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Abstmct 

Deterministic frontier analysis (DFA), stochastic frotiier analysis (SFA), and data envelopment analysis (DEA) 
arc alternative analytical techniques designed to measure the efficiency of producers. All three techniques were 
originally developed within a cross-sectional context, in which the objective is to compare the efficiencies of pro 
ducers. More recently all three techniques have been extended for use in a panel data context. In the latter context 
it is possible to measure productivity change, and to decompose measured productivity change into its sources, 
one of which is efficiency change. However when efficiency measurement techniques, particularly SFA, have been 
applied to panel data, it has infrequently been made clear what the objective of the analysis is: the measurement 
of efficiency, which may vary through time as well as across producers, or the measurement and decomposition 
of productivity change. In this paper I explore the use of each technique in a panel data context. I find DFA and 
DEA to have achieved a more satisfactory reorientation toward productivity measurement than SFA has. 

I@words. Efticienq measurement, productivity change, detenninktic frontier analysis, stochastic frontier analysis, 
and data envelopment analysis 

1. Introduction 

Nearly 40 years ago Farrell (1957) showed how to measure the relative technical and eco- 
nomic efficiency of a sample of producers. More recently, Farrell’s innovative work has 
been extended and refined, and we now have three empirical methodologies for the measure- 
ment of relative efficiency. Deterministic frontier analysis (DFA) (Aigner and Chu 1968) 
measures efficiency relative to a deterministic parametric frontier. Stochastic frontier analysis 
(SFA) (Aigner, Love11 and Schmidt 1977, Meeusen and van den Broeck 1977) measures 
efficiency relative to a stochastic parametric frontier. Data envelopment analysis (DEA) 
(Charnes, Cooper, and Rhodes 1978) measures efficiency relative to a deterministic non- 
parametric frontier. Each methodology has its strengths and weaknesses, but it is probably 
fair to say that SFA and DEA are generally preferred to DFA, which is neither stochastic 
nor nonparametric. ’ 

Farrell illustrated his ideas with an application to U.S. agriculture, using cross-sectional 
data to compare the efficiency of producing units. Since then many hundreds of studies 
have appeared, applying DFA, SFA, or DEA to cross-sectional data to measure the relative 
efficiency of producing units. In a cross-sectional context the objective of the exercise is 
clear, and the interpretation of the results is relatively straightforward, regardless of the 
methodology used. However, the drawback of a cross-sectional analysis is that it provides 
only a snapshot of a process which evolves through time. Consequently a cross-sectional 
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analysis provides only a partial, and possibly a misleading, evaluation of the relative per- 
formance of the producers under investigation. 

For this reason all three methodologies have recently been applied to panel data. DFA 
was perhaps first applied to panel data by F&sund and Hjalmarsson (1979a, 1979b), SFA 
by Pitt and Lee (1981) and Schmidt and Sickles (1984), and DEA by Chames et al. (1985) 
and, in a much more informative way, by Fare et al. (1994). The great advantage of having 
access to panel data is that they offer the opportunity of providing a much more detailed 
evaluation of the relative performance of the producers under investigation. In a panel data 
context it is possible to measure the productivity change of each producer, and to decompose 
measured productivity change into its sources, one of which is efficiency change. Efficiency 
measurement techniques would therefore appear to be ideally suited to this task. Unfortu- 
nately, while they have been used to measure efficiency, and occasionally efficiency change, 
they have rarely been used to measure and decompose productivity change. Not only has 
an opportunity been lost, it is difficult to interpret the results of such an exercise, since 
the measured effects of efficiency change are apt to be confounded with the unmeasured 
effects of other sources of productivity change. 

In this paper I review the extension of each methodology from an application to cross 
section data for the purpose of measuring relative efficiency to an application to panel data 
for the purpose of measuring and decomposing productivity change. I find surprisingly 
few instances in which panel data have been fully exploited to measure and decompose 
productivity change. More typically, panel data have been used simply to produce better 
measures of efficiency or of efficiency change. The problem with this approach is that these 
measures may not be better after all, since they are likely to incorporate the unmodeled 
effects of other sources of productivity change. 

The paper is organized as follows. In Section 2 I briefly present an analysis of productiv- 
ity change and its decomposition. In Section 3 I discuss the application of DFA to panel 
data, in Section 4 I discuss the application of SFA to panel data, and in Section 5 I discuss 
the application of DEA to panel data. In Section 6 I summarize and conclude. 

2. A Model of Productivity Change and its Decomposition 

I assume for simplicity that producers use J inputs x = (x1, . . . , xJ) to produce a single 
output y. The extension to multiple outputs is straightforward. Producers are not required 
to be technically efficient, and so 

wheref(x, t) = max{y: (x, y) E S’} is the production frontier; St is the set of all techno- 
logically feasible input-output combinations at time t; t = 1, . . . , z and t is a time index 
which serves as a proxy for technical change. An output-oriented measure of the technical 
efficiency of a producer is given by 

TE,(x, y, t> = y&x, t) 25 1. 
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If only (x, y, t) are observed, then a measure of productivity change is provided by 

up = S(X, t) + T~~(X, Y, t) + [Ej ej(X, t) - l]Cj~(n, t);j, (3) 

where a dot over a fimction or a variable indicates a time rate of change, ej(X, t) = 
aInf(~, t)l6’lmj is the output elasticity of input Xj, Cjej(X, t) is the scale elasticity, and 
;I(X, t) = ej(n, t)lCjej(x, t). Thus productivity change decomposes into three sources: 
technical change, output-oriented technical efficiency change, and scale economies. 

The expression above exploits only (x, y, t) information. If information on input prices 
is available, and if producers seek, not necessarily successfully, to utilize their inputs in 
an allocatively efficient manner, then Bauer (1990) has shown that an alternative measure 
of productivity change is given by 

T$P = f(~, t) + TI!?Jx, y, t) + Cj[ej(X, t) - Sj]kj, (4) 

where Sj = WjXjlCjWjXj is the actual cost share of input Xj, Wj being the exogenously deter- 
mined price of input xj. Productivity change again decomposes into three sources: technical 
change, outputoriented technical efficiency change, and a term that combines the effects of 
scale economies and input allocative inefficiency. If inputs are utilized in an allocatively effl- 
cient manner, the third team becomes a pure scale effect equal to (ezi - l)CjSj(Y, w, t)ij, 
where the cost elasticity ecY = alnC(y, w, t)lalny provides a dual measure of scale 
economies, Sj(y, W, t) = WjXj(y, W, r)lC(y, W, t) is the allocatively efficient cost share 
of input Xj, and C(y, w, t) is the cost frontier dual to the production frontier f(x, t). Thus 
under input allocative efficiency expressions (3) and (4) coincide, and productivity change 
is attributed to technical change, output oriented technical efficiency change, and scale 
economies. Under input allocative efficiency and constant returns to scale, the third terms 
in (3) and (4) vanish, and productivity change consists solely of technical change and output- 
oriented technical efficiency change. 

When input price information is available, and a behavioral objective of cost minimiza- 
tion is imposed on producers, a more detailed decomposition of productivity change can 
be obtained. The cost efficiency of a producer can be expressed as 

CE(y, X, W, t) = C(Y, W, t)IcjWjXj 

= TEi(y, x, t) l AEi(y, x, w, 0. (5) 

where TEj ( y, n, t) I 1 is the input-oriented technical efficiency of a producer and AEi ( y, 
X, w, t) I 1 is the input allocative efficiency of a producer. Again following Bauer, produc- 
tivity change can be expressed in terms of the cost frontier as 

TPP = [I - eQ(y, W, t)]j + fEi(y, X, t) + kEi(y, X, W, t) 

- C(Y, W, t) + Cj[Sj - Sj(Y, WV t)]iVj. (6) 

Productivity change now decomposes into five sources: a term incorporating the effect 
of scale economies, a pair of terms reflecting changes in input-oriented technical efficiency 
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and input allocative efficiency, a term reflecting the effect of technical change, and an input 
price effect term which is zero if the producer is allocatively efficient, or if all input prices 
change at the same rate. Thus, under input allocative efficiency the third and fifth terms 
vanish, and productivity change is once again attributable to scale economies, technical 
efficiency change, and technical change. 

If panel data are available, it is possible to evaluate the performance of each producer 
in the sample in terms of productivity change. It is also possible, at least in principle, to 
decompose each producer’s measured productivity change into three general sources: tech- 
nical change, efficiency change (technical, or technical and allocative), and scale economies. 
If only input and output quantity data are available, the evaluation would be based on the 
production frontier, using equation (3), while if input price data were also available, the 
evaluation could be based either on the production frontier, using equation (4), or on the 
cost frontier, using equation (6). In any case, efficiency change would be a potential source 
of productivity change. 

3. The Application of DFA to Panel Data 

Let the scalar output of producer i in period t be yit, and let the jth input of producer i 
inperiodtbexji,,wherei=l ,..., kt=l,..., zandj=l,..., J.Then,following 
Forsund and Hjalmarsson (1979a, 1979b, 1987), a deterministic homothetic Cobb-Douglas 
production frontier may be written as 

(a1 - h Olnyit + @2 - &t)y~~ I a, + b,t + Cj(Cj - djt)lXlXji,, (7) 

where Cj ( cj - djt) = 1, t = 1, . . . , T Despite the Cobb-Douglas kernel common to all 
producers, this formulation is remarkably flexible. The parameters al and a2 transform 
the linearly homogeneous kernel frontier into a homothetic frontier, and allow for output- 
dependent returns to scale. The parameters b, and b2 allow the scale elasticity, and hence 
the magnitude of technically optimal scale, to be time-dependent. The parameter b3 allows 
for neutral technical change, and the parameters dj (j = 1, . . . , J) allow for input-biased 
technical change. 

The parameters may be calculated by solving the linear programming problem 

min C;C,[CZ, + b,t + Cj(Cj - djt)lnx,, - (ai - b, t)lnyj, - (CZ~ - bzt)yi,], (8) 

or the analogous quadratic prog ramming problem min Ci C, [.12. Either program is solved 
subject to the N. T nonnegativity constraints [a, + b,t + Cj(Cj - djt)lnxjir - (al - 
b, t)lnyi, - (a2 - b2 t)yit] 2 0, which guarantee that all producers operate on or beneath 
the production frontier; the T linear homogeneity constraints Cj(cj - djt) = 1, t = 1, 
. . .) c and whatever other parameter restrictions are deemed appropriate. The relative 
technical efficiency of each producer in each period is calculated from the optimal slacks 
in the N* Tnonnegativity constraints. The magnitude of scale economies and the magnitude 
of technical change, as well as its scale bias and the nature of its input bias, are all deter- 
mined by the calculated parameter values. This provides all the information required to 
measure and decompose producitivity change along lines suggested in equation (3) above. 
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If input price data are available, and if cost minimization is an appropriate behavioral 
objective, it is possible to use DFA techniques to calculate the parameters of a cost frontier, 
and to calculate the contribution of the change in cost efficiency to productivity change, as 
in equation (6) above. I am not aware that this has been accomplished. Alternatively, if 
producers use a single input to produce multiple outputs, it is possible to use DFA tech- 
niques to calculate the parameters of an input requirements frontier, and to calculate and 
decompose productivity change. Bjurek (1994; Ch. 3) has done so for a panel of Swedish 
social insurance offices. Finally, if producers use multiple inputs to produce multiple out- 
puts, it is possible to use DFA techniques to calculate the parameters of a distance function, 
and to calculate and decompose productivity change. Althin, Faie and Grosskopf (1994) 
have done so for a panel of Swedish pharmacies. 

The great strength of the DFA approach is its ability to calculate efficiency change and 
technical change, to distinguish one from the other, and to assess their separate contribu- 
tions to productivity change. This is, after all, a fundamental objective of the analysis of 
panel data. However the DFA approach does have a drawback: it is deterministic, and so 
is capable of confusing the unfortunate but likely effects of omitted variables and measure- 
ment error with the desired effects of efficiency change and technical change. This is an 
old complaint made of both parametric and nonparametric deterministic models, and I shall 
not dwell on it except to say that confidence in the findings would be enhanced by resort 
to some type of sensitivity analysis. FBrsund and Hjalmarsson (1987) recommend a sensi- 
tivity analysis consisting of the removal from each cross section of the producer having the 
largest dual variable corresponding to the nonnegativity constraint in that time period, and 
then resolving the programming problem with (N - 1) * T observations. Bjurek recom- 
mends bootstrapping as a means of conducting a sensitivity analysis. Bjurek’s calculations 
are fairly robnst, with 50 resamples generating approximately the same calculated rates 
of productivity change. 

4. The Application of SFA to Panel Data 

For many years econometricians have been using panel data to estimate flexible production 
or cost functions, and to measure and decompose productivity change. A good illustration 
of the methodology is Gollop and Roberts (1981). However since it isfitzctions rather than 
frontiers which have been estimated, producers are implicitly assumed to be efficient, and 
so efficiency change makes no contribution to productivity change, which is attributed en- 
tirely to technical change and scale economies. For almost as many years, other econometri- 
cians have been using panel data to estimate production or cost frontiers, for the purpose 
of estimating efficiency (and occasionally efficiency change), but rarely for the purpose 
of measuring and decomposing productivity change. 

There are many different SFA panel data models. All are based on a relationship of the 
general form 

Yir = f&it; B> exp (Vi, - 417 

where Xi, = &lit, . . . , nJi,>. the functionf(xi,; /3) is the deterministic kernel of the stochas- 
tic production frontier [f(Xit; @exp {Vir}]) w h ere @ is a vector of technology parameters 
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to be estimated and vir is a normally distributed error term intended to capture the effects 
of statistical noise. The term exp { -Ui} = y&f(~i,; @)exp (Vii}] 4 1, and corresponds to 
TE,(y, x, t) in equation (2) above. In this formulation technical inefficiency is producer- 
specific but time-invariant, and no provision is made for technical change. This model is 
suitable only for very short panels. 

Perhaps the simplest way to generalize (9) is to allow the error component representing 
technical inefficiency to be time-varying, and to make some assumptions concerning its struc- 
ture. Following Kumbhakar (1990), Battese and Coelli (1992) proposed replacing ui with 

Uil = exp(-a(t - T))Ui. (10) 

The model given by (9) and (10) can be estimated using maximum likelihood techniques, 
once a functional form for f(Xi,; /3) is specified and distributional assumptions on vi, (nor- 
mal) and Ui (typically half-normal or truncated normal) are made. In this formulation Uit in- 
creases (decreases) through time toward its terminal value of Ui according as a < 0 ( > 0). 
The simplicity of the parameterization in (10) implies that, although each producer has 
its own terminal level of technical efficiency, exp (--z+} , every producer has the same time 
pattern of technical efficiency change, exp{ -a(t - T)} . Moreover, no behavioral or insti- 
tutional motivation has been offered for the time variance of technical efficiency. 

The model given by (9) and (10) is restrictive in that productivity change is attributed 
exclusively to scale economies and efficiency change, the time path of which is monotonic 
and common to all producers. Monotononicity can be relaxed by generalizing the function 
exp { -a(t - T)), although at a cost of increased complexity of estimation. It is also possi- 
ble to add a time index to (9), in an effort to incorporate the effects of neutral technical 
change. However in this case identification of the separate effects of neutral technical change, 
which is common to all producers, and neutral technical efficiency change, which is also 
common to all producers, would be problematic. Interacting the time index with other re- 
gressors would help, by deneutralizing technical change, but also at a cost of additional 
parameters to be estimated. 

Comwell et al. (1990) adopt a different approach. Rather than model technical ineffi- 
ciency through an error component, they model it through the intercept of the production 
frontier. If the intercept in (9) is @,, then it is possible to specify 

Pi* = /3, - Ui* = ail + Ui2t + CZi3t2. (11) 

In this formulation each producer has its own intercept, which is allowed to vary quadratically 
through time at producer-specific rates. The technical inefficiency of a producer in a time 
period is obtained from the estimated intercepts by means of the normalization Uir = 
[lllilXi{Pi~) - Pi,], i = 1, . . . , Z, t = 1, . . . , T. Cornwell et al. discuss various estimation 
strategies, but the problem is not so much one of estimation as it is one of interpretation. 
One interpretation is that the parameters in (11) represent producer-specific levels of, and 
trends in, technical efficiency; in this case productivity change is producer-specific, but 
is attributed entirely to scale economies and efficiency change. An alternative interpretation 
is that the Ui, = [maxi {pit } - pit] represent producer-specific initial (or persistent) levels 
of inefficiency, and that the Uir (t = 2, . _ . 7) represent producer-specific technical change; 
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in this case productivity change is also producer-specific, but it is attributed entirely to 
scale economies and technical change. Writers have offered contradictory interpretations; 
see, for example, Cornwell et al., and Good, Roller and Sickles (1995). There is no easy 
way to empirically distinguish between the two interpretations. 

Kumbhakar, Heshmati and Hjalmarsson (1995) provide an empirical comparison of the 
performance of the Battese and Coelli and the Comwell et al. models using panel data 
on Colombian cement plants. They find substantial variation in estimated patterns of technical 
change and technical efficiency change across the two models, but they offer no insight into 
the possible causes of this variation that would heIp in sleeting between the two models. 

Heshmati and Kumbhakar (1995) and Heshmati, Kumbhakar and Hjalmarsson (1995) 
specify a stochastic production frontier model like that in equation (9), with a trend variable 
included among the regressors. They also add a producer-specific error component to cap- 
ture time-invariant heterogeneity among producers. It is not possible to determine if this 
effect measures the contribution of inputs which vary across producers but not through 
time, or if it measures producer-specific persistent technical inefficiency. Fortunately, the 
interpretation of this effect is irrelevant for the measurement and decomposition of produc- 
tivity change. Finally, they assume that Uif has a truncated normal distribution. By includ- 
ing a trend variable among the regressors, they resolve the interpretation problem in the 
Cornwell et al. specification, since the trend variable is associated with technical change 
and the error component Uif is associated with technical efficiency, which is allowed to 
vary across producers and through time. This specification thus enables estimation of the 
contributions of technical change, technical efficiency change and scale economies to pro- 
ductivity change. 

Each of the above approaches can be applied to a cost frontier context, by replacing 
technical efficiency with cost efficiency, and my remarks on each approach would stand. 
However cost functions are typically estimated as part of a system consisting of the cost 
function and all but one of its associated input share equations, and it would be desirable 
to estimate a cost frontier as a part of the same system. Bauer attempted to estimate a full- 
blown translog cost system incorporating the effects of scale economies, technical change 
(by including a trend term among the regressors) and cost efficiency change (modeled with 
a nonnegative truncated normal error component on the cost frontier), and then to decom- 
pose measured productivity change as in equation (6) above. He was able to distinguish the 
separate effects of scale economies, technical change, and cost efficiency change, among 
others, but he was unable to distinguish the effbcts of technical efficiency change from those 
of input allocative efficiency change. Moreover, he was forced to assume that the cost ineftl- 
ciency error component was independent of the share equation errors, which is inconsistent 
with the notion that a part of cost inefficiency is allocative in nature. However Kumbhakar 
(1995) has recently developed an analytically consistent formulation of the model, in which 
an exact relationship is derived between input allocative inefficiencies and their cost. Fare 
and Primont (1996) have demonstrated that this exact relationship must hold for any cost 
function. This development breathes new life into what was once considered a promising 
approach to the use of SFA to measure technical and input allocative efficiency, and to 
measure and provide a more complete decompositoon of productivity change. 

The great virtue of SFA, and its main advantage over the other two approaches, is that 
it is stochastic. Only this approach is capable of distinguishing the effects of statistical noise 
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from those of inefficiency. The primary drawback of SFA is that it is parametric; not only 
is the structure of technology parameter&d, frequently so too is the structure of ineffi- 
ciency. When f&d with the inevitable trade-off between parsimonious but inflexible param- 
eterizations, and flexible parameterizations which consume degrees of freedom and create 
collinearity problems, scholars have tended to opt for the former alternative. But this leads 
to a confounding of inefficiency with specification error caused by the use of overly restrictive 
functional forms. The singular advantage of being able to distinguish noise from inefficiency 
is of&et by the disadvantage of being unable to distinguish inefficiency from inappropriate 
fimctional forms. 

5. The Application of DEA to Panel Data 

Let Yit = IY1it, . . . , YKir] ’ be a K - 1 vector of outputs of producer i = 1, _ . . , Z in period 
t= 1, . . . . x and let Xir = [xrir, . . . , x./it] ’ be a .Z * 1 vector of inputs of producer i = 1, 
. . .) Zinperiodt = 1, . . ., T. Then, in keeping with the output orientation in Sections 3 
and 4, an output-oriented DEA envelopment problem for producer o in period t can be 
expressed as 

max 0 subject to 0Yot 5 Ci AirYif 

Ci X[tXir I X& 

Ai, 1 0. (12) 

Solving this linear programming problem Ztimes in period t generates technical efficiency 
scores for each producer in period t. A producer is judged to be technically inefficient 
unless 0 = 1 and no slacks are present in the functional constraints to problem (12). Solv- 
ing this problem Z times separately for each time period does not generate information 
on efficiency change for each producer, since comparison sets change from time period 
to time period. Pooling the data and solving this problem Z * Ttimes does generate infor- 
mation on efficiency change for each producer, because there is only one comparison set, 
the pooled data set. However in this case technology is assumed to be unchanging, and 
so productivity change is attributed entirely to technical efficiency change. 

A method for detecting trends in efficiency scores is provided by the window analysis 
methodology of Charnes et al. (1985). In this approach the entire set of T time periods 
is divided into a sequence of overlapping subperiods of equal length. The first subperiod 
might consist of periods (1, . . . , S} , the second subperiod would then consist of periods 
(2, ma.9 S + l}, and so on through periods (T - S + 1, . . _ , T} . The DEA problem is 
solved I* S times in each subperiod, after which the average efficiency score of each pro- 
ducer can be tracked through the sequence of overlapping subperiods. This provides evi- 
dence on the trend in efficiency for each producer relative to a technology that is changing 
through the sequence of overlapping subperiods. However it provides no evidence on the 
nature of the technical change, and little information on productivity change. 
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The nonparametric strength of DEA was exploited to a much greater degree by F&e 
et al. (1994), who used linear programming techniques to calculate and decompose a Malm- 
quist (1953) productivity index. There are several approaches to constructing such an in- 
dex; here I follow Fare, Grosskopf and Love11 (1994). One variant of an output-oriented 
Malmquist productivity index can be written as 

where TEL(Xi,, yl:, I C) is the output-oriented technical efficiency of producer i in period t, 
defined relative to a constant returns to scale technology prevailing in period t, TEi”(x,, 
yi, I C) is the output-oriented technical efficiency of producer i in period t, defined relative 
to a constant returns to scale technology prevailing in period t + 1, and so on. M:(e) is 
the geometric mean of a pair of adjacent-period Malmquist productivity indexes; the first 
measures productivity change between periods t and t + 1 using period t technology as 
a reference, and the second measures productivity change between periods t and t + 1 
using period t + 1 technology as a reference. Mz(-) is greater than, equal to, or Iess than 
unity according as productivity growth, stagnation, or decline has occurred for producer 
i between periods t and t + 1. 

One virture of Mfc) is that it decomposes into the product of three components of pro- 
ductivity change, as follows 

X,+1 10 . TE:+‘(&, yi,l C) 
TE%it+ 1, Ft+ 11 Cl G&L X:., 1’3 1 “* (14) 

The first component of Mz(*) provides a measure of the change in the technical efficiency 
of producer i between periods t and t + 1, measured relative to variable returns to scale 
technologies prevailing in each period. The second component provides a measure of the 
change in the scale efficiency of producer i between periods t and t + 1. It shows whether 
producer i is moving closer to or farther away from technically optimal scale, and provides 
a measure of the contribution of scale economies to productivity change. The third compo- 
nent provides a measure of technical change between periods t and t + 1 in a region of 
the data occupied by producer i. Fare et al. (1995) showed that the technical change com- 
ponent can be decomposed into a magnitude component, an output bias component and 
an input bias component. Thus the Malmquist index provides a measure of productivity 
change, and provides an attribution of productivity change to components associated with 
technical efficiency change, scale economies and the magnitude and biases of technical 
change. Each component is greater than, equal to, or less than unity according as it contrib- 
utes positively, not at all, or negatively to productivity growth. 
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The Malmquist productivity index M:(s) and its components are based on output- 
oriented measures of technical efficiency. DEA provides a nonparametric method of calcu- 
lating these measures. Implementation requires that a total of six efficiency scores be calcu- 
lated for each producer; this number rises to eight if the technical change component is 
decomposed. TEL(Xi,, &I v) is the objective in equation (12). The remaining efficiency 
scores are obtained either by deleting the convexity constraint Ci hi, = 1 or by modifying 
the comparison set. 

The DEA-based Malmquist productivity index has a number of virtues. First and foremost, 
it is nonparametric, unburdened by the functional forms required in DFA and SFA. Conse- 
quently it avoids the risk of confounding the effects of each component of productivity 
change with those of an inappropriate functional form. Second, being based on DEA, it 
naturally accommodates multiple outputs as well as multiple inputs without having to resort 
to price data and a value dual representation of technology. Although the Malmquist frame- 
work is entirely general, and can be implemented using DFA, SFA, or DEA, the fact of 
the matter is that DFA and SFA rarely have been used within a Malmquist framework. 
Third, the DEA-based Malmquist productivity index is a local index, and so productivity 
change and each of its sources are allowed to be producer-specific as well as time-varying, 
and the temporal patterns are totally unrestricted. Fourth, it decomposes into three (or five) 
measurable sources of productivity change. The only real drawback of the index is that 
it is deterministic; see my comments above concerning DFA, and see Atkinson and Wilson 
(1995) and Burgess and Wilson (1995) for recent applications of bootstrapping to DEA- 
based Malmquist productivity indexes. 

6. Summary and Conclusions 

DFA, SFA, and DEA each gained popularity as alternative methodologies for obtaining 
evidence concerning the relative efficiency of a sample of producers, based on a single 
cross section of data. Given the obvious limitations of cross-sectional data, and in light 
of the growing availability of panel data, applications of each technique based on panel data 
have recently appeared. Unfortunately (from my perspective), the large majority of SFA 
panel data applications have been oriented toward providing better estimates of efficiency 
and its change, rather than toward providing new estimates of the components of productiv- 
ity change. This is less true of the relatively few DFA panel data applications, and not 
at all true of the rapidly growing number of DEA panel data applications. 

In this paper I have attempted to evaluate the three approaches, in terms of their respec- 
tive abilities to exploit the panel nature of the data to provide evidence concerning the mag- 
nitude and sources of the productivity change of producers. Despite its evident flexibility, 
and its appealing and longstanding orientation toward productivity measurement, I find 
the DFA approach to be heavily burdened by being both deterministic and parametric. This 
has no doubt contributed to its relative lack of popularity. The SFA approach has the great 
advantage of being the only stochastic approach among the three, but parameterization has 
been a problem, and it has not yet oriented itself toward productivity measurement. When 
the inevitable reorientation arrives, I believe that SFA will achieve equal status with DEA, 
which has exactly the opposite advantages and disadvantages, but for which the reorienta- 
tion arrived in 1989. 
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