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Abstract. Some theoretical difficulties confronting the current model of the polar magnetic reversal by 
cancellation with the flux remnants of decaying active regions are discussed. It is shown that the flux 
transport equation does not adequately describe the essential physical consequences of the transport of 
large-scale fields, linked to deep subsurface toroids, over distances comparable with the solar radius. The 
possibility that subsurface reconnections may release these fields to form U-loops is discussed but it is shown 
that, in this event, the loops will quickly rise to the surface. Mechanisms whereby the flux may escape 
through the surface are considered. 

1. Introduct ion 

The first observations of the reversal of the Sun's weak polar magnetic fields were 
obtained during cycle 19. At the beginning of the cycle, the polar polarity of a given 
hemisphere corresponded to that of the leader spots of that hemisphere but, in 1957, 
the magnetic polarity of the south pole was observed to reverse and, eighteen months 
later, that of the north also changed. Thus at the start of cycle 20, the polar polarities 
in each hemisphere again corresponded to those of the leader spots. Similar reversals 
also occurred shortly after maximum during cycles 20 and 21. 

Although the polar fields are weak, even at minimum, their reversal seems to 'set the 
stage' for the new cycle. Shortly after reversal, the large-scale field configuration changes 
qualitatively and the first phenomena of the extended cycle (Wilson et al., 1988) appear 
at high latitudes, showing polarity patterns consistent with those expected for sunspot 
pairs of the following cycle and with the (now reversed) polar fields. Thus the polar fields 
appear to be an integral part of the activity cycle and, since poloidal fields are an 
essential component of dynamo models, it is important to understand the part played 
by the polar fields and their reversals. 

The current cycle is building rapidly towards maximum and, in order to complement 
observational studies of the polar polarity reversals, this series of papers will discuss 
existing models of the polar field reversal, explore some of their observational conse -  
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quences, and suggest a new model. In the first paper, we consider the flux cancellation 
model, in which the reversal is due to the preferential equatorward diffusion and 
trans-equatorial cancellation of the remnants of leader flux from decaying active regions 
and the poleward motion of the remaining flux, now with an excess of follower flux, 
which cancels with the existing polar flux. We discuss here some theoretical difficulties 
associated with this model. 

2. The Flux Cancellation Model  

An important feature of the model is the concept that, as the active region fields decay, 
the diffusive effect of the supergranule motions distributes the leader and follower flux 
over a considerable area, and gives rise to the large-scale fields. Because of the initial 
tilt of the sunspot axes (leader equatorward), it is assumed that the regions of leader 
polarity diffuse preferentially towards the equator where they cancel with leader flux 
from the opposite hemisphere. The remaining large-scale regions, among which those 
of follower flux are now in the majority, diffuse polewards, assisted now by a postulated 
poleward meridional flow. There they contribute to the reversal (by cancellation with 
existing flux) and subsequent build-up of new cycle polarity flux there. Leighton (1964) 
first proposed the random walk model, using supergranules as the stepping scales and 
DeVore et al. (1985) described this migration in terms of a diffusion model, with 
diffusivity 300km 2 s -1, augmented by variable meridional poleward flows of 

10 m s - 1. This model has been further developed by Sheeley, Nash, and Wang (1987) 
and has had some success in reproducing some of the patterns of evolution of the 
large-scale field. Furthermore, the correlation-tracking of granules indicates that the 
transport of magnetic flux is well correlated with horizontal photospheric flows. 

Despite these successes, models based on the flux transport equation (DeVore et al., 

1985) are subject to the criticism that they consider only the radial component of the 
magnetic field, treating it as a scalar quantity. Indeed, in Leighton's paper, he defines 
only the 'number surface density, n, of points at which lines of force enter the Sun' and 
derives his fundamental equation, on which his model depends (Equation (12)), in terms 
of n. DeVore, Sheeley, and Boris (1984), in an Appendix, attempt a more detailed 
derivation of an equivalent equation, in which they write both the magnetic and velocity 
fields in terms of an ensemble averaged term and a fluctuating term, i.e., 

B = <B> + ~B, v = <v> + v. (1) 

Thus <B> represents the large-scale magnetic fields and <v> the global rotation and 
meridional circulation. Taking the ensemble average of the induction equation, they 
obtain 

cS<B> 
v • (<v> • <B>)  = V x (<av • aB>).  (2) 

at 

They then consider only the radial component of Equation (2) and obtain 

a <B>,, V ' ( < B > r  <v>,)  = r 'V  • (<~v • ~B>),  (3) 
0t 
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where <B>r is the radial component of the large-scale field and <v>= is the vector 
surface component of the large-scale velocity field. The right-hand side of Equation (3) 
is then evaluated by making the rather surprising assumption that {v> = 0 and this, 
after some algebra, yields their flux transport equation, 

o<B>~ 

~t 
7"(<B>r <V>s) = KVs 2 <B>r. (4) 

Two comments are appropriate here. First the assumption that <v> = 0, which is made 
in order to evaluate the right-hand side of Equation (3), necessarily entails all the 
components of <v> are zero, in particular, the surface component, <v>=. Thus 
Equation (4) reduces to the diffusion equation, 

o <~ >~ _ ~v~ <~ >~, (5) 
Ot 

which is unfortunate if a meridional flow velocity is included in the modelling process. 
Secondly the neglect of all but the radial component of Equation (2) is justified on 

the grounds that the large-scale field is predominantly radial. While this may be true near 
the surface, the neglect of the other components of Equation (2) is justified only if ( B )  
remains predominantly radial over distances along the field lines which are comparable 
with the transverse scale of the field; otherwise the vector nature of the large-scale field 
and, in particular, the effects of curvature, are ignored. 

However, the bipolar magnetic fields which appear at the solar surface in active 
regioins are assumed to arise from the emergence of a loop or stitch of flux, sometimes 
characterized as an 'O-loop', in a postulated sub-surface toroid anchored at the base 
of the convection zone and, in situations where surface flux is transported across 
distances comparable with the solar radius, the assumption that the fieldlines remain 
predominantly radial is open to considerable doubt. 

In such a case, the neglect of the non-radial components of Equation (2) effectively 
treats the surface field elements as if they were 'corks' carried along by an eddying 
stream, ignoring the consequences of the continuity of magnetic field lines, entailed by 
Maxwell's law (7. B -- 0). While the surface fields remain connected to this toroid, a 
more appropriate analogy is with a marine 'buoy' anchored to the bottom of a tidal flow 
by an elastic cord. When the buoyant surface elements of these fields are displaced 
through any significant distance by the drag of the meridional flow, the induced curvature 

of the field lines gives rise to a net transverse component of the magnetic tension which, 
acting on an element of the flux tube, may balance the drag force of the flow. 

The magnitude of this effect may be estimated by considering an element of the flux 
tube of radius r, length bh and field B. Neglecting diffusion and considering only the 
effect of a transverse flow v, the drag force bF is 

6F = Cpv2r6h, (6) 

where p is the plasma density and C is the drag coefficient of order unity. If, as a result 
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of this drag, the element is inclined to the vertical at angle 0 at its upper end and at 0 + 60 
at the lower end, the component of the magnetic tension opposing the drag, 6Tm, is 

bT,,, = ~r2B 2 cos060 .  (7) 

Thus the drag force is balanced when 

~ 0 -  4Cpv26h (8) 

rB 2 cos 0 

For a flux tube with field of order 103 G and of radius ~ 1000 km embedded in a plasma 
of mean density 4 x 10 - 4  gcm -3 with a transverse flow of 10 m s-  l, and taking C as 

unity, a distortion, 60, of only 0.016 in an element of length 10 4 km would be sufficient 
to permit the nett magnetic tension to balance the drag force. Thus it is hard to see how 
meridional flows of order 10 m s - 1 could significantly deform the subsurface flux tubes 
associated with the surface fields, far less transport them either to the polar regions in 
order to contribute to the polar reversals or to take part in trans-equatorial cancellations. 
Furthermore, even if significant deformation occurs, the net transverse component of 
the magnetic tension would increase until it balanced the drag force of the flow, just as 
the anchor rope of a floating buoy is deformed. We conclude that, whatever its success 
in replicating the apparent surface displacements, the flux transport equation does not 
fully describe the physical processes associated with the surface transport of the large- 
scale fields. 

3. Sub-Surface Reconnections 

Nevertheless, the observed surface fields appear to undergo significant displacements 
and it may be that the effects of field line distortion and magnetic tension may be 
overcome by reconnections between adjacent elements of the distorted field. Certainly, 
field line reconnections in the corona were observed by Skylab and are also seen in 
chromospheric He  observations, so there is no reason why they should not occur below 
the surface and thus release the surface fields from the constraints of the deep magnetic 
toroids. 

/ \ 
/ \ 

Fig. 1, The formation of a U-loop by the 'repair' of a sheared O-loop is illustrated. 
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A possible example of reconnection, leading to the formation of a 'U-loop' is 
illustrated in Figure 1, the process being consistent with that proposed by Spruit, Title, 
and van Ballegooijen (1987) which they call the 'repair' of the f2-1oop. However, when 
the U-loop forms, it must necessarily be buoyant since, under isothermal conditions, the 
plasma density in both the base and the sides of the 'U' must be less than the ambient 
density in order to accomodate the magnetic pressure within the 'U'. Thus initially it 
must rise through the region. As it rises, however, plasma drains down the sides to the 
base and, assuming that the plasma cannot cross the field lines, it remains trapped 
within the 'U'. Although the density within the 'U' thereby increases, the dimensions 
of the horizontal section of the tube must expand because, in order to maintain pressure 
balance under isothermal conditions, the density within the tube must remain slightly 
less than that outside (see Wilson, 1989). Thus, the 'U' is always buoyant and must rise 
towards the surface in a configuration which is illustrated in Figure 2(a). 

By analogy with the buoyancy of a bubble of gas, the speed of the rising flux might 
be comparable with the Alfv~n speed and thus the rise time from a depth of (say) 
10 000 km would be of the order of a few weeks, i.e., less than 1 ~o of the time required 
for the field to drift or random-walk to the poles from latitudes of ~ 30 ~ assisted by 
meridional flows of ~ 10 m s - 1. 

< lO~'krn �9 
(a} 

(b) < 103kin > 

- - Q - Q - Q - Q -  - 

(c) 

Fig. 2. The process by which a U-loop may escape across the surface is illustrated. (a) The U-loop has risen 
to the surface region. (b) Small O-loops penetrate across the surface and expand as plasma drains down 
the 'U'. (c) Reconnections release the U-loop above the surface, leaving behind small closed loops which 

decay rapidly. 
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4. The 'Escape' of the U-Loop 

It is not immediately clear, however, that the U-loop can now escape. Parker (1984) has 
argued that purely toroidal fields which have been elevated to the surface of a star may 
be unable to escape through the surface because of the difficulty of disengaging the field 
from the highly conducting gas in which it is embedded. He suggests that the appropriate 
boundary condition is OBJ~r = 0, which represents a closed boundary, rather than an 
open boundary, through which flux may readily escape, described by B,  = 0. 

Parker describes a possible 'escape scenario' in which neutral point reconnections 
between adjacent ~ loops above the surface can effect the release of toroidal field lines. 
However, he points out that, even at sunspot maximum, the gaps in longitude between 
adjacent bipolar magnetic regions are so wide that the reconnection process would be 
severely limited. 

On the other hand, the topology of the U-loop structures resulting from the sub- 
surface reconnections considered here is rather different for, although the base of the 
'U' corresponds to an element of toroidal field, the sides of the 'U' break through the 
surface and the complete structure is closed above the surface (see Figure 2(a)). As 
Parker has shown, the field is in a marginally unstable state just below the surface and 
would be susceptible to the Kelvin-Helmholtz instability. Thus it is vulnerable to 
small-scale temperature or velocity perturbations, and small elements of the now 
dispersed and weaker field lines may bend upwards. As such kinks or small loops 
develop, plasma drains down the field lines, making the crests more buoyant so that they 
may cross the surface, forming small (2-loops, as illustrated in idealized form in 
Figure 2(b). 

This configuration is similar to that envisaged by Parker but on a 'granule sized' scale 
or smaller. Furthermore, since these loops may be more tightly packed (on this scale), 
reconnections may proceed as illustrated in Figure 2(b). After a series of such recon- 
nection, the U-loop would be located entirely above the surface and is free to escape, 
leaving behind a series of closed loops (Figure 2(c)) whose decay is discussed below. 

5. Ephemeral Active Regions 

While the configurations illustrated in Figure 2 are somewhat idealized, it might be 
expected that, if much of the decaying flux from active regions escapes in this way 
(although in a less idealized manner), the process should be observable. We suggest here 
that it is consistent with the observed pattern of emergence and decay of ephemeral 
active regions (ERs). 

ERs are small magnetic bipoles of mean total flux ~ 1019 Mx, major axes ~ 10 000 km 
and typical lifetimes of less than one day. They have been studied extensively by Martin 
and Harvey (1979) who have argued that they form part of the general spectrum of active 
regions. However, their number distribution against size does not fit smoothly with the 
overall active region distribution, ERs being considerably more numerous than would 
be expected at this end of the AR distribution. They are also more widely distributed 



THE REVERSAL OF THE SOLAR POLAR MAGNETIC FIELDS, I 7 

over the solar surface. The total surface flux in the form of ERs at any given time is 
~ 1022-1023 Mx, which is comparable with that of a large active region or complex and 
so, with lifetimes of less than a day, the ER population represents a significant rate of 
appearance and disappearance of surface magnetic flux. 

An ER first emerges as a bipolar pair of flux knots in the neighbourhood of elements 
of the large-scale field or the network. As the knots separate, one or other approaches 
a field element of opposite polarity, where cancellation takes place. We postulate that 
this process of emergence and cancellation is related to the escape of the flux from 
decaying active regions trapped just below the surface and, in Figure 3, the posible 
reconnections related to the emergence and decay of one ER are illustrated diagramati- 
cally. 

Each reconnection releases a part of the trapped U-loop, leaving behind a single 
closed loop and a smaller trapped U-loop, and, as other O-loops emerge from the 
trapped U-loop in the form of ERs, further reconnections continue the process of 
releasing closed flux loops and decreasing of the size of the trapped U-loops until their 
radius of curvature approaches that of the closed loops (Figure 3(c)). 

Thus the emergence of ERs may well correspond to a more random version of the 
idealized process illustrated in Figure 2(b) and, if the emergence and disappearance of 
ERs does indeed represent a rate of flux loss of ~ 1022 Mx day-  l, it would be more than 
sufficient to eliminate all the active region flux present on the Sun within a few weeks. 

@ 
a 

(b) 

(c) 

Fig. 3. The postulated sub-surface field configurations corresponding to the emergence of an ER as a 
bi-polar Q-loop. (a)The loop emerges from a larger trapped U-loop. (b)As the O-loop expands, one 
component reconnects with one leg of the 'U' which appears as a network element, releasing a closed loop. 

(c) The closed loop decays and the radius of curvature of the U-loop decreases. 
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Indeed it would indicate the need for a source of surface flux in addition to that available, 
in principle, from the decay of active regions. However, even if the escape process were 
somewhat less efficient, it would seem unlikely that the transverse component of a 
buoyant U-loop can remain trapped below the surface by the Parker boundary condition 
for periods sufficient to permit the postulated surface migrations. 

6. The Decay of Closed Flux Loops and U-Loops 

There remains the question of the small closed flux loops which arise as part of this 
process. The theoretical decay time for a closed or partly closed loop of flux of radius 

of curvature Ro is of order R~/tl, where t/is the resistive diffusivity. This reaches a 
maximum of only 10 9 cm 2 s -  1 at the surface of a star like the Sun (Kovita and Cram, 

1983), and is much smaller in the plasma above and below the surface. Thus for U-loops 
with initial dimension ,-~ 10000 kin, the ohmic decay time is of the order of 30 years, 
while for closed loops formed by the processes described above, having dimensions of 
order ~ 1000 kin, it would still be of the order of several months to a year. However, 
a closed loop of flux is inherently unstable, since the net magnetic tension acts inwards 
along the radial direction and, for a loop embedded in an otherwise unrestricted plasma, 
it is unlikely that a radial pressure gradient can be built up to support the magnetic net 

tension and it must necessarily collapse inwards. 
The time-scale of this collapse is determined by a balance between the component 

of the magnetic tension, acting inwards, and the viscous drag force. If r is the radius 
of the cross-section of the loop, R its radius of curvature, and p is the density of the 
surrounding plasma, then, following Equation (6), the drag force on an element sub- 
tending an angle 60 and collapsing inwards with speed v is 

bF = Cpv2rRbO. (9) 

Again, following Equation (7), the radial component of the magnetic tension on the 
element is 

arm = �88 
and these are balanced when 

(10) 

92? �9 
v 2 - (11) 

4pRC 

Thus the decay time, z, is of order 

R 2R3 /2CU2p  1/2 
z ~ - (12) 

v Br 1/2 

For a flux tube of cross-sectional radius 1000 km, in a closed loop of curvature 
10000 km, field 1000 G embedded in a plasma of density 2 x 10 -7 g cm -3, taking C 
of order one yields z ~ 4 x 103 s. 
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Even if the density gradient or other effects were to increase the collapse time by an 

order of magnitude, it would be at most of order one day and we coclude that the closed 

loop structures, formed as part of the O-loop reconnection process, would be unable 

to resist the combination of collapse and decay and would be rapidly destroyed. 

7. Conclusion 

It has been shown that the flux transport equation does not adequately describe the 

physical processes which must be associated with the surface transport of flux from 

decaying active regions over large distances. Basic theory requires that this flux should 

remain confined to the region of emergence by the sub-surface field line tensions. It is 

posutlated that sub-surface reconnections giving rise to U-loop formation might release 
the surface fields from the constraints of magnetic tensions but, in this event, it is shown 

that buoyancy would bring the U-loops to the surface and a mechanism is described 

whereby the transverse field component can leak through the surface layers in a time 

too short to enable it to take part in the processes described by the flux transport 

equation; i.e., the trans-equatorial cancellation of leader flux and the polar field reversals 

by the net remaining follower flux. 

Nevertheless flux apparently related to decaying ARs is observed to last in coherent 

form for several solar rotations and does appear to migrate polewards. However, 

according to Howard and LaBonte (1981), this migration is episodic rather than 

continuous, and so inconsistent with a diffusive process. Thus our understanding of the 
phenonena is less than complete and it would seem that either the escape mechanism 

does not apply in the Sun or that some form of flux regeneration and propagation must 

be associated with decaying active regions. 
These questions will be further explored in the next paper in this series. 
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