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Abstract. The coding of odor intensity by an olfactory receptor neuron model was studied under steady-state 
stimulation. Our model neuron is an elongated cylinder consisting of the following three components: a sensory 
dendritic region bearing odorant receptors, a passive region consisting of proximal dendrite and cell body, and 
an axon. First, analytical solutions are given for the three main physiological responses: (1) odorant-dependent 
conductance change at the sensory dendrite based on the Michaelis-Menten model, (2) generation and spreading of 
the receptor potential based on a new solution of the cable equation, and (3) firing frequency based on a Lapicque 
model. Second, the magnitudes of these responses are analyzed as a function of odorant concentration. Their 
dependence on chemical, electrical, and geometrical parameters is examined. The only evident gain in magnitude 
results from the activation-to-conductance conversion. An optimal encoder neuron is presented that suggests that 
increasing the length of the sensory dendrite beyond about 0.3 space constant does not increase the magnitude of 
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the receptor potential. Third, the sensivities of the responses are examined as functions of (1) the concentration at 
half-maximum response, (2) the lower and upper concentrations actually discriminated, and (3) the width of the 
dynamic range. The overall gain in sensitivity results entirely from the conductance-to-voltage conversion. The 
maximum conductance at the sensory dendrite appears to be the main tuning constant of the neuron because it 
determines the shift toward low concentrations and the increase in dynamic range. The dynamic range of the model 
cannot exceed 5.7 log units, for a sensitivity increase at low odor concentration is compensated by a sensitivity 
decrease at high odor concentration. 

Keywords: sensory coding, cable equation, single neuron modeling 

1. Introduction 

Although much progress has been made in recent years 
in understanding the physiology of olfactory receptor 
neurons (e.g., Breer et al., 1990; Zufall et al., 1991; 
Boekhoff et al., 1993; Menini et al., 1995; reviews of 
Breer, 1994; Firestein, 1992; Kaissling and Boekhoff, 
1993; Shepherd, 1994; Shirsat and Siddiqi, 1993; 
Stengl et al., 1992), the manner in which the intensity of 
stimulation is coded remains incompletely understood. 
The stimulus intensity is measured by the concentra- 
tion of the stimulating odorant (in the case where it is a 
pure chemical) whereas the magnitude of the response 
is usually measured by the frequency of action po- 
tentials. This concentration-to-frequency conversion 
is a basic and well-defined property of olfactory sen- 
sory neurons, for which a number of experimentally 
measured dose-response relationships are available in 
insects (e.g., Kaissling and Priesner, 1970; Kaissling, 
1971; Vareschi, 1971; Selzer, 1984; Kaissling, 1987)as 
well as vertebrates (e.g., O’Connel and Mozell, 1969; 
Getchell and Shepherd, 1978; Duchamp-Viret et al., 
1989). The biological significance of this problem led 
us to develop a model of the olfactory receptor neuron. 

Several difficulties arise in the development of such 
a model. A first problem is the paucity of detailed and 
quantitative information. In thecase of olfactory recep- 
tor neurons, data are lacking on the second-messenger 
transduction process and the various ionic conduc- 
tances involved in the generation of transmembrane 
potentials. However, such detailed data are probably 
not needed to account for the main physiological prop- 
erties of olfactory receptor neurons, as established in 
classical extracellular recordings, which we consider 
to be our primary goal. A second problem is the lack 
of complete solutions to the equations that describe 
the basic chemical and electrical phenomena under 
study. Analytical solutions provide irreplaceable ref- 
erences to interpret the numerical solutions that are 

the only ones presently attainable for more realistic 
models. For this reason, we subordinated model com- 
plexity and realism to mathematical tractability, which 
lead us to the following choices. One, the complete 
Hodgkin-Huxley equations for describing the action 
potential were not considered because their analytical 
solutions are not available (for their application to an 
extended neuron, see Rovinsky and Menzinger, 1993); 
we studied only the time of occurrence (frequency) of 
the action potentials. Two, only the steady-state behav- 
ior of the neuron (constant stimulation) was studied. 
Three, we did not include stochastic aspects, consid- 
ered in previous studies (L&sky and Rospars, 1993, 
1995; Rospars and Lansky, 1993; Rospars et al., 1994) 
because the stochastic features play a prominent role 
when the neuron is stimulated at very low intensities. 
In these conditions, the deterministic assumptions are 
not valid. Moreover, the complete solution of the equa- 
tions that describe the stochastic behavior is presently 
known only for one-point and two-point model neu- 
rons, which are inadequate for our present goal. Four, 
a receptor neuron with only one type of receptor pro- 
teins was studied (such as in the insect sex-pheromone 
neuroreceptor for example). Five, the variations in di- 
ameter of the dendrite, cell body and axon were not 
taken into account. The dendrite of pheromone recep- 
tor neurons of moths is quite close to a long cylinder 
(Keil, 1984). 

The first aim of this paper was to develop, given 
these assumptions, a model describing the main re- 
sponse variables (that is, conductance change, recep- 
tor potential, and firing frequency), and specifying 
their relationships and their dependence on the bio- 
physical characteristics of the neuron. The cylindrical 
cable model considered here, which is intermediate be- 
tween a dimensionless point and complex passive trees 
(Segev, 1992), is the simplest case permitting one to 
take into account the spatial extent of the neuron (for a 
multicompartmental model of the olfactory neuron see 
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FQure 1, (a) Schematic representation of model receptor neuron and equivalent circuits of its three main modules, (b) sensory dendrite SD, 
(c) passive dendrite PD, and (d) axon initial segment IS. Odorant molecules A bind to receptor proteins R on SD and change their conformation 
(activated receptors AR*), which ultimately triggers the opening of ion channels. This conductance change G, see (b), generates a receptor 
potential that spreads to IS where action potential are fired and propagated along axon (Ax). 

Pongracz et al., 1991). However, none of the known 
solutions of the cable equation (Rall, 1977; Tuckwell, 
1988) describe realistically the stimulation of a sensory 
neuron. To our knowledge, the solution presented here 
for an extended, uniform, and steady-state stimulation 
of the dendrite is original. It describes a realistic case 
that is useful for describing actual experiments. 

Our second aim was to analyze the coding properties 
of this model. A sensory neuron offers an interesting 
example for studying neuronal coding in detail because 
reasonable assumptions can be made on its physiolog- 
ical functions and on how it might code information 
to fulfill these functions. Coding of the intensity of 
stimulation is probably the simplest of these tasks. We 
have analyzed and compared the coding properties of 
the main neuron responses from transduction to fir- 
ing using four basic quantities: the concentration at 
half-maximum response, the lower and upper concen- 
trations actually discriminated, and the width of the 
dynamic range. These quantities were formalized and 
their significance discussed with a view to distinguish- 
ing the features that directly control the computing per- 
formance of neurons from those that result merely from 
“hardware” constraints. This is a basic issue in theo- 
retical neurobiology that might benefit from the special 
case studied here. 

2. The Model 

The olfactory neuroreceptor is viewed as a cylinder di- 
vided into four regions (Lansky et al., 1994; Fig. la). 
(1) The sensory component of the dendrite bears re- 
ceptor sites; it corresponds mainly to the dendritic cilia 
of the vertebrate and the outer dendrite of insect neu- 
roreceptors. When activated by odorant molecules, the 
receptor sites activate a second-messenger system that 
ultimately opens ionic channels (Section 2.1). This 
conductance change in turn gives rise to the receptor 
potential as analyzed in Section 2.2. (2) The passive 
region of the dendrite is assumed to possess no trans- 
duction mechanisms and to be a mere cable that pas- 
sively responds to the receptor potential (also described 
in Section 2.2). It corresponds to the inner dendrite and 
cell body membrane. (3) At the initial segment of the 
axon, the receptor potential is converted into a train of 
action potentials (Section 2.3). (4) The axon itself ter- 
minates in the brain and is extremely long with respect 
to the other regions. 

2.1. Model of Transduction 

Consider a cylindrical segment of sensory dendrite of 
unit length with [RT] receptor sites R of the same type 
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on its surface and odor-dependent ion channels set in it. 
This membrane is stimulated by an odor composed of 
only one molecular type A whose concentration close 
to the membrane is [A]. Since only a thin space in 
the vicinity of the membrane is relevant for the bind- 
ing process, [A] can be expressed in moles per unit 
area (M cm-‘). The concentration [R] of the receptor 
molecules is expressed in the same unit. The model 
of transduction presented here is based on Kaissling’s 
approach (Kaissling, 1969, 1971). 

2.1.1. Number of Activated Receptor Sites. Follow- 
ing the initial binding of the odorant molecule to the 
site and depending on the force of binding, the recep- 
tor is “activated”, which can be pictured as a change 
of conformation of the receptor protein. The reactions 
involved can be written 

kl kz 
A+R = AR 2 AR*, 

k-, k-2 
(1) 

where kl , k-l, k2 and k-2 denote velocity constants. 
Then, it can be shown (Ennis, 1991; Getz and Akers, 
1995; Malaka et al., 1995; see Appendix A) that 

[RTI 

[AR*] = K2+1 
KlK2 1 

1+-- 
K2 + 1 [Al 

(2) 

Equation (2) depends on the ratio of the velocity con- 
stants, the dissociation KI = k-l/ kl and deactivation 
K2 = k-21 kz equilibrium constants which have dimen- 
sion M cme2. It follows that [A] is the only parameter 
that can be easily changed by the experimenter. In prac- 
tice [A] has an upper bound, denoted by [AIM, which 
occurs when air is saturated with A, corresponding to 
the vapor pressure in the actual conditions of temper- 
ature and pressure. Although [A] cannot become in- 
finite, we will consider an odorant for which [AIM is 
very large with respect to K1 KJ(K2 + 1). The graph 
of (2) as a function of [A] is a branch of hyperbola (for 
this reason we call such functions “hyperbolic”). The 
number of activated receptors is zero at [A] = 0 and 
it approaches [Rr]/(K2 + 1) independent of K1 when 
[A] -+ cm. 

2.1.2. Relation Between Receptor Activation and 
Conductance Change. We assume that the number 
n of odorant-dependent channels that are opened on 

the membrane patch at steady state is linearly propor- 
tional to the number [AR*] of activated receptor sites, 
so that n = r[AR*], where r is the number of chan- 
nels opened by activation of one receptor molecule. If 
only a single type of channels is opened, the odorant- 
dependent conductance in the patch is G = yn, 

where y is the channel conductance. For reasons ex- 
plained in the next section, we introduce a dimension- 
less form g = r,G of conductance G using the rest- 
ing conductance r;’ of the membrane patch as unit of 
conductance. 

g = r,yr[AR*]. (3) 

Then putting (2) in (3) we can write, for any [A], 

introducing 

(4) 

(5) 

as the conductance when all receptor sites are activated, 

e 
g”= K2f1 

as the conductance when [A] -+ 00, and 

[Al 
KI K2 

- ~ d2 - K2 + 1 (7) 

as the odorant concentration at which the conductance 
achieves its half-maximal value g~/2. In the rest of 
this article we will use go and [A],,, as yardsticks to 
analyze the receptor potential and the firing frequency. 
The graph of g versus [A] for (4) is shown and studied 
in Figs. 2a, 3a, c. Function (4) expressed as a function 
of log[A] can be written 

gM 

g = 1 + exp(2.3(log[A],,2 - log[A])) . 
(8) 

This is a logistic function whose dependence on log[A] 
is sigmoid with an inflection point at log[A&,a, see 
Figs. 2b, 3b, d. Equations (3) and (4) implicitly as- 
sume that the formation of [AR*] is the limiting step of 
the transduction mechanism when [A] increases-that 
is, [AR*] reaches its maximum level before any other 
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Figure 2. Conductance change 2 at any point of the sensory dendrite as a function of odorant concentration [A] (a) and as a function of log[A], 
(b). (a) Plot of g against [A] is a hyperbolic curve (4) showing maximum value go according to (6), and concentration at half-maximum A,/2 
according to (7) (b) Plot of j/g~ against log[A] is a logistic curve (8) with inflection point at [A&/z; dynamic range for 0.01 according to (9) 
through (11) is delimited by the sides of the figure. Similar representations apply to number of activated receptor sites [AR]* (see Eiq. (2)) and 
receptor potential Vo at the distal end of the sensory dendrite (see Eq. (21), (22) and (23)) which are both hyperbolic functions of [A]. 
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Figure 3. Roles of dissociation equilibrium constant Kl and deactivation equilibrium constant K2 on conductance change j at the sensory 
dendrite as a function of odorant concentration [A] (a, c) and log[A] (b, d) according to (3) through (7). (a, b) Role of Kl = 0.01, 1 and 100 
for K2 = 1; Kl acts on response sensitivity, shift from left to right of curves, (b) but not on response magnitude. (c, d) Role of KZ = 0.1, 1 and 
10 for K1 = 1; K2 acts on both magnitude and sensivity of response. Parameter 8 = 100, conductance that would result from activation of all 
receptor sites. A similar representation applies to number of activated receptor sites replacing Q by total number [RT] of receptor sites. 
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reaction involved in the activation-to-conductance con- 
version. Also, as before, we consider here that the max- 
imum value of gM results from saturation of receptor 
sites not saturation due to maximum odor concentration 
[AIM. This caveat holds for all further results based on 
the assumption [A] -+ 00. 

Coding Properties of Conductance Change. A phys- 
iologically significant feature of (4) is to define a spe- 
cific dynamic range for odorant concentration. Defin- 
ing the lower bound (threshold) as the concentration 
[A],, for which the ratio g/gM is equal to some arbi- 
trary small value E, such as E = 0.01, and the upper 
bound (saturation) as the concentration [A],, for which 
g/g* = 1 - E, e.g., 0.99, it can be shown by manipu- 
lating (4) that 

[Al,, = &LAlg,z 2: 4Alg/z (9) 

l--E [A&/2 
[Al,,y = TL41g/2 = 7. (10) 

Consequently, the dynamic range Ag for conductance 
defined as the logarithm of the ratio [A],,v/Ast is 

l--E 
A, = WAI,, - log[A& = 2 log E 2i -2 log E. 

(11) 

This is a constant independent of all neuron character- 
istics. For example, if E = 0.01, A, is about 4 log 
units. 

2.2. Model of Receptor-Potential Generation 

2.2.1. Dendritic Cable. For the sake of simplicity we 
do not take into account the subdivision of the dendrite 
into several cilia or the variations in diameters (and 
shape) between dendrite, cell body, and axon. Axial 
symmetry of the dendrite is assumed over its whole 
length, and thus only one space variable, the distance X 
along the dendrite, is needed. The sensory dendrite 
extends from 0 to Xi and the passive dendrite from Xi 
to X2 (Fig. la). The equivalent circuits for sections of 
sensory and passive membranes are shown in Figs. lb 
and c. The only difference between these circuits is 
the presence of a variable conductance in the sensory 
membrane. 

The spatiotemporal distribution of the receptor po- 
tential V(X, r) along the dendrite generated by the 

ion current depends on the conductance g(X, T) in the 
sensory dendrite, which now is given per unit length 
(S cm-‘, not unit area as before; for this reason the 
notations for variables in both cases should have been 
distinguished, however the corresponding quantities 
are numerically equal, so that relations (3) through 
(11) remain valid). In the passive dendrite, by def- 
inition, g(X, T) = 0. With the above assumptions, 
V(X, T) is the solution of the cable equation (see Ap- 
pendix B). In this paper we will focus attention on time- 
independent steady-state solutions V(X) obtained with 
g(X, T) = g(X) and in particular those cases where 
g(X) is a constant over the whole sensory dendrite. 
It is advantageous to define potential V(X) as mem- 
brane depolarization (that is, the resting potential is 
taken at 0), and to use the space constant h = 

J- 
r, 
ri fro 

(cm) as unit of space where rm is the membrane resis- 
tance (a cm), ri and r, are the resistances (Q cm-‘) 
of internal and external mediums respectively, so that 
x = X/h. With these conventions as shown in Ap- 
pendix B, V = V(x) is the solution of the dimension- 
less cable equation 

-$ + v = g(x)(E - V), (12) 

where E is the reversal potential of the permeating ion 
expressed as a depolarization. 

2.2.2. Receptor Potential for a Dendrite with Uni- 
form Stimulation. We suppose that the odorant 
molecules and receptors with their associated ion chan- 
nels are uniformly distributed along the sensory re- 
gion of the dendrite. This gives uniform stimulation 
for which 

1 j for 0 5 x < x1 
&T(x) = (13) 

Oforx >xl. 

The steady-state receptor potential V satisfies the dif- 
ferential Eq. (12) and to solve this equation boundary 
conditions must be chosen. For a semiinfinite cable, 
the condition at the extremity of the axon is that V 
is bounded. The other condition is imposed at 0, for 
example by considering V(0) = 0 (killed end) or 
V’(0) = 0 (sealed end). The latter condition, cor- 
responding to a null longitudinal current, is closer 
to natural conditions and the only one considered in 
this paper. Under these conditions it is shown in 
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Figure 4. Receptor potential along the neuron for different conductance changes at the sensory dendrite. (a) Conductance change as a function 
of dimensionless distance x according to (13), with proximal end of sensory dendrite at nl = 5 and g(x) = S = 0.08 (not shown), 0.4,2, 10 and 
50 over the whole sensory dendrite (0 < x 4 5) and g(x) = 0 over passive dendrite and axon (X > 5). (b) Corresponding receptor potential V 
as a function of x according to (14) and (15). Parameter: reversal potential of the odorant-dependent ion current E = 100. 

Appendix C that the steady-state potential along the 
cable is 

V(x) = 

[ Ei 

I 1+g 

( 1 cosh(mx) 

x l-msinh(mxl) + cosh(mxl) 1 

for 0 5 x < x1 (14) 

EL? 

1 + 2 + l/l+gcoth (Jl+sxl) 
W-(x - XI>> 

, for x 2 x1. (15) 

The graph of V(x) is shown in Fig. 4 for different val- 
ues of j. 

2.2.3. Role of Conductance and Lengths of Sensory 
and Passive Dendrites. The values of the receptor 
potential at both ends of sensory dendrite (points 0 and 
xl) and at the initial segment (x2) have a special func- 
tional significance. In this subsection we study their 
dependence on such structural properties of the neu- 
ron as the lengths of the sensory and passive dendrites, 

and on the intensity of stimulation, as reflected in the 
conductance 2. 

Role of Length of Passive Dendrite for Fixed j. The 
size of the receptor potential at any point beyond x1, 
and specifically at the axon initial segment x2, given by 
(15), can be written in the form 

V(x) = V(xd exp(-(x: - XI)), x > XI, (16) 

which is completely determined by V(x,) and the dis- 
tance from point x1. The input-output properties of 
the neuron as a whole are thus governed by the length 
12 = x2 - xl of the passive dendrite and the value of 
V(x,), which depends on E, ,j and length 11 = XI 
of the sensory membrane. While the roles of 12 and 
E are clear, those of II and j are not immediately 
apparent 

Role ofLength of Sensory Dendrite for Fixed jj (Fig. 5). 
The potential V(O), at x = 0, is the maximum de- 
polarization of the sealed-end dendrite. The graphs 
of V(0) and V(x,) as a function of II for fixed S as 
given by (14) and (15) are shown in Fig. 5. As the 
length 11 of the sensory dendrite increases both func- 
tions rapidly approach asymptotic values VO and VI 
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Length 1, of sensory dendrite 

Figure 5. Receptor potential at different point as a function of length II (= xl) of the sensory dendrite. Potential V(0) at distal end of sensory 
dendrite according to (14), potential V(XI) at proximal end of sensory endrite and V(q) at initial segment according to (15). Ratio V(q)/ V(0) 
is constant for a given g; ratio V(Q)/ V(q) is also constant in a given neuron according to (16). For 11 > 0.3 the receptor potential at x > XI 
is independent of 11. Parameters E = 20, S = 20, x2 = xl + 0.5. 

defined by 

VO = [limm V(0) and VI = !:$nm V(xl) (17) 
1’ 

In most cases these asymptotic values are nearly at- 
tained for 1, < 1 because the quantities m 
sinh(fixt) + cosh(mxt) in (14) and 
coth(fixt) in (15) tend rapidly to 00 and 1 re- 
spectively. The ratio VO/ VI is 1 + l/m. Some- 
what surprisingly, V(O)/ V (XI) is close to this asymp- 
totic value even for quite small values of It (see Fig. 5), 
which means that the spatial distribution of the receptor 
potential along the neuron (shown in Fig. 4) is merely 
shifted to the right when the length of the sensory 
dendrite increases; this result has obvious functional 
significance. 

Role of Odorant-Dependent Conductance for Fixed II 
(Fig. 6a, b). Potentials V(0) and V(.XI) for a given 
length 11 are increasing functions of S, which tend to 
the equilibrium potential E, their common asymptotic 
value. Since the shape of the spatial variation of the 
receptor potential is practically independent of It, a 
study of the dependence of V(0) and V(xl) on 2 can 
be performed by considering only V, and VI as de- 
fined by (17). From (14) the value of VO is given 

‘v 

E 
v, = ~ 

1 + 1/g 

and from (15) that of VI by 

v, = 
E 

1+1/g+m/g 

(18) 

(19) 

which increases more slowly than 5’0 to their common 
asymptote as g increases. This is illustrated by the 
conductance at its half-maximum value E/2, which is 
gv,/z = 3, whereas that for VO is gvO/2 = 1 (see Fig. 6a). 
Let us define VZ = liml,+oo V(x2). Then from (16), 
the asymptotic value of the receptor potential at the 
initial segment is 

VZ = VI exp(-/2). (20) 

Equation (19) thus appears as the major relation de- 
scribing the conductance-to-voltage conversion of the 
dendritic part of the neuron. 

2.2.4. Coding Properties of the Receptor Potential. 
The above results show that a study of the receptor 
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Figure 6. Receptor potential at distal end Vo and proximal end VI of sensory dendrite as a function of conductance g(a, b) and odorant 
concentration [A](c, d). Potential V2 at initial segment (not shown) is a scaled version of VI, see (20). (a) Plot against 2 of Vo according to 
hyperbolic relation (18) (solid line), VI according to (19) (dashed line) and their ratio. (b) Plot against log j of RI/E (logistic, solid line), Vi/E 
(dashed line) and their ratio. Conductances at half-maximum E/2 are indicated, with log 3 = 0.48. Dynamic range of VI/E for E = 0.01 
indicated by sides of the figure. (c) Plot against [A] of VO (hyperbolic) according to (21) (22), and (23) and VI according to (25), (26), and 
(27) for go = 1 (solid and dashed lines) and 100 (dotted and dash-dotted lines). (d) Plot against log[A] of Vo/ VOM (logistic) and Vl/Vl,w for 
go = 1 (solid and dashed lines respectively) and go = 100 (dotted and dash-dotted lines). Concentrations at half-maximum are indicated, 
from right to left, log[A] = 0.78,0.69, -0.63 and -1.02. Parameters E = 20 and [A&/Z = 1 (in c and d). 

potential can be essentially restricted to the asymptotic 
values V, and VI. Thus, studying the coding proper- 
ties of the receptor potential reduces to analyzing how 
those asymptotic values depend on the stimulus con- 
centration [A] (Fig. 6c, d). 

Maximum Values and Concentrations at Half- 
Maximum of Vo. Consider first V,, which holds at the 
distal end of the dendrite and over most of the sensory 
dendrite. Replacing j in (18) by the expression (4) it 
is found that V, is again a hyperbolic function of [A] 

v, = 
VOM 

1 + [Ah/2 ’ 
[Al 

(21) 

where VoM is the maximum value obtained when 
[A] + co and consequently j + gM and [Alv,,,, 
is the concentration at half-maximal Vo-that is, re- 
calling (6) and (7), 

E E% 
VOM = 

1+ l/gw =@+Kz+l (22) 

[Al vo12 = &L41~,2 = e ;A;+ 1 (23) 

The characteristic VOM is itself a hyperbolic function 
of parameters r,, y, r, and [RT] (see (5)), which 
reaches its half-maximal value E/2 when their product 
0 = K:! + 1. The fact that [A]Vo,2 < [Alg12 for any 
set of values of the parameters means that the curve 
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of Vo/ VOM is always above the curve of conductance 
g/gM when both are plotted against concentration [A]. 
When plotted against log[A] the logistic curve for the 
receptor potential is shifted towards low concentrations 
relative to the logistic curve for conductance; from (23) 
the shift is 

log [Al,,,, - log [A&/2 = - loid + a>. (24) 

Maximum Values and Concentrations at Half-Maximal 
VI. Consider now the receptor potential at the prox- 
imal end of the sensory dendrite from which the po- 
tential at any other point beyond xi can be derived. 
Replacing j in (19) with (4) we obtain VI as a func- 
tion of [A] (see Fig. 6c, d) 

(25) 

with asymptotic value for [A] + 00, 

(26) 

Consequently from (20) the asymptotic value of the 
receptor potential at the trigger zone is VIM = 
VIM expt-12). It follows from (26) that the ratio 
VIM/E becomes greater than 1 - E with E an arbitrar- 
ily small value, when go is greater than a large value 
(cP2 - l), e.g., with E = 0.1, VIM/E = 0.9 implies 
gM E 100. For any values of 0 and K2, the inequality 
VOM > VIM > l7.2~ holds. The odorant concentration 
[A]v,,2 at half-maximal VIM (which holds also for V2 
because VI/VIM = V2/ VZM) is 

VI and V2 are less “sensitive” to odorant stimulation 
than V,J, whereas the receptor potential at any point 
is more sensitive than the odorant-dependent conduc- 
tance change. This “sensitivity” increases with gM, 
and therefore with 0 and KY’. The ratios in (27) and 
(28) remain respectively less than 3 and 3/g~, so that 
the distances at half-maximum between curves plotted 
against log [A] are such that 

b[Alv,/2 - log [Alv,/2 i log3 (29) 

log [Alv,/z - log [Algj2 I log3 - log(1 + gM). (30) 

Dynamic Range. Consider now not the position of 
the curves along the concentration axis but the range of 
concentration over which they rise from, say, E = 0.01 
to 1 - E = 0.99 of their maximum value. Because V, 
is a hyperbolic function of [A] its threshold concen- 
tration [A]“,, ZY e[Alvoj2 and saturating concentration 
[Al,,,7 ” $4lvo,2 , where [A],,,,, is given by (23), have 
the same forms as those (9) and (10) of the odorant- 
dependent conductance change. Consequently the dy- 
namic range At+, is the same as for the conductance, 
which is given by (11); it is independent of gM. The lo- 
gistic curves Vo/ V,M and g/glz(r vs. log[A] are identical 
except that the first one is shifted toward low concen- 
tration. As a consequence of (27) mentioned above, 
this shift increases with gM. 

The concentrations at threshold [A],,, and saturation 
[A]v,,T for the receptor potential at x1 and x2 derived 
from (25) are 

2 

[Al,,, = - 
1 - (1 + gM)(l - c + --) 

2 [A&/2 

VGG 

(3 1) 

[Al 1 - 2 [A&/2. 
[Alvp = - 

l- c+$+-)2 
( 

1 - t1+ gM)(c + &) 
2 [Al,/,. (32) 

V’2--4-(l+gM)(l+-) 
a&G 

(27) 
Then, using (23) one finds 

[Al 
4- l+k)’ ( 

v,j2 = - 
4 

2 [Alvo/2. (28) 
~- 1+- l+gW ( J&ii > 

These expressions show that [A]v0,2 < [A]v,,, < 
[A]g,2 for any value of gM--for example, if gM = 3, 
[A],,,, = 0.35 [AJ12 = 1.40 [AlVo12. It follows that 

As shown in Fig. 9, with E = 0.01, whatever gM the 
threshold (31) and saturation (32) levels are lower than 
the corresponding levels for conductance (log[A],, = 
-2 and log[A],,s = 2, see (9) and (lo)), and log[A],, 
decreases faster with gM than log[A]v,,Y for 10 < 
gM < 105. This results in a dynamic range Av, = 
log[A],, - log[A]v,,Y of sigmoid shape as a function 
of log&M); A,, is always wider than the 4-decade dy- 
namic range A, of conductance and tends to 5.7 for 
large g&f. 



2.3. Approximate Model of Action-Potential Conductance-to-Frequency Conversion (Fig. 
Generation V(x2) in (34) is given by (15). The resulting 

2.3.1. Model of the Initial Segment. The axon ini- 
tial segment that houses the action-potential genera- 
tor is assumed to be located at x2. It is described by 
the classical leaky integrator model, which consists of 
a circuit with a resistor (corresponding to r,), a ca- 
pacitor (corresponding to c,) and a switch in parallel 
(Fig. Id). The switch is assumed to be opened when the 
membrane potential VA at the initial segment is below 
a certain threshold S, (the subscript 2 indicating that 
the threshold holds at point x2). When VA = &, the 
switch closes, the capacitor discharges, V,J instantly 
returns to the resting potential and the switch opens 
again, which simulates the firing of an action potential. 
The initial segment has now returned to its initial state 
and the process can start again. The variable of inter- 
est in the model is the time of discharge. To estimate 
firing frequencies we adopt the following heuristic ap- 
proach. We assume that the active variable is the cur- 
rent I (x2) = V(xz)/r, flowing through the membrane 
of the initial segment due to the steady-state receptor 
potential V(x2). Starting for example from the rest- 
ing level (or some other level ua -C S,) at time t = 0 
with the switch opened, Z(x2) controls VA. The evo- 
lution in time of VA is a solution of the dimensionless 
version of the cable equation (48 in Appendix B) with 
a2V/ax’ = 0 and Z(Q) as the applied current, which 
is (e.g., Tuckwell, 1988) 

tion can be simplified as follows. First, as mentioned 
previously, for a sufficiently long sensory dendrite, the 
asymptotic version Vz given by (20) can be substituted 
for V(x2) without significant loss in generality. Sec- 
ond, it is natural to assume that spikes are reset to the 
resting potential, so uc = 0. Third, instead of compar- 
ing V2 to threshold S2 at initial segment, it is equivalent 
to compare VI to threshold Si defined by 

S1 = S2exp(/2). (35) 

Then Eq. (34) becomes 

Concentration-to- Frequency Conversion (Fig. 7~). 
Replacing conductance 2 by (4), Eq. (36) can be 
written 

fg l- 
( 

[A&/2 + [Al 

[A&/2 + (1 + g,w)[Al > 

1 -- 
2 

=; I-- 
i J 

KI K2 + Cl+ Kd[Al 1 -- 
KI K2 + (1 + K2 + @)[A] 2‘ 

(37) 
VA(t) = V(xz)(l - exp(-t)) + voexp(-t). (33) 

Starting from ue, VA tracks exponentially the constant 
potential V(x2). 

2.3.3. Coding Properties of the Firing Frequency. 

2.3.2. Firing Frequency. 

Voltage-to-Frequency Conversion (Fig. 7a). The 
length of interspike intervals and its inverse the firing 
frequency, can be derived from (33) under the condition 
that the receptor potential V(x2) at the initial segment 
is above the firing threshold S2, V(xz) > S2, i.e., for 
a sufficiently high odorant concentration. The firing 
frequency is 

Maximum Firing Frequency and Concentration at 
Half-Maximum (Figs. 7d and 8). According to (34), 
(35) and (37), the maximum firing frequency of a 
neuroreceptor when the odorant concentration [A] 
increases is 

The approximation in (34) holds for V(x2) >> S2. 
However, the difference between f and its approxi- 
mated value is less than 5% for V(x2) > 2S2. 
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7b). 

(36) 

as given for the three major conversion steps-receptor 
potential, conductance, and transduction respectively. 
The latter expression shows that fM increases with 
the equilibrium potential E and (more slowly) with 
the conductance B and decreases with the deactivation 
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Figure 7. Firing frequency ,f as a function of receptor potential, (a) conductance, (b) and odorant concentration (c, d). (a) Plot of ,f’ against 
receptor potential V2 at initial segment according to (34). (b) Plot off against conductance change 2 over sensory dendrite according to (36). 
(c) Plot of ,f against odorant concentration [A] according to (37). (d) Plot of .f/,f;u against log[A]; dynamic range is indicated for -0.01. In 
each plot, frequency is given for exact (full line) and linear approximation (dashed line) as given in (34). Parameters: E = 20, Sa = 2, It = 5, 
exp(/a) = 2 (hence St = 4), go = 2 and [Alxp = 0.1. 

constant Kz. Of course, the value of f~ in (38) coin- 
cides with the experimentally observed maximum fir- 
ing frequency only if l/f~ is greater than the refractory 
period. 

Using the approximation (36) one derives from (38) 
the concentration at half-maximal frequency, 

[Al - 
4- ‘+h-q ( 

i’z--4-(l+g,,(l+ h-2 > 

2 [A&/29 

(39) 

which is of the same form as (27). From (39) and (23) with M = 1 + l/d-and N = M - &/(2E). 
one can easily derive [AIf, as a function of [ A] vOi2; the The frequency-response curve is slightly shifted to the 
expression found is of the same form as (28). Equa- right of the receptor potential curve. For example, with 
tion (39) shows that the frequency-response curve is gM = 3, the ratio [A]f12/[A]vlI, is 1.229 for Sl/E = 
shifted toward low concentration with respect to the 0.1 and 1.021 for Sl/E = 0.01. 

conductance curve (Fig. 8). For example, with g&J = 3, 
the ratios [Al&Alg/2 and [AI~~z/[AIv~~~ are 0.430 
and 1.721 for St/E = 0.1 and 0.357 and 1.429 for 
St/E = 0.01, respectively. The position of curve f 
with respect to the receptor potential curve VI is given 
by the ratio of Eqs. (39) and (27) 
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Figure 8. Sensitivity of conductance, receptor potential and firing frequency to stimulus intensity. Plot for 6~ = 3 (a) and gM = 100 (b) of 
relative magnitude of responses g/g~ (solid line), Vo/ VOM (dashed line), VI/VIM (identical to Vz/ VzM, dotted line) and ,f/,f,,, as a function 
of log[A]. Two ,f%f~ curves are shown for length of passive dendrite 12 = 0 (dash-dotted line) and 12 = I (solid line). Gain in sensitivity in 
the conductance-to-voltage conversion is displayed as a shift to the left and loss in the voltage-to-frequency conversion as a shift to the right. 
Concentrations log[A] at half-maximum in (a) are 0 (g, dot), -0.27 (,f for 12 = 0, diamond), -0.46 (V,, star) and -0.60 (Vn, cross; in (b) they 
are 0 (g, dot), -1.5 (.f’ for 12 = 0, square), -1.63 (VI, star) and -2.00 (VO, cross). Parameters: E = 20, & = 4 and [A],,/2 = 1. 
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Figure 9. Dynamic range and odorant concentrations at threshold and saturation for receptor potential and firing frequency as a function of 
maximum conductance go. The curves for receptor potential (solid lines) are given at xt (or equivalently x2); the concentrations at threshold 
log[AIVu (lower line) and saturation log[A]vr, (middle line), and the dynamic (coding) range Av, = log[A]v,, - log[A]~u (indicated by a 
double arrow; upper line) are computed from (3 1) and (32). The curves for firing frequency (dashed lines) give the concentrations at threshold 
log[A]h (lower line) and saturation log[A]f, (middle line), and the dynamic range Af = log[A] ,A - log[A]h (upper line) based on (41) and 
(43). For conductance the corresponding values (9) through (11) are independent of gM. log[A],, = -2,log[A], = 2 and As = 4. Parameters: 
E = 0.01, Sl/E = 0.1 and [A&/2 = 1. 

Dynamic Range (Figs. I’d and 9). When the inten- 
sity of stimulation increases the neuron model be- 
gins to fire when VI = Sr . Using (19) and (4) the 
odorant concentration for which this depolarization is 
reached is 

[AIf, = 
32 - S) 

g& - 2)’ _ 32 _ g)‘AJg/2. C41) 

The concentration [A]ft decreases linearly with gM 
and is always greater than [A]v,t (Fig. 9). The distance 
between these two curves, which is almost constant 
for gM > 100 (about 1 log unit for E = 0.01 and 
S,/E = O.l), increases with Sl/E. 

The receptor potential Vlf, for which the firing 
frequency almost reaches its maximum value fS = 
f~( 1 - E) is such that, according to (38), 

Vlf, 
Sl = (1 - E)VlM + E-. 
2 (42) 

The corresponding odorant concentration [AIfs can be 
derived from (42) using (4), 

l- 

‘A1ff=- 1 - (1 + 
2 [Al,/z. 

(43) 
For S,/E small enough (0.05 or less) the curves of 
[AIfs and [Ah+ as functions of gM are practically 
superimposed (Fig. 9). For gM > 100, the dynamic 
ranges Af = log[A]f,F - log[Alft and AVr as func- 
tions of g,zl are parallel sigmoid curves separated by 
about 1 log unit for E = 0.01 and &/E = 0.1, with Af 
tending to 4.67 for large gM, whereas decreasing St/E 
shifts the Af curve upward, toward the AVr curve. 

3. Discussion 

A model of an olfactory receptor neuron of cylindri- 
cal shape, consisting of a sensory dendrite of length 
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It, passive dendrite and cell body of length 12 and 
semi-infinite axon, was studied under constant stim- 
ulation with an odorant at concentration [A] delivered 
uniformly over the sensory dendrite. This dendritic 
segment was assumed to bear the same density of re- 
ceptor proteins [RT] and ion channels over its whole 
surface. The activation of each receptor was assumed 
to produce a uniform increase in conductance j at each 
point of the sensory membrane. The conductance in- 
crease, characterized by its maximum values 0 (see 
(5)), that would result if all receptors were activated, or 
gM (see (6)), that would result from very large [A], gen- 
erated in turn a change in membrane potential which 
was determined by solving the cable equation. The 
conversion, above threshold S2, of the receptor poten- 
tial into a train of action potentials at the axon initial 
segment was described by a leaky integrator (“RC” cir- 
cuit), which was assumed to exert no action back on 
the dendrite. 

One of the most thoroughly studied odorant recep- 
tor cells is the sex-pheromone neuroreceptor of moths 
(reviewed in Kaissling, 1986, 1987). We will take this 
neuron as an example to discuss the assumptions on 
which the model is based and its properties. 

3.1. The Assumptions of the Model in the Context 
of Experimental Observations 

3.1.1. Transduction. The model describing the trans- 
duction process is based on a two-step activation of 
receptor molecules followed by a linear amplification 
leading to the opening of the ion channels responsible 
for the receptor potential. This model is extremely 
simplified. (1) Although the existence of pheromone 
receptors on the dendritic membrane is generally ac- 
cepted, these proteins remain to be identified. The 
presence of more than one receptor site per recep- 
tor protein seems unlikely because it requires only 
one pheromone molecule to trigger an action poten- 
tial (Kaissling and Priesner, 1970; Kaissling, 1971, 
1990). Consequently, more complex odorant-receptor 
interactions requiring that several molecules of odor- 
ants bind to the receptor (see, e.g., Tateda, 1967) are 
presently not warranted. (2) Recent investigations (see 
Stengl et al., 1992, and Kaissling and Boekhoff, 1993, 
for reviews) have shown that the activated odorant- 
receptor complexes trigger, via G proteins and phos- 
pholipase C, a generation on different time scales of 
several second messengers such as inositol triphos- 
phate, calcium ions and diacylglycerol. A consis- 

tent picture of their roles is not yet available. A de- 
tailed modeling of these biochemical events (Lamb 
and Pugh, 1992; Kaissling, 1994) is outside the scope 
of this paper. Thus, the assumption of a propor- 
tionality between the conductance change and the 
number of activated pheromone-receptor complex re- 
mains the most natural one (Kaissling, 1971, 1977, 
1987). 

3.1.2. Receptor Potential. (1) The cylindrical shape 
adopted for the dendrite in this study is a reasonable 
simplification. For example, the outer dendrites of 
the receptor neurons of Antheraea polyphemus are un- 
branched and the diameter of the thick ones (about 
0.5 ,um, Keil, 1984) varies little over most of their 
length. The construction at the base of the hair, the 
bulging of the cell soma and the thinner diameter of 
the axon will have to be taken into account in future 
development of the model. (2) The receptor poten- 
tial results from the summation of elementary receptor 
potentials that can be recorded extracellularly in the 
absence of pheromone (spontaneous activity) and ‘at 
very weak stimulation (Kaissling, 1986, 1987). The 
conductance change underlying the elementary recep- 
tor potentials was calculated to be in the range of 30 
pS (Kaissling, 1986), which may be interpreted as the 
opening of a single channel or of several channels of 
smaller conductance (Kaissling, 1994). (3) The ions 
carrying the receptor current are not known. Cation 
channels activated by second messengers with reversal 
potential around 0 mV were demonstrated, some se- 
lective to K+ and others to both K+ and Na+. Their 
role in the generation of the receptor potential remains 
to be investigated. No gradient across the membrane is 
expected for Kf because its concentration in the sen- 
sillum lymph that surrounds the sensory dendrite is 
very high (Kaissling and Thorson, 1980). (4) This 
suggests that the voltage source for the receptor poten- 
tial in the moth neuroreceptor might not be the battery 
E at the sensory dendrite, as assumed in the single 
neuron model presented here, but, in part, the transep- 
ithelial potential E, created by the neuron’s auxiliary 
cells in the sensillum. No intracellular recordings of 
the receptor neuron having yet been possible, what 
is known using extracellular electrodes is the recep- 
tor potential modified by the auxiliary cells (sensillar 
potential, Stengl et al., 1992). These cells separate 
an outer segment in the sensillum lymph and an in- 
ner segment in the hemolymph. An equivalent circuit 
model of the sensillum has been developed (Kaissling, 
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1971; Kaissling and Thorson, 1980; de Kramer et al., 
1984; de Kramer, 1985) based on this compartimen- 
talization and different space constants for the cor- 
responding cable dendrites. An equation derived by 
J. Thorson (cited by Kaissling, 1971) applies when 
the potential Et between compartments is the only 
voltage source in the sensillum; it gives the poten- 
tial at the junction between the segments and thus 
corresponds to Eq. (15) at x = 3~1 for a neuron in 
isolation. 

considered when applying the model to experimental 
data. 

3.2. Magnitude of Responses 

The analyses carried out have shown that the prop- 
erties of the model can be conveniently divided into 
two groups, related to the magnitude and the sensitiv- 
ity of the neuron physiological responses. This neat 
subdivision holds only for a deterministic model, i.e., 
for [A] not too small (the stochastic case that pre- 
vails at weak stimulation is briefly considered in the 
last section). Let us consider first the magnitudes 
of the various responses studied-that is, (1) conduc- 
tance, (2) receptor potential, and (3) firing frequency, 
and their asymptotic values gM, VM and f~, as [A] 
increases. 

3.1.3. Action Potentials. (1) The generating site of 
the action potentials is believed to be at the inner den- 
drite or at the soma region, although the exact loca- 
tion is not known (Kaissling, 1987). Both locations 
can be easily fitted to the present model. (2) Passive 
backpropagation of the action potentials along the den- 
drite has not been considered because the correspond- 
ing equations are difficult to solve. It follows that the 
model is asymmetric, the dendritic compartment influ- 
encing the axonal compartment but not vice versa (see 
discussion in Rospars and Lansky, 1993). However, 
backpropagation can be incorporated using numerical 
techniques (Vermeulen et al., 1995) and analytical so- 
lutions are now available (Bressloff, 1995) for a sim- 
plified action potentials with a downward deflection 
(reset) but no peak. (3) The spike encoding mecha- 
nism used in this paper is based on a leaky integrator 
and is thus very simplified. This is the only model to 
our knowledge for which the spike frequency can be 
derived analytically from a knowledge of the dendritic 
potential. This basic scheme will be compared later 
with more realistic models with multiple conductances 
(see, e.g., Wilson and Bower, 1989; Yamada et al., 
1989; Schwaber et al., 1993; Av-Ron, 1994) which 
have the inconvenience of being solved numerically 
and of being based on channel properties that are not 
yet completely known. 

Three saturating mechanisms are present in the 
model: one results from the odorant-receptor inter- 
action, the second from the conductance-to-voltage 
conversion, and the third from the voltage-to-firing 
conversion. Other nonlinearities can be present, re- 
lated for example to odorant transport (Kaissling, 1990; 
Hahn et al., 1994) and to the second-messenger sys- 
tem. The model assumes merely that the steps stud- 
ied are the limiting ones. Moreover, the model has 
been presented in the case where the saturation at a 
given level is reached before saturation at any previous 
level (see (38)). The alternative assumptions will be 

(1) The odorant-dependent conductance S at any point 
of the sensory dendrite was found to vary as 
a hyperbolic function of [A] according to (4) 
and consequently as a logistic function of log[A] 
(Fig. 2). The maximal conductance g,+, (6) is 
proportional to the total conductance 8, indepen- 
dent of the dissociation constant KI (Fig. 3b) 
and inversely related to the deactivation constant 
K2 (Fig. 3d), confirming the previous results of 
Kaissling (1987). The quantity gM plays a cen- 
tral role because it determines most of the func- 
tional properties of the model as shown in the 
following discussion. The dependence of S on 
[A] has been determined in voltage-clamp con- 
ditions in a vertebrate neuroreceptor (Menini et 
al., 1995) showing that it is not exactly hyper- 
bolic but is better described by a Hill equation. 
The origin of this cooperative feature remains to 
be determined. 

(2) The longitudinal profile of the receptor potential 
V(x) is nearly constant over the distal part of the 
sensory dendrite and begins to fall near its prox- 
imal end (see (14) and (15) and Fig. 4b). This 
profile is translated when the length 11 of the sen- 
sory dendrite is changed, provided that 11 is greater 
than about 0.3 space constants (Fig. 5). Under 
this condition, an almost complete description of 
the dependence of the receptor potential on 2 and 
[A] can be given by specifying V(x) at only two 
points, the proximal and distal ends of the sen- 
sory dendrite. The potential Vo at the distal end 
corresponds to the solution given by Kaissling 
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(1987, Fig. 32); it is a hyperbolic function of g 
(( 18) and Fig. 6a, b) with asymptotic maximum E 
and a (different) hyperbolic function of [A] ((21) 
and Fig. 6c, d), with maximum approaching E 
when go increases. However, the most relevant 
value of the receptor potential is VI, at the prox- 
imal end of the sensory dendrite, because it de- 
termines the potential at the spike trigger zone, 
VI exp(-/z). Potential VI is a nonhyperbolic func- 
tion of g (19) reaching more slowly its asymp- 
totic maximum E than VO (Fig. 6b). Also, unlike 
2 and VO, potential VI is not a hyperbolic func- 
tion of [A] ((25) and Fig. 6c, d), although it has 
also a horizontal asymptote at level VI,+, < E. 
Maximum VIM (26) slowly approaches E when 
gM increases. This dependence of V, on log[A] 
is in accordance with the experimental measure- 
ments of the sensillar potential, both curves dis- 
playing a less steep slope than that expected from 
a logistic function (see, e.g., Fig. 29 in Kaissling, 
1987). 

(3) Thejringfrequency f, unlikeconductance and po- 
tential, does not start at the origin but remains zero 
for all depolarizations of the trigger zone smaller 
than the firing threshold Sz or, equivalently, for all 
depolarizations VI smaller than S1 = Sz exp(lz). 
However, f quickly approaches a linear function 
of VI (36) with a slope inversely proportional to 
Sl , only limited by the refractory period (Fig. 7a). 
Consequently, f is a nonhyperbolic function of 
[A] ((37) and Fig. 7c), whose maximum f~ is 
proportional to VIM and inversely proportjonal to 
SI , and tends to E /SI for large gM The voltage-to- 
frequency conversion step appears to present two 
negative features. First, due to the passive segment, 
it codes a signal V2 that is weaker than those (V, 
and VI) resulting from the transduction process. 
Second, the original signal is either not converted 
below threshold or converted in a highly nonlin- 
ear way just above it, so that the model neuron is 
not an accurate encoder in this range of values of 
the receptor potential. The properties below and 
at the vicinity of the threshold being dominated 
by stochastic properties (see Section 3.4) only the 
right part of the curve can be meaningfully com- 
pared to experimental data. Like the sensillar po- 
tential, the curve of the measured frequency versus 
log[A] has a slope that is less steep than that of alo- 
gistic curve, which is in accordance with the model. 

It follows from the results for this model that an 
optimal encoder neuron for odorant intensity--that is, 
delivering signals over a wide band (up to gM, V, 
and fM)-would have small equilibrium dissociation 
constant K2, large total conductance 0 (by a combi- 
nation of high resting membrane resistance r,,,, large 
number [RT] of receptor proteins, large number r of 
channels per receptor and high channel conductance 
y), large equilibrium potential E, relatively short sen- 
sory dendrite (II about 0.3 space constant), passive 
dendrite as short as possible, and very small firing 
threshold S. Of course, the model did not take into 
account factors that are biologically important and can 
act in the opposite direction. For example, the sen- 
sory dendrite of the pheromone receptor cell is not 
only a voltage encoder but also a molecular collec- 
tor. The result of the model that increasing its length 
above about 30% of the space constant (that is, ca. 
100 pm, Kaissling, 1987) does not increase the re- 
ceptor potential at the axon initial segment suggests 
that its long length (up to 300 lrn, Kaissling, 1987) 
contributes mainly to increase the capture area for 
pheromone molecules. Consequently, receptors for 
odors for which molecularcapture is not so critical 
should not be so long. This is what is observed in 
moths with the receptor cells adapted to general odor- 
ants (such as plant odors) that are not detected at con- 
centrations as low as those for the pheromone sig- 
nal. The model suggests that the observed dendritic 
length in pheromone receptor neurons is not primar- 
ily explainable in terms of transduction or electrical 
processes. 

3.3. Sensitivity of Responses 

Whatever its magnitude, the more sensitive a response 
is, the less intense the stimulus needs to be to evoke 
it. To analyze the sensitivity of the responses, based 
on this definition, their relative magnitudes (that is the 
ratios g/gM, V/V, and f/fM) were plotted against 
log[A], which is the most practical measure of stimulus 
intensity. Then the curves could be directly compared 
within the same reference system and the gain (shift 
to the left, toward low concentrations) and loss (shift 
to the right) in sensitivity easily determined (Fig. 8). 
The following analysis is not rigorous for the small- 
est detectable concentrations discussed in paragraph 
(2) because, at these low concentrations, the valid- 
ity of the deterministic model is questionable (see 
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Section 3.4). Nonetheless these values are useful to 
know. 

(1) The positions of the response curves with respect to 
each other were first studied using the concentra- 
tion at half-maximum response log[A],,z, which 
gives the positions of the responses r along the 
intensity axis. First, it follows from the assump- 
tion that conductance is a linear function of the 
number of activated receptors that the activation- 
to-conductance conversion (transduction) has no 
effect on sensitivity; log [A]IAR*112 and log [A&,/z 
are equal, see (2). Second, the conductance-to- 
voltage conversion increases the sensitivity as evi- 
denced by the fact that the curve for V, is shifted by 
log( 1 +gM) to the left of the conductance curve, see 
(24). This effect is counteracted by the spreading 
of the voltage over the passive segment; the curves 
for V, and Vz, which are superimposed, are shifted 
to the right of V, by an amount that increases with 
gM, see (28), which means that the receptor po- 
tential at the spike generating segment is slightly 
less sensitive than that at the distal part of the den- 
drite. Nonetheless, unlike the transduction step, 
the conductance-to-voltage conversion shifts the 
receptor potential at any point along the dendrite 
toward lower concentrations. Third, the voltage- 
to-frequency conversion shifts the frequency curve 
to the right of the receptor potential curve accord- 
ing to (40), but the corresponding loss in sensitiv- 
ity appears to be small (Fig. 8). On the whole, 
for gM large enough, the gain in sensitivity is of 
the order of log(gM). It appears also that the dis- 
tance 12 of the axon initial segment to the proxi- 
mal end of the sensory dendrite has a weak effect 
on the sensitivity of the firing response as shown 
on Fig. 8 by the close proximity of the frequency 
curves for 12 = 0 and 12 = 1 space constant. The 
main conclusion of this analysis is that the gain 
in magnitude and the gain in sensitivity can be as- 
cribed to two distinct mechanisms-the activation- 
to-conductance conversion acting on the magni- 
tude of the signal and the conductance-to-voltage 
conversion on its sensitivity. All other conversion 
steps are either neutral or entail a cost in terms of 
gains. 

(2) The smallest concentration log [A],., at which the 
response r can be discriminated from 0 (sen- 
sory threshold) and the largest log [A],, at which 
it becomes indistinguishable from 1 (saturation 

(3) 

level) were formalized and located with respect 
to log [A]r,2. For all responses, except the lower 
value of firing frequency, the same criterion was 
used-that is r rising above baseline by an arbi- 
trary value E (e.g., 0.01) or reaching 1 - E (e.g., 
0.99) just below the upper asymptote. For the con- 
ductance the lower and upper concentrations are 
located symmetrically on both sides of log [A],,,, 
at log [A],,,flog E (Fig. 2b). This symmetry being 
a property of the logistic function, holds also for the 
potential V, with respect to log [A]vo,2. For the po- 
tential VI (Fig. 6d), the study of Eqs. (28), (3 1) and 
(32) shows that log [A]“,, and log [A]“,,? become 
asymmetrical for large gM with the first half-range 
from log[Alvl, to log[A]V,,2 being shorter than 
the second half-range. The frequency response 
curve (Fig. 7d) presents a similar asymmetry as a 
consequence of relations (39), (4 1) and (43). When 
go increases the threshold levels of VI and f re- 
main in a constant ratio and their saturation levels 
are almost the same (Fig. 9). The almost parallel 
decrease of these levels with gM show that dimin- 
ishing the threshold in this way diminishes also the 
saturation level. This suggests that different neu- 
ron types must encode weak and strong stimuli. 
The last characteristics are the dynamic ranges of 
the various responses, A, = log [A],, - log [A],, 
The last two conversion steps can increase the fixed 
range (4 log units) imposed by the logistic equation 
describing the early steps of the encoding process. 
It is significant, as shown in Fig. 9, that the dynamic 
range for VI, which represents the “useful” re- 
ceptor potential ultimately converted in a train of 
action potentials, increases with the maximum con- 
ductance change gM and that the dynamic range for 
f increases with gM and decreases with increasing 
Sl /E, which is another fundamental “tuning” con- 
stant of the neuron. The maximum dynamic range 
found in the model for both the receptor potential 
(at very large gM) and the firing frequency (at very 
small S, /E) is 5.7 log units. Although the order of 
magnitude is correct, this is less than the dynamic 
range of 6 or more log units that have been reported 
for frequency (e.g., Fig. 29 in Kaissling, 1987). 

.4. Future Developments 

Besides the problems related to neuron variable diam- 
eter, spike backpropagation into the dendrite, action- 
potential generator and cell environment, two major 
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developments are to be considered-the evolution of 
the neuron response in time and a stochastic general- 
ization of the model applicable to stimulation at low 
concentration. Both developments concern physio- 
logically significant features of sex-pheromone recep- 
tor cells, for example, because these neurons react at 
very low concentration and follow fast temporal vari- 
ations of the stimulus concentration known to occur in 
pheromone plumes. 

The present model describes the neuron at steady 
state only. It is known that the receptor potential of 
sex-pheromone receptor neurons reaches this state in a 
fraction of a second after the onset of stimulation, its 
half time-to-peak being 300 ms for weak stimulation 
and 50 ms for strong stimulation (Fig. 29 in Kaissling, 
1987). The evolution of the system toward equilib- 
rium was analyzed in a stochastic context by Lansky 
and Rospars (1993) and is also considered in Tuckwell 
et al. (1995). With solutions of the complete space- 
and time-dependent cable equation the model could be 
extended to stimulation varying in time. 

The transduction model studied is only an approx- 
imation at very low odorant concentration because 
enough receptor proteins must be activated in order 
to apply Eq. (2) (it describes a continuous-state model 
that holds only for [AR*] > 0, which implies that [RT] 
and [A] are also very high). A similar remark holds 
for the conductance change because it is also discrete 
as evidenced by the existence of elementary receptor 
potentials (Kaissling, 1994). When only a few occu- 
pied receptor sites play a significant role in the neu- 
ron behavior (Kaissling and Priesner, 1970; Kaissling, 
1971; Lynch and Barry, 1989; Menini et al., 1995; see 
also Lundstrom et al., 1993 and Lowe and Gold, 1995) 
a stochastic generalization of the odorant-receptor in- 
teractions must be used. 

In previous work (Lanskjr and Rospars, 1993; 
Rospars and Lansky, 1993) we described the reactions 
in (1) by a stochastic birth-and-death process (occu- 
pation) and a stochastic transition of fixed probability 
y (activation). Equation (11) in L&sky and Rospars 
(1993) for the steady-state mean number of activated 
receptors is to be compared with (2) above, with kr [A] 
and k-1 corresponding to the birth-parameter h and 
death-parameter EL. respectively. It can easily be shown 
that both equations are equal only if l/p = K2 and 
K2f1 = Kz---that is, if the probability p of activa- 
tion is very low, which implies, knowing the condi- 
tion (5) for equilibrium, that this model of activation 
is valid only in the special case [AR] >> [AR*]. This 

means that a fully satisfactory stochastic description 
of the receptor occupation and activation remains to 
be developed, a notoriously difficult problem (Nicolis 
and Prigogine, 1977). However stochastic modeling 
is achieved, it must be realized that stochastic mecha- 
nisms have the important property to lower the firing 
threshold [AIf, (Yu and Lewis, 1989; Gerstner and 
van Hemmen, 1992; Segundo et al., 1994; Lansky and 
Rospars, 1995). So, any satisfactory description of the 
dynamic range of neurons will have to take this feature 
into account. 

Appendix A: Number of Activated Receptor Sites 

According to the basic equation of chemical kinetics 
the velocities of the forward (VI, ~2) and backward 
(u-r, v-2) reactions in (1) are ui = -$$ = kt [A][R], 
u-] = 34 = kLl[AR], u2 = -d[A = k2[AR], 7~~ 

dt 

= d[ARI 2 k-2[AR*]. The equilibrium (steady state) is dt 
reached when ur = u-r and v2 = v-2. It implies that 

and 

[AI[Rl = (k-llkl)[ARl (44) 

[AR] = (k-z/kz)[AR*]. (45) 

Concentration [A] can be considered constant because 
the number of molecules A present in the vicinity of 
the membrane is permanently kept in equilibrium by 
diffusion from the outer space. Thus, [A] is not sig- 
nificantly decreased by the loss of some A to form 
AR. We do not assume the same property for recep- 
tor sites, so that the [RT] receptors can be in three 
states: 

[RT] = [RI + CARI + [AR*]. (46) 

Putting (46) in (44) and (45), we get [AR*] as a function 
of [A]; see (2). 

Appendix B: Cable Equation 
for a Sensory Dendrite 

We are interested in the spatiotemporal distribution 
V = V (X, T) of the receptor potential generated by an 
ion current that depends on the conductance G(X, T) 
in the sensory dendrite. When V is defined as mem- 
brane depolarization-that is, V = c - V,, where v 
is the actual membrane potential and V,. is the resting 
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potential-V is the solution of the cable equation (Rall, 
1989; Tuckwell, 1988, Ch. 4): 

r,, a2v 
---+r,,c,g+V = $ 

r; + r, ax2 
(ri Ii - r. I,>-, 

1 0 
(47) 

the differential Eq. (12). We solve this equation by im- 
posing the two boundary conditions, V(m) bounded 
and V’(0) = 0 (‘sealed end’). Equation (12) will be 
solved in regions 0 5 x < x1 and x > xi separately. 
Then the solutions will be connected to achieve conti- 
nuity of the potential and longitudinal current, 

where r,,, is the membrane resistance (L&cm), ri, r0 
are the resistances (R cm-‘) of internal and external 
mediums respectively, c, the membrane capacitance 
(F cm-‘), Zi = Zi (X, T) and Z, = Z,(X, T) are the ap- 
plied current densities (A cm-‘) in the internal and ex- 
ternal mediums. In the case of a passive cable (see Rall, 
1989), there is no applied current, Zi = Z, = 0, except 
if the experimenter injects a current with an electrode. 
In the case of a sensory dendrite, assuming that an ionic 
current Z flows inwardly through the open odorant- 
dependent channels and adopting the convention that 
the inward currents are positive, we have Ii = Z and 
Z,, = -I, and consequently the right hand side of (47) 
reduces to r, I: 

V(x,) = V(xT> 
(51) 

V’(x,) = v’(q). 

To get the complete solution of (12) we need to solve 
the homogeneous counterpart of (12). For 0 I x < xi 
it can be written in the form 

with solution 

vh = cl exp (-mx) + c2 exp (mx). (53) 

-~a’v+rmcm~+V=rmZ(X,T). (48) 
Yi + r. ax2 

The complete solution of (12) can be written in the 
form 

Now, the ionic current Z is Z (X, T) = G(X, r) x (E - 
V), where depolarization E = I? - V, corresponds to 
the reversal potential Z!? of the permeating ion. Us- 
ing the space constant h = 

J- 
* as unit of space, 

x = X/h, the time constant z =‘ric,, as unit of time, 
t = T/t, and the membrane conductance at rest r;’ as 
unit ofconductance, i.e., g(x, t) = r,nG(x, t), Eq. (48) 
becomes the dimensionless cable equation 

V(x) = cl exp ( - Jlfgx) 

Ei + c2 exp (Jlfgx) + ~ (54) 
1+g’ 

For x 1 xi, where g = 0, we have 

V(x) = dl exp(-x) + dz exp(x). (55) 

x = X/h and g(x) = r,,,G(x) (49) 
The constants cl, ~2, dl, and dz must be determined 

- $ + g + v = g(x, t)(E - V). 

from the boundary conditions. The condition of bound- 

(50) 
edness at x = 00 implies d2 = 0. Imposing the conti- 
nuity conditions (51) we obtain 

For steady-state solutions obtained with i3V/at = 0 
and g(x, t) = g(x), (50) reduces to (12). 

Appendix C: Steady-State Solution of the Cable 
Equation for Uniform Stimulation 
of the Sensory Dendrite 

cl exp (- Jlfgx) + c2 exp (mx) 

E2 
+1+g 

- = dl exp(-xi), (56) 

and 

We consider the case in which the proximal part of the 
cable (up to xi, corresponding to the sensory dendrite) 
is uniformily stimulated, g(x) = S, and the rest of the 
cable (from xi to infinity) is purely passive, g(x) = 0. 
The steady-state receptor potential V = V(x) satisfies 

-cimexp (- mx) + c2Jl+g 

x exp (mx) = -dl exp(-xi). (57) 

The condition of zero longitudinal current V’(0) = 0 
at x = 0 applied to (54) gives ci = c2 and combining 
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(56) and (57) we obtain Gerstner W, van Hemmen JL (1992) Universality in neural net- 
works: The importance of the ‘mean firing rate’. Biol. Cybern. 
67:195-205. 

, 

Getchell TV, Shepherd GM (1978) Responses of olfactory receptor 
cells to step pulses of odour at different concentrations in the 
salamander. J. Physiol. Land. 282521-540 

Getz WM, Akers RP (1995) Partitioning non-linearities in the re- 
sponse of honey bee olfactory receptor neurons to binary odors. 

EL? -- 
c’- 1+g 

x 1 

1 
@T-l) exp (-dTix,)i-(dlTf+*) exp (Jiq,) j 

and 

(58) 

d, = Ei 
- exph > 
1+g 

x 1 (JiT-1) exp (-g::~g+*) exp (Jigx,) + l I 
(59) 

Thus, for 0 I x 5 XI we get (14) and for x > XI, (15). 
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