Fm + Fd = 0. (Such a state, although not 
realistic, is in principle always possible for a flux tube rooted in the top of the radiative 
zone, see, e.g., van BaUegooijen, 1982.) In Section 2 of this paper we present such static 
models for several different types of vertical differential rotation profiles and of magnetic 
field structure. The results are highly sensitive to the chosen velocity profiles and field 
structures: in some cases the tik is small, in other, perhaps more realistic, cases the tilt 
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is several degrees or for thin tubes even more; in extreme cases the asymmetry of thin 
tubes can be as high as 50 ~ . So from the theoretical point of view the significant 
asymmetry of a loop is quite possible. 

The order of magnitude of the observable consequences of the asymmetry, described 
in Paper I, is estimated in Section 3. As discussed in Paper I, five major effects are 
expected, all of them being confirmed observationaUy. In cases where an order of 
magnitude estimate of the expected effect is possible, this estimate is consistent with the 
observed values, thus lending support to the high tilts obtained in our theoretical models. 

In Section 4, we examine the problem from the quite different viewpoint by exploring 
what could be learned inferentially about subphotospheric radial differential rotation 
and loop dynamics from observations of photospheric motions of loop emergence 
points. In general this inverse problem is complicated, with loop formation and 
dynamics and solar radial differential rotation all entering as unknows. We restrict 
ourselves here to showing how the differential rotation function could be inferred for 
specific assumptions about the other unknowns. However, this suffices to illustrate how 
a future combined study of inferential loop kinematics and deductive loop dynamics 
could provide a valuable new tool for subphotospheric studies. 

2. The Models 

Let us take a plane parallel stratification where every physical quantity depends on the 
z depth only; z = 0 in the photosphere. In our reference frame the horizontal velocity 
of the loop is zero. We are going to use the slender flux tube (SFT) approximation (see, 
e.g., Parker, 1979). For a stationary tube model the relevant forces per unit volume are: 

d (B2(Z)~sin 0 
Fb= -~zz \ 8~ ] , 

(1) 

B2(z) d sin 0 
F., , (2) 

41t dz 

2 •  

T~1/2 
Fa= + p(z)v2(z)cos20= -b Cd p(z) l)2(Z)COS20 B1/2(Z) 

--  --  2 ~ / 2  
(3) 

with p(z) the density, B(z) the field strength, v(z) the horizontal velocity (relative to the 
tube !), a the tube radius, 4~ = Brca 2 the magnetic flux, C d the drag coefficient, and 0 the 
angle of the tube with the vertical (see van Ballegooijen, 1982, for details). The equation 
to be solved is 

rb + Fm + Fd = o, (4) 

or with q = sin 0: 

d q _  1 dB 
q _[_ 27./.3/2 CdP(Z)l)2(Z)~)- 1/2B(z)- 3/2(1 -- q 2 ) ,  (5 )  

dz B dz 
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the + sign belonging to the preceding, the - to the following half of the loop (as we 
know from observations that in the photosphere, and consequently also in a certain layer 
under it, the spots rotate about 100 m s-1 faster than their surroundings, i.e., the 

direction of F a is that seen in Figure 1). 
p(z) can be taken from mixing-length theories; a good approximation is the one used 

by Meyer et al. (1979): 

p[g cm-3]  = (0.00129 + 0.0022z/103 km) a'25 . (6) 

According to Parker (1979) the C a drag coefficient is of order unity. Inasmuch as the 
thicker tubes consist of a loose bundle of thin ones, the effective cross-section of the 
tube will be higher and Ca is also higher: this possibility is taken into account in some 
of the models. 

The ~ flux is about 1018 Mx for thin tubes and of order 1022 Mx for all of the active 
region; we will use 1021 Mx for a moderate spot. 

According to nonlinear MHD simulations of loop formation (Moreno-Insertis, 1986; 
Fisher, Chou, and McClymont, 1988), in the bulk of the convective zone B(z) is 
determined by the adiabatic change of state of the plasma contained in the loop. In the 
upper 10~o or so of the convective zone the adiabatic field strength would decrease 
under the equipartition value defined by 

Be 2 1 2 
= ~ pv c (7) 

with v c the convective velocity. In these heights the work done by turbulent motions on 
the tube cannot be neglected any more (it is in this layer that the loop fragments into 
thinner ones), and this 'turbulent pumping' will keep B(z) near the equipartition value 

(except at the uppermost 1-2 Mm, where convective collapse sets in, strengthening the 
field). Such a B(z) can be approximated crudely by a simple quadratic model used by 
Meyer et al. (1979): 

B(z) = Bo[1 + (z/10 Mm) 2] (8) 

with B o = 1500 G. Here the parameters are chosen so that the equipartition field 
strength is approximately reproduced at depths of 10-20 Mm. 

As a comparison we also investigated the case examined by van Ballegooijen (1982) 
where B(z) is adiabatic throughout (therefore it must be much stronger than the 
quadratic approximation). This case is highly unrealistic, but it may give us an 
impression of the sensitivity of the results to B(z). 

Recent oscillation measurements show that at low heliographic latitudes the plasma 
rotational velocity is almost constant with depth, so the surface value of v(z) of 
100 m s - 1 will be kept high also in deeper, denser layers. Nevertheless here we are going 
to examine a more moderate case where v(z) linearly decreases to zero at a depth of 
25 Mm: 

v(z) = 4 x 102 cm s-  1 (z - 25) (9) 
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with z in megameters (1 Mm = 1000 km). In this way we get a lower estimate for the 
asymmetry, but for the sake of  interest we also investigate the case v(z) = 104 cm s -  1. 

So our 'representative' (but lower estimate) model will be the quadratic tube model 
with a linear v(z). The depth of maximal rotational velocity in Equation (9) was taken 
to be 25 Mm, and we supposed that the tubes preserve their individuality down to this 

layer (i.e., the fragmentation penetrates as deep as this layer). 

Equation (5) was integrated with the Euler-Cauchy method; the step in z was chosen 

to be H(z)/20 with H(z)  the local pressure scale height. Some of the results are presented 

on Figures 2(a)-(c). 
In the model with quadratic B(z) and linear v(z) the 1018 Mx thin flux tubes show a 

tilt of 20 ~ 1021 Mx spots with a conventional treatment of the drag (i.e., C a = 1) show 

only very small asymmetry: however, taking into account the enhanced drag arising from 

the 'flower bundle' character of the tube with C a = 10 the tilt is crudely 5 ~ 
(Figures 2(a)-(c)). 

How does the alteration of B(z) and v(z) affect these results? In the case of the same 

thin and thick tube models, but with adiabatic B(z) the strong downward growth of the 
field causes a more than ten times decrease of the tilt. For again the same tubes but now 

in a v(z) = const, velocity field the tilt is several times higher than in Figures (2(a) and 
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Fig. 2a-c. Models of stationary slender flux loops distorted by a horizontal flow, for different values of 
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2(c) because the v(z) velocity difference between the tube and its surroundings is kept 
high, even in deeper, denser layers. This shows that dropping the assumption gO/Or < 0 
in the upper convective zone will only increase the asymmetry. 

We can summarize the results as follows. The thin tubes always show a much higher 
asymmetry than thick ones. The quantity 

Gp.f = ln ( d sin Op'f ) 2 
dz  ] (10) 

characterizing the curvature is different for the two halves of the loop (in general 
@ >  @). The maximal tilt for 10 is Mx tubes is always higher than 1 ~ in extreme cases 
reaching 60 ~ ; the maximal tilt of 1021 Mx tubes (with C a = 10) is between 0.2 ~ and 10 ~ 
Although we think that the most realistic values are 20 ~ and 5 ~ for thin and thick tubes, 
respectively, practically any value in the above regimes is possible. So while a serious 
asymmetry of the loops turns out to be both possible and probable, this large asymmetry 
cannot be firmly established on purely theoretical grounds, because of the uncertainty 
of the parameters involved. 

3. Estimates for the Observational Consequences 

The question naturally arises whether we can decide between symmetry and asymmetry 
and perhaps quantify the asymmetry with the help of observations (and hence constrain 
the parameters arising in our theory). For a loop to be observed, it must first rise to the 
photosphere, so for quantitative predictions dynamical models would be needed instead 
of the stationary ones of Section 2. As, however, the value of the maximal tilt can hardly 
be seriously affected by the emergence, qualitative arguments can also be of much help. 
As described in detail in Paper I, at the emergence of an asymmetrical loop five major 
observational effects are expected: 

(a) Although in the layers at and just above the photosphere the tubes are practically 
vertical because of the high buoyancy, some slight tilt can be preserved even in these 
layers, especially in the plage field between the spots. It is unfortunately not possible 
to give a quantitative estimate for this photospheric tilt; in any case the 0.8 ~ tilt observed 
by Howard (1974) seems reasonable. The low observed tilts confirm that the tubes are 
strongly buoyant (i.e., evacuated) at the photosphere (which was already suspected from 
semi-empirical flux tube models). 

(b) Thin flux tubes are much more tilted than thick ones, so the plage field consisting 
&thin tubes must be asymmetrical compared to the main loop (which causes the spots). 
As a result of this the magnetic inversion line will be, on average, nearer to the f-spot 
than the p (Figure 3). The expected value of the asymmetry parameter 

A P -  Xp (11) 
xp+x+ 

can be calculated by integrating tan (0p - Of) from z : z o (say, 20 Mm) to z = 0 for both 
thick and thin tubes, and then taking the difference, dividing it with (Xp + Xf) and adding 
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Geometry of the spot and plage fields in a bipolar sunspot group with a high subsurface 
asymmetry (a, side-view; b, top-view). 

0.5. A simple estimate yields 

20 Mm tan 20 ~ - 20 Mm tan 3 ~ 
+ 0.5 -- 0.56 (12) 

100 Mm 

(102 Mm is the typical size of a bipolar spot group.) This is in agreement with the 
observed value of 0.57 + 0.01 (Paper I). Of course a different combination of the 
parameters might also give the right result. 

(c) The asymmetry will also influence the proper motions of the spots. This influence 
is schematically shown in Figure 4; if for the sake of simplicity we regard the tubes to 
be always straight and account for the high buoyancy in the upper layer by 'breaking' 
them to be vertical at z ~ 1-2 Mm depth, then in a time At ,  while both halves rise by 
VeAt = - A z  (with Ve the emergence velocity), the different tilts will cause a higher 
horizontal displacement of the p-tube than of the f-tube. The apparent expansion 
velocity of the group is 

t)p + Vf= Ve(tanO p + tan0f).  (13) 

The apparent rotational velocity (relative to the real one) is 

Vp - v f  = v e (tan Op - tan O f ) .  (14) 

Dividing the two: 

vp - v f  _ tan0p - tan0f (15) 

Vp + Vf t a n  Op + t a n  Of 
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The influence of asymmetry of the flux tube on sunspot motions: the p-spot  seems to move faster 
westward than the f -spot  eastward, so the group seems to rotate faster than its real rotation rate. 

In the layer where the difference Op- 0s--5 ~ for a thick tube, Of_~ 25 ~ (Figure 
2(c)), so (Vp - vf)/(Vp + vf) ,~ 0.12. The observed value is typically 0.5 (Vp ~ 0.3 km s - i, 
v f~  - 0.1 km s -  1 at the beginning of the sunspot group development, see references in 
Paper I); the agreement is reasonably good for such a crude estimate. 

(d) The dependence of the tilt on the �9 magnetic flux should lead to a dependence 
of the apparent rotational rate of sunspots on their sizes. This effect is also known from 
observations (cf. Paper I). 

(e) The higher curvature of the f-branches of the loops, illustrated on the top right 
diagrams of Figures 2(a)-(c), will cause a higher vulnerability of the f-tubes against 
fluting instability (magnetic exchange instability). This instability is caused by the 
inhomogenity of the Fm curvature force. From Equations (2) and (10) 

dF,,, B 2 B 2 

dRp,f 47rR2p,f 4re 
exp [Gp,f] (16) 

and this is generally larger for the f-tubes (Figure 2, top right). So we can expect the 
following half of a loop to be more liable to fragment into thin tubes; thick tubes should 
be less frequent and shorter-lived in the following polarities of active regions. A similar, 
but not identical explanation was suggested earlier by Meyer, Schmidt, and Weiss 
(1977). The order of magnitude of this effect is, however, very difficult to estimate. 

4. The Inverse Problem 

Here we consider the loop shape/emergence problem from a different (kinematic) 
viewpoint, namely through the inverse problem approach of asking what we can learn 
about subphotospheric conditions from observations of the motions of emergent loop 
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footpoints. We have already demonstrated that the tilting of subphotospheric loops by 
radial differential rotation can explain various asymmetric features of emerging spot pair 
motions and that the degree of loop asymmetry depends on the magnetic structure of 
the loop and on the law of radial differential rotation assumed. Though we have thus 
far considered only stationary loop dynamics it is also clear that the time evolution of 
the position of the loop emergence points will depend on the vertical velocity of the 
emergent loop. It is at once evident therefore that, in the inverse problem, it is not in 
general possible to determine three unknown functions of subphotospheric depth 
(characterizing respectively loop structure, loop rise speed, and solar radial differential 
rotation) from observations of two emergent spot positions as functions of time, without 
input of assumptions, or theory. However, it may in principle be possible to utilize the 
spot motions to infer constraints on combinations of these unknown subphotspheric 
functions which, when combined with the constraints of dynamics, allow estimates of 
all of them. Exploration of this possibility is one of our long-term goals. (If achieved, 
the inference of the subphotospheric rotation law near the top of the convection zone 
would be of particular value in complementing inferences from helioseismology data.) 
For the moment we content ourselves with illustrating what would be achieved in an 
idealized situation, recognizing that there remain many uncertainties in the problem to 
be solved before realistic inversion could be practicable. 

Suppose we consider an element of a thin flux tube located at time t at depth z below 
the photosphere and at horizontal position y relative to a system of axes following the 
Carrington rotation. Next suppose that the horizontal drift speed imparted to the 
element by the radial differential rotation is V, that the buoyant vertical rise speed of 
the element is U and that both V and U are functions only of depth z. (In reality these 
will depend also on the magnetic structure of the tube and its evolution. Further, we 
emphasize that V is not equal to v(r) (equivalent to the local solar rotation speed O (r)r) 
but is related to it by the physics of the tube dynamics in the flow, as discussed further 
in a later paper.) Then the trajectory of the tube element will be described by 

dz dy 
- -  = - U ( z ) ,  - V ( z ) ,  (17) 
dt dt 

from which it follows that 

dy V(~) 
dz U(z) 

(18) 

where y = Y(Yo, Zo, t) and z = z(y o, z o, t), suffix 0 denoting positions at t = 0. The 
location of the element at time t is then defined by 

z(t) 

f V(z') y(z(t), Yo, Zo) = Yo - U(z') 
aO 

dz' (19) 
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and z(t) is the solution of 

Zo 

t(z, Zo) = f dz' 
U(z')  

z 

(20) 

We now restrict ourselves further, for simplicity, to the simplest special case of constant 
vertical rise speed U = Uo for which (20) gives 

z = z o - Uot (21) 

and becomes 

z o - U o t  

y = y o  - (22) 
2" 0 

(See Appendix for generalization of the treatment of this section to linear and quadratic 
v(z).) If the shape of the tube (locus of all tube elements) at time t = 0 is described by 

Yo = fo(Zo), (23) 

then it follows that the tube shape at time t is described by 

y + - -  

z + O o t  

V(z')  dz' =fo(Z + Uot), (24) 

which can be used to compute the tube shape y = y(z, t) at time t given any U o,fo(zo), 
and V(z). We have computed results from this equation for a variety of values of U o 
and forms offo(Zo) and V(z) and find results showing tube tilting qualitatively similar 
to those found in the previously described dynamical models, as would be expected. 

For the inverse problem approach, we want to consider the evolution of the tube 
emergent points at z = 0. These points y ,  (t) are the solutions of (from (24)) 

uot 

1 ~ V(z')dz' = 
y ,  (t) Uo fo(VoO , (25) 

t /  
0 

from which, with �9 = d/dt, we obtain the solution 

j: , (t) = V(Uot ) + Uof6(Uot ) . (26) 

This may be interpreted as allowing inference of the tube rotation law V(z) (related 
physically to O(r)r) from 

V(z)= t ,  - Uof+(z) (27) 
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for the tube of prescribed initial shape fo, or as yielding the tube shape as a function 
of depth, 

y(z) =To(z) = y .  - Uoo 
0 

where the rotation law V(z) is prescribed. In both cases of course, V(z) is not the actual 
solar rotation speed but the tube drift speed imparted by the action of the solar rotation, 
as governed by the (non-steady) dynamical equations for the tube motion. More 
generally, Equation (26) can be regarded as providing a joint constraint on the unknown 
V(z) andfo(Z) functions based on the assumption of constant vertical rise speed Uo. 
Though this assumption is restrictive, it allows exploration of many of the properties 
of the inverse problem. 

In particular we have performed model calculations, details of which will be presented 
elsewhere (Fletcher, Brown, and van Driel-Gesztelyi, 1990, Paper III), which reveal that 
for any given y .  (t), bounds exist on the permissible values of Vo for solutions to be 
physically acceptable (e.g., V< 0). Likewise (27) has been used to investigate the 
accuracy and frequency needed in spot location measurements in order for numerical 
noise in the computation of y ,  (t) not to swamp the real values of V being sought. To 
generalize the treatment to non-constant U(z) requires either that U(z) be such as to 
allow analytic integration of (20) to obtain Z(z o, t) explicitly (cf. Appendix) or an 
implicit treatment for more general trajectory equations. 

5. Conclusions 

In numerical models of stationary flux loops with the SFT approximation and in plane 
parallel geometry we have shown that a serious tilt of the magnetic flux tubes caused 
by the different rotation rate of nonmagnetic surrounding plasma is both possible and 
probable. As described in Paper I in detail, the observational facts strongly support the 
proposed high asymmetry. Although the maximal tilts are very sensitive to rotational 
profiles and field structures, the characteristic values can be estimated to be 20 ~ for thin 
tubes and 5 ~ for thick ones. 

For two of the five important observational consequences of such a tilt (described in 
Paper I) order of magnitude estimates were given on the basis of stationary models. The 
estimates are in reasonable accordance with observations. 

An analytic, kinematical description of the emergence of an asymmetrical flux loop 
(with some simplifying assumptions) was also presented. In this formulation, the 
analytic inversion of the problem becomes possible, offering the possibility of inferring 
the involved unknown parameters from observations. 

The most severe deficiency of these calculations is obviously their stationary nature 
on the one hand, and their kinematical character on the other. Thus the construction 
of nonstationary dynamical models of emerging flux tubes in a differentially rotating 
environment can be the next logical step to the quantitative investigation of flux loop 
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asymmetry. Combining such models with the inversion method may prove to be a new, 
useful tool for the investigation of solar radial differential rotation. 
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Appendix. Generalization of the Inverse Problem 

In Section 4 we showed how the inverse problem of determining V(z)  from spot motions 
(for a given initial tube shape) could be formulated for a constant U(z). While not 
attempting a complete generalization for arbitrary U(z)  we here show that the analysis 
is not restricted to constant U. In particular for a linear form 

U(z)= Uo(1 + H ) .  (A1) 

Equation (21) becomes 

Zo 

i f  dz' H l n ( }  _ +_ zo/H~ 
t(z, Zo) = Uo 1 + z ' /H Vo + z / H /  

g 

(A2) 

so that (22) is replaced by 

z( t )  = H[(1 + z o / H ) e  -~~ - II 

o r  

Zo(t ) = H[(1 + z / H ) e  v~ - 1]. (A3) 

Then (25) becomes 

y ( z ,  t )  + - -  
Vo 

H [ ( 1  + z / H )  e U O t / H -  1] 

V ( z ' )  dz '  

1 + z ' /H 
-fo[H{(1 + z / H ) e  U~ 1}] 

(A4) 

and the emergent points y ,  (t) = y(0, t) are located at 

y ,  ( t )  - - -  

laI [e V o t l H  1 ] 

* S Uo 
0 

V ( z ' )  dz '  

1 + z ' /H 
- f o [ H ( e  ~~ - 1)]. (A5) 
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Differentiating with respect to time then gives 

p ,  ( t ) -  Uof;[H(e ~~ 1)l e v~ = e c~~ (~ -v[H(ev~ U~ 1)1} , (A6) 

the interpretation of  which is that (analogously to (28)), V(z) may be inferred from 

p ,  (t) according to 

= 1 ) 1  
which reduces to (26) as H ~ oo. 

Analytic generalization is likewise possible for a quadratic approximation instead of  

(A1), for which integral (A2) is also analytic, and for higher orders numerically. 
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