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Abstract 

This paper is an empirical study of the uncertainty associated with technical efficiency estimates from stochastic 
frontier models. We show how to construct confidence intervals for estimates of technical efficiency levels under 
different sets of assumptions ranging from the very strong to the relatively weak. We demonstrate empirically 
how the degree of uncertainty associated with these estimates relates to the strength of the assumptions made 
and to various features of the data. 
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1. Introduction 

This paper is a comprehensive study of methods of inference associated with technical effi- 
ciency estimates in the stochastic frontier model. We seek to characterize the nature and the 
empirical magnitude of the uncertainty associated with the usual estimates of efficiency levels. 

From our perspective, deterministic approaches (e.g., data envelopment analysis (DEA)) 
produce efficiency measures, while statistical approaches (stochastic frontier models) pro- 
duce efficiency estimates. The relative strengths and weaknesses of these approaches have 
been vigorously debated, and will continue to be. However, the strongest argument in favor 
of a statistical approach has always been that it provides a straightforward basis for infer- 
ence, not just for point estimates. Thus, for example, one can construct standard errors 
and confidence intervals for estimates of technical efficiency. A statistical approach recog- 
nizes that uncertainty exists and is capable of quantifying it. In our view, uncertainty also 
exists within the deterministic approach, but methods of characterizing and quantifying 
it are still not well developed. Consistency of the DEA estimates has been established by 
Banker (1993) and by Korostelev, Simar, and Tsybakov (1992, 1995). Korostelev, Simar, 
and Tsybakov also establish the rate of convergence of the estimates, and Banker (1995) 
considers certain types of hypothesis tests. These results are important but they do not lead 
to confidence intervals. Confidence intervals can be constructed by bootstrapping the DEA 
estimates; for example, Simar and Wilson (1995) give some theoretical results and an em- 
pirical example. However, in our view bootstrapping procedures are an imperfect substitute 
for an adequately developed distributional theory. 

Ironically, the ability to conduct inference on efficiency estimates in stochastic frontier 
models has previously been noted approvingly, but has never been systematically exploited 
in an empirical setting. This paper seeks to fill this void and, in doing so, advances our 
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understanding of the various sources of uncertainty inherent in econometric models for 
efficiency estimation. 

Of course, the strength of the econometric approach comes at a cost: Strong and often 
arbitrary distributional assumptions are necessary to extract technical efficiency estimates 
and ultimately to construct confidence intervals. Therefore, a major aim of this paper will 
be to show how to perform inference on efficiency estimates under different sets of assump- 
tions that range from the very strong to the relatively weak, and to see how the degree 
of uncertainty associated with these estimates relates to the strength of the assumptions 
made. Some of the methods we discuss require panel data. Most make specific distribu- 
tional assumptions for statistical noise and technical inefficiency. However, we also make 
use of the methodology of multiple comparisons with the best (MCB), developed by Edwards 
and Hsu (1983) and applied to stochastic frontiers by Horrace and Schmidt (1994), which 
uses panel data to construct confidence intervals without the need for strong distributional 
assumptions. 

In this paper, technical efficiency estimates and their confidence intervals are generated 
for three different panel data sets with different dimensional characteristics, using several 
formulations of the stochastic frontier model. We analyze these panel data as complete 
data sets and also in some cases broken down into their component cross sections to con- 
struct confidence intervals for technical efficiency estimates using different interval construc- 
tion techniques. The results highlight the relevant strengths and weaknesses of the various 
techniques and data configurations, and also identify a few modeling assumptions that may 
be problematic. The paper addresses practical aspects of interval construction that may 
present problems for the data analyst. 

The plan of the paper is as follows. Section 2 briefly reviews the stochastic frontier model 
as it relates to this paper. Section 3 reviews three interval construction techniques: the Jon- 
drow et al. (JLMS) (1982) method, the Battese-Coelli (BC) (1988) methods, and the MCB 
method. Section 4 is an empirical analysis of three panel data sets for which we construct 
confidence intervals for technical efficiency estimates. Section 5 summarizes and concludes. 

2. Stochastic Frontier Models 

Stochastic frontier models were originally due to Aigner, Lovell, and Schmidt (1977) and 
Meeusen and van den Broeck (1977). These models were based on cross-sectional data and 
strong distributional assumptions. Similar models have also been developed for panel data. 
Pitt and Lee (1981) and Schmidt and Sickles (1984) were the first to exploit the advantages 
of panel data over cross-sectional data. Since this is not intended to be a comprehensive 
survey, the reader is referred to Cornwell and Schmidt (1995), Greene (1995), Lovell(1993), 
Lovell and Schmidt (1988), and Schmidt (1985) for further details. In this paper we make 
use of several formulations of the stochastic frontier model, which are given below. 

The basic model that we will consider is as follows. 

yir = (Y + XitP + Vir - Z4i, Ui 1 0; i = 1, . . . , N, t = 1, . . . , T. (1) 

Here i indexes firms (or other productive units) and t indexes time periods. Typically yi* is 
the logarithm of output and xiit is a vector of inputs or functions of inputs. Vi, is statistical 
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noise and Ui 2 0 represents technical inefficiency, assumed to be time invariant. More 
specifically, if yii is the logarithm of output, technical efficiency of the ith fiim is TEi = 
exp(-uJ and technical inefficiency is 1 - TEi. We will refer to the composite error as 
Qt = vi, - ui. We will always assume the following: 

(A.l) The Vi, are iid N(0, 0,‘). 
(A.2) Xir and vjs are independent for t, s = 1, . . . , T, i, j = 1, . . . , A? 

We will sometimes but not always make the additional assumptions: 

(A.3) The Ui are independent of x and v. 
(A.4) Ui = 1 Ui 1) where the Ui are iid N(0, 0,‘). 

Assumption (A.4) implies that the Ui are half-normal, but this assumption could be re- 
placed by other specific distributional assumptions, as in Stevenson (1980) or Greene (1990). 

Now define (Yi = CY - Ui, SO that (Yi I CY for all i. Then we can rewrite (1) as the usual 
panel data model 

Yit = ai + 4tP + Yt9 i=l , -.-, N,t= 1, . . . . T. (2) 

We regard zero as the absolute minimal value of Ui, and hence a! as the absolute max- 
imal value of Cyi, over any possible sample (essentially, as N + 03). This can be distin- 
guished from the minimal value of ui and the maximal value of cri in a given sample of 
size N, and this distinction is relevant when N is small and the Ui (hence pi) are treated 
as fixed. Let crtil 5 oPl I . . . I atN1 be the population rankings of the oi, so aIN = 
IIMXE~ oi, and cu[Nl I CY. Similarly, let utNl I u[N-tl I . . . 4 utIl be the population 
rankings of the Ui, so that utN1 = min~=,ui, and utNl 1 0. Then util = a! - crtil. In this 
case the technical efficiency measures Ui are defined by comparing cri to the absolute star- 
dard (11. We can consider the alternative of comparing oi to the within-sample standard 
CY[N]. Define Z&T = CYAN] - oi = Ui - ~t,vl, SO that 0 I u: I Ui- Then equation (2) can 
be rewritten as: 

Yir = a[N] + -$r P + Yt - $3 i = 1, . . . , N, t = 1, . . , T. 

The difference between the two definitions of u is substantive and will be considered 
further in the sequel. Each formulation lends itself to particular estimation techniques that 
will be exploited in this paper. We now examine several estimation techniques for these 
models in both the cross-sectional and panel data cases. 

2.1. Cross-Sectional Data 

In the case of a single cross section, T = 1 and t is irrelevant and can be suppressed. Under 
assumptions (A. l)-(A.4), the model as given in equation (1) can be estimated by maximum 
likelihood (MLE). Details of this estimation, including the likelihood function, can be found 
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in Aigner et al. (1977) and will not be addressed here. MLE of equation (1) yields 6, 
67 4, and (;,, which are consistent as N -+ 03. 

Define F = E(ui) 1 0. Under assumption (A.4), p = (7r/2)lna,. Ordinary least squares 
(OLS) applied to equation (1) yields consistent estimates of ((11 - F) and @. The corrected 
ordinary least squares (COLS) method constructs a consistent estimate of CY by adding a 
consistent estimate of p to the OLS intercept. This requires a consistent estimate of a,, 
say Gu, which can be derived from the third moment of the OLS residuals. Also a consis- 
tent estimate of (T” can be derived from the second moment of the OLS residuals. See 
Olson et al. (1980) for details. 

So, in summary, both COLS and MLE yield consistent estimates of IX, /3, a,, and a,. 
COLS is less efficient than MLE. In either case, point estimates for Ui and TE, = exp(-uJ 
can be obtained, as described in Section 3.1. 

2.2. Panel Data 

We now turn to the case of panel data with T > 1. Under assumptions (A. l)-(A-4) equa- 
tion (1) can be estimated by MLE. See Pitt and Lee (1981) for the likelihood function 
and other details. MLE yields estimates of the same parameters as in the cross-section 
case: IX, 0, a,,, and u,. These estimates are consistent as N + 03; therefore MLE is appro- 
priate when N is large. Large T is not a substitute for large N. 

Equation (1) can also be estimated by generalized least squares (GLS). This requires 
assumptions (A. l)-(A.4), except that it does not rely on specific distributional assumptions 
(normality of v, or half-normality of u). The standard panel data GLS procedure yields 
estimates of ((Y - cl), @, a,2, and var&) that are consistent as N + m. Care must be taken 
to distinguish var(uJ and a$ the usual GLS procedure uses var(tii), not 0,‘. Under the 
half-normal distributional assumption, u,’ = var(u&rl(n - 2), so that the estimate of 
var(ui) is easily converted to an estimate of a,. * This is required to estimate p = E(Ui) 
and to convert the intercept, exactly as in the discussion of COLS above. We will refer 
to GLS with this intercept correction as the CGLS method. Point estimates fo Ui and TEi 
can be obtained, as described in Section 3.2. 

Equation (2) is useful primarily as a basis for estimation under weaker assumptions that 
treat the CY~ (or Ui) as fixed. A fixed-effect treatment may be useful because it relies only 
on assumptions (A.l) and (A.2), not (A.3) and (A:4), and because it is applicable when 
Nis small and T is large (as well as when Nis large). Suppose we estimate (2) by the usual 
fixed-effects estimation involving the within transformation (or, equivalently, dummy vari- 
ables for firms), yielding estimates of ol, . - . , olN, /3, and c,‘- Define & = maxE,& and 
j&z&- Cyi. Then, as T + 00 with N fixed, CEi + Qi, & + ‘Y~NI and u^i + u,’ = ~lt,vl 
- (yi, so that tli measures inefficiency relative to the standard of the best firm in the sam- 
ple. Now consider what happens as N + 00. Under the assumption (A.4) of half-normality, 
or in fact under any mechanism for the generation of ui that allows u arbitrarily close to 
zero with positive probability (density), utNl + 0 and crtNl -+ (Y as N + 00. Thus, & -+ (Y 
and i& + Ui as both N and T -+ 00, so that inefficiency is measured relative to its absolute 
(not just within-sample) standard. This distinction becomes important when we examine 
different confidence interval construction techniques in the following section. 
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The statistical properties of the estimated Ui are complicated because of the max opera- 
tion involved in the definition of & and therefore of 1,2,. Consistency as both Nand T -+ m 
was argued heuristically (as above) by Schmidt and Sickles. Park and Simar (1994) and 
Kneip and Simar (1995) established the rate of convergence of the estimates. However, 
the asymptotic distributions of the estimates of a! and the Ui are unknown, so that standard 
methods of construction of asymptotically valid confidence intervals based on these asymp- 
totic distributions are currently not possible. Feasible methods of construction of confidence 
intervals will be discussed in the next section. 

3. Techniques for Construction of Confidence Intervals 

We use two different techniques to construct confidence intervals for technical efficiency 
estimates in stochastic frontier models. The first technique is based on the (conditional) 
distribution Ui 1 ei, where ei = [eit, Ei2, . . . , cir]. It was developed for the cross-sectional 
case by Jondrow et al. (JLMS) (1982) and later generalized to the panel data case by Battese 
and Coelli (BC) (1988). The second technique is based on the MCB procedures developed 
by Edwards and Hsu (1983) and first applied to stochastic frontiers by Hot-race and Schmidt 
(1994). The MCB method will be based on fixed-effects estimates, while the JLMS and 
BC methods will be applied to the results of the other estimation techniques; this choice is 
primarily driven by the difference in distributional assumptions of the models. 

3.1. Cross-Sectional Data: JLMS Method 

For either cross-sectional estimation method, MLE or COLS, we use the JLMS method 
for interval construction. The JLMS technique follows from the distribution of ui condi- 
tional on Ei (which is a scalar, since T = 1 for a cross section). JLMS show that given 
distributional assumptions (A-1) and (A.4), the distribution of Ui 1 ci is that of a IQ”;, a:) 
random variable truncated (from the left) at zero, where $ = u,” Ei(ai + uz)-’ and al = 
~,‘u,“(o,’ + c$-‘. They evaluate E(ui 1 ei), which is regarded as a point estimate for Ui. 
A point estimate for TEi, due to Battese and Coelli (1988), is given by: 

TEi = E[exp( -Ui) 1 Ei] = exp { -/.A; + 1/2~~} { 1 - +(a* - /J~/u*)) { 1 - @( -~;/a*)} -‘, 
(4) 

where @ is the standard normal cdf. Implementing this procedure requires estimates of 
$ and ~2; this in turn requires estimates of uz and a:, and the use of ei = yi - d; - xi b. 

Empirical implementations of the JLMS technique have focused on the point estimate 
E(Ui 1 ei). However, confidence intervals for Ui or T~i are easily constructed from the den- 
sity of ui ( Ei. Critical values can be extracted from a standard normal density to place lower 
and upper bounds on Ui 1 ei. Because TEi is a monotonic transformation of Ui, the lower 
and upper bounds for Ui 1 Ei translate directly into upper and lower bounds on TEi 1 ci = 
exp( -ui) I ei. Specifically, a (1 - X) 100% confidence interval (Li, Ui) for TEi ( ci is given by: 

L; = exp(-pi* - ZL(T+), 

ui = exp(-pCci* - Z@,), 
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where 

Pr(Z > ZL) = (x/2)[1 - @(-$a*)], 

PP(Z > zu) = (1 - x/2)[1 - @(-/$a*)], 

with 2 distributed as N(0, 1); so zL = a-‘{1 - (h/2)[1 - @(-$/a*)]> and zU = a-‘{1 - 
(1 - EJ2)[1 - wP~?~*>l). 

As a semantic point, we will refer to the implementation of equation (5) in the cross- 
sectional context as the JLMS method, since it relies on the JLMS result for the distribu- 
tion of Ui 1 ei, even though equation (4) is due to BC. The BC method will refer to the cor- 
responding calculations in the panel data case, described in the next section. It should be 
noted that both the JLMS and the BC methods treat CY, p, c,‘, and 0,’ as known, so that 
the confidence intervals do not reflect uncertainty about these parameters. For large N, 
this is probably unimportant, since the variability in the parameter estimates is small com- 
pared to the variability intrinsic to the distribution of the Ui 1 ei (and due to the presence 
of the statistical noise vi*). 

3.2. Panel Data: Battese-Coelli Method 

The BC method for construction of confidence intervals is a generalization of the JLMS 
method and also follows from the distribution of Ui 1 ei. The BC technique can be based on 
the MLE or CGLS estimates of (Y, p, 0,’ and 0,‘. It extends the JLMS method to accommo- 
date the case of panel data (T > l), SO that now ~1 = (eil, . . . , eir) = (Vi1 - Ui, . . ., 
ViT - tli). Define ci = (l/T&+, /,$ = ~,“E~(III,’ + az/T)-’ and ~2 = ~,‘~,‘(~~ + Tci)-‘. 
The latter expressions are essentially the same as in JLMS, with 4 replacing ei and a,?/T 
replacing 0,‘. Then the distribution of Ui 1 ei is that of a N&T, $) random variable trun- 
cated at zero, a point estimate for TEi is given by equation (4) above, and confidence inter- 
vals are constructed as in equation (5) above. 

The Battese Coelli method can also accommodate the case of an unbalanced panel, in 
which there are different numbers of time series observations per firm. Suppose that for 
firm i there are q observations, where the notation reflects the fact that T varies over i. 
We simply have to replace Tby q in the definition of p; and a: above, so that $ = o,‘ci(g,’ 
+ 0,2/z)-’ and gzi = u,“u,‘(&? + qaz)-‘; note that now Eli varies Over i. Then equations 
(4) and (5) hold exactly as before, except that ~3 replaces a:. Thus an unbalanced panel 
causes no real problems for the BC method. 

3.3. Panel Data: Multiple Companions with the Best 

We now consider an adaptive multiple comparisons with the best technique (MCB). Simul- 
taneous confidence intervals are constructed for z$, i = 1, . N. These can be monotoni- 
cally transformed to confidence intervals for TEi = exp{ -U$ A concise summary of the 
application of MCB techniques to stochastic frontiers is presented by Horrace and Schmidt 
(1994), so the procedure will not be fully detailed here. These intervals are unique in three 
respects. First, they do not presume that we known which firm in the sample is the most 
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efficient firm as is implicitly the case for the usual estimates based on within estimation 
of the stochastic frontier model. Second, they are simultaneous and, as such, provide joint 
statements about which firms in the sample might be most efficient and which firms can 
be eliminated from contention for most efficient at a prespecified confidence level. Third, 
MCB intervals are naturally based on the within estimates and use only assumptions (A. 1) 
and (A.2) above; they do not require a distributional assumption for the Ui. 

As above let cxl,] 5 CY[~] s . . . s CY tNl and utNl 5 uLN- 1l 5 . . . 5 uLll be the order 
statistics for the Qi and ui, i = 1, 2, . . . , N. Define uf = Cui - urNI = ‘Y[N~ - CY~; these 
are measures of inefficiency relative to the most efficient firm in the sample. The point 
of MCB is to construct a set of simultaneous confidence intervals for UT, . . . , u;, based 
on estimates pi, . . . , ci$ The estimates a;i come from the within regress@, either as coef- 
ficients of dummy variables for frrrns, or (equivalently) as &i = yi - Zi /3, where fi is the 
within estimate, ji = (l/T)C,yir, and ii = (l/T)C<Xi,. Then a set of (1 - h) 100% simulta- 
neous confidence intervals for u;, . . . , ZJ~ is given by: 

P([& I Ui* I Vi, i = 1, . * .) N] n [[M E r]} 2 1 - h 

where 

(6) 

f = (j: ;;j 1 maxi 2; - d) , 

and for each i 

Li = XllZiX(lllillj~ ([Cij - Cri - d], 0) 

Ui = maX(IlUXj$i[cUj - dEi + d], 0) 

where 

and 1 T 1 Iv”l,,v,, is the solution in t for 

co OD 

14 
{w+l[(zp’h + ts)(l - p>-“1 

0 -co 

- Wl[(zpfh - ts)(l - p)-“])d@(z)dQ,(s) = 1 - X. 

Here s2 is the usual pooled variance estimator; Q, is the distribution function of a xv”-’ 
random variable and p = l/2. Edwards and Hsu (1983) refer to these as adpative intervals. 
For small values of N, tables for 1 T(gll,V,, can be found in Hochberg and Tamhane (1987), 
Dunnett (1964), Hahn and Hendrickson (1971), and DLWI and Massey (1965). If appropriate 
critical values are not contained in the above tabulations (e.g., if N is very large), they 
are easily simulated. Notice that, as presented, the intervals are for a balanced design, 
where Ti = T for all i. Application to the unbalanced case is discussed in Horrace and 
Schmidt (1994). The critical value, ( T 1 $?,,v,,, is the two-sided upper X equicoordinate 
point of the N - 1 variate equicorrelated t-distribution with common correlation p and 
degrees of freedom u. The equicorrelated structure emerges when the Ori are independent 
or correlated with the special covariance structure: 
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Va(Gi) = a2/T + CT COV(&;i, Cij) = C, 

The theoretical covariance structure of the pi is: 

C = constant. (7) 

Va(Gi) = a2/T + ii V(p)i/y COV(Cii, Cij) = ii V(P)ii, (8) 

where V(p) is the variance-covariance matrix of 6. For the special covariance structure to 
emerge, it must be true that the terms Xi V(&?/ are equal or near equal for all i and j. 
In general the & are asymptotically independent as Nor T gets large. In this study, when 
we cannot appeal to asymptotics, the condition for the special covariance structure is met 
or nearly met, so MCB is at least approximately applicable. 

As previously stated, the bounds of the MCB intervals can reveal information about the 
population ranking of the production units. If, for a single firm, the upper and lower bounds 
on ~6’ are 0 (or equivalently the lower and upper bounds on TEi equal 1) then that firm is 
most efficient (best) at the prespecified confidence level. However it is possible that several 
or many firms have Li = 0 and Ui > 0, SO that a single firm is not identified as best. 
We may also encounter firms for which Ui > Li > 0, so these fiims are revealed not best 
and bounds are given for their levels of (in)efficiency. 

The width of these intervals hinges on three sources: estimation error, uncertainty over 
which firm is most efficient, and the multiplicity of the probability statement. We will try to 
disentangle these three sources in the empirical analyses that follow. To this end we intro- 
duce another interval construction technique called multiple comparisons with a control 
(MCC) due to Dunnett (1955). MCC creates simultaneous confidence intervals far the quan- 
tities oN - o!i, i = 1, . _ . , N - 1, where (YN can be any one of the population intercepts 
(oli, i = 1, . .) N), chosen as the standard of comparison, and is not necessarily the larg- 
est intercept. (That is, (YN can be any of the population intercepts, but it must be one of 
them; it cannot be an arbitrarily chosen number in the context of what follows.) However, 
if firm N is asserted to be most efficient, so that oN 2 oi, i = 1, . . . , N - 1, the MCC 
intervals can be thought of as MCB intervals where the most efficient firm is known, a 
priori. In fact, if the MCB intervals reveal a single most efficient firm then they reduce 
to these MCC intervals. So the difference in width of the MCC and the MCB intervals 
is the effect of uncertainty about which firm is most efficient. 

If a firm Nis known, a priori, to be most efficient, then a set of (1 - X) 100% simul- 
taneous confidence intervals for oN - cyi, i = 1, . . . , N - 1, is given by 

[m&&N - &i - d, 0), max(c& - Gi f d, O)] i = 1, . . . . N- 1 (9) 

where d = 1 T~$~~:l,,,s(2/T)Ih. 
The MCC intervals are constrained nonnegative to account for the Nth firm being most 

efficient and hence having the largest (yi. As with the MCB intervals, the required equicor- 
related structure emerges when the pi are uncorrelated or possess the special covariance 
structure. Notice that when one selects the firm with the largest pi as the MCC control, 
the upper bound of the MCC intervals is exactly the same as that for the MCB intervals. 
The primary difference between MCC and MCB is in the lower bound which does not 
depend on r for MCC, while it does for MCB. For further details on this point see Horrace 
and Schmidt (1994). 



CONFIDENCE STATEMENTS FOR EFFICIENCY ESTIMATES 265 

We note in passing that several recent models in the frontiers literature have featured 
time-varying technical inefficiency. For example, see Cornwell, Schmidt, and Sickles (1990), 
Kumbhakar (1990), Battese and Coelli (1992), and Lee and Schmidt (1993). These models 
imply intercepts oif that vary over i and t. For a given value of t, it is natural to proceed 
as before to consider comparisons relative to the maximum (over i) of these intercepts, 
so that we essentially have a separate MCB problem for each t. However, there is no appa- 
rent reason to expect the equicorrelatedness condition to hold for the estimated a;-, from 
any of these models, and if it does not hold the methods surveyed above would not apply. 
There is a limited literature on MCB procedures without the equicorrelatcdness condition; 
some references are given in Section 4.2 below. 

3.4. Comparison of Dijj%rent Techniques 

A discussion of the differences between the interval construction techniques is in order. 
First, it should be noted that MCB provides joint confidence intervals for u,! = afNl - “i 
of equation (3), whereas JLMS and BC provide marginal intervals for Ui = a! - cuj of 
equation (2). The difference between z$ and Ui is uINl = mini, Ui which may be nontrivial 
when Nis small. Conversely, the difference between joint and marginal intervals may be 
substantial when Nis large. For example, one of our data sets has N = 17 1. Although inde- 
pendence would be poor assumption, it is instructive to note that a set of 171 independent 
intervals, each holding with a marginal probability of 0.95, would hold jointly with a proba- 
bility of only (.95) 17t = 0 000116. . Conversely, joint confidence intervals that hold with a 
probability of 0.95 would correspond to marginal intervals with a confidence level far in 
excess of 0.95. Other things equal, we would certainly expect joint confidence intervals to 
be wider than corresponding marginal intervals, for a given level of confidence like 0.95. 

The MCB and JLMS/BC methods also differ substantially in the way they handle estima- 
tion error. One sense in which this is true is that, assuming that the equicorrelatcd structure 
emerges for the & the MCB intervals reflect the variability of p. which the JLMS and the 
BC intervals ignore. This is probably not an important difference, since uncertainty about 
p is not the only source, or in most cases the major source, of uncertainty about ui. To 
be more specific, consider the following expression for the within estimate of (Y~: 

Gj = ji - ~jp = a: + (Vj - Uj) - Xj(p - p) = (Yi + Vj - Xj(p - p). (10) 

The term&@ - @) reflects estimation error in 8. As noted above, BC ignores this source 
of uncertainty while MCB does not. This term disappears as either N or T + 00, and is 
probably not important empirically for most data sets. More fundamentally, C;;i contains 
the error Vi = (l/?‘)C,Vi,; the within procedure separates Ui from Vir by averaging away the 
vjr. The significance of Vi depends on T and on the relative sixes of 17,’ and a;; it is most 
troublesome when T is small and/or 0,’ is large relative to 0,‘. It is important to realize 
that the within estimate of u;, namely &IN1 - gi, is generally biased upward (inefficiency 
is overstated), because the larger gj, such as &[N], will on average contain positive estima- 
tion error Vi, while the smaller 6,. will on average contain negative estimation error. (That 
is, the & will obviously be more variable than the oi.) MCB recognizes this variability 
by including the sample equivalent of aV(2/r)lh in the formula for the allowance, d, above. 



266 W.C. HORRACE AND P. SCHMIIX 

Also, the MCB intervals can be thought of as removing the bias just described; they are 
not centered on the value &IN1 - d;i. 

The BC method uses distributional assumptions to remove estimation error more effec- 
tively. The first step in the BC procedure is to calculate cr = Vi - ui (ignoring estimation 
error in /3), so that the Vit are averaged away, as in the within procedure. The second step 
is to construct $, which equals 6 times the shrinkage factor g&g,’ + az/z)-’ < 1. This 
corresponds to the best linear predictor in the random-effects panel data literature; see 
Schmidt and Sickles (1984). It reflects the relative variability of ui and Vi. Finally, the 
distributional assumptions are used to imply the further shrinkage factor (1 - @(a+ - 
~~:/a*} (1 - @(--$/a*)]-’ < 1 in the calculation of the expectation of TEi 1 Ei. 

4. Empirical Analyses 

4.1. Indonesian Rice firms-Emid& (1990) 

We analyze data previously analyzed by Erwidodo (1990)) Lee (199 1) , and Lee and Schmidt 
(1993). For a complete discussion of the data see Erwidodo (1990). One hundred seventy- 
one rice farms in Indonesia were observed for six growing seasons. The data were collected 
by the Agro Economic Survey, as part of the Rural Dynamic Study in the rice production 
area of the Chimanuk River Basis, West Java and obtained from the Center for Agro Eco- 
nomic Research, Ministry of Agriculture, Indonesia. The 171 farms were located in six 
different villages and the six growing seasons consisted of three wet and three dry seasons. 
Thus the data configuration features large N and small T. 

Inputs to the production of rice included in the data set are seed (kg), urea (kg), trisodium 
phosphate (TSP) (kg), labor (labor-hours), and land (hectares). Output is measured in kilo- 
grams of rice. The data also include dummy variables. DP equals 1 if pesticides were used 
and 0 otherwise. DV 1 equals 1 if high yield varieties of rice were planted and DV2 equals 1 
if mixed varieties were planted; the omitted category represents that traditional varieties 
were planted. DSS equals 1 if it was a wet season. There are also five region dummy vari- 
ables, DRl, DR2, DR3, DR4, and DR.5, for the six different villages in the survey. 

COLS and MLE were performed on each of the six different periods (cross sections) 
in the panel. DSS, the dummy for wet season, had to be excluded for the cross-section 
models because it was constant across farms for a single period. Results are in Table 1. 
Unfortunately, periods 2, 3,4, and 5 produced a positive third-order moment of the residuals. 
causing the MLE estimate to coincide with the OLS estimate as discussed in Waldman 
(1982). Additionally, this problem precludes COIS estimation since Gu is negative. There- 
fore only periods 1 and 6 are analyzed as cross sections for this data set. Since the results 
for the two periods were similar only the period 1 results are reported in what follows. 
Technical efficiencies and confidence intervals were produced using the JLMS technique; 
i.e., equations (4) and (5) above. Confidence levels are 95 %, 90 %, and 75 % . These results 
are contained in Tables 2a and 2b. Due to the large number of firms in the sample (17 l), 
only nine firms are reported here and in the sequel: the three firms with the highest &, 
the three firms with the lowest Crr, and the three firms with the median &. 

The choice of the estimation procedure (COLS versus MLE) made very little difference, 
so we will discuss only the MLE results in Table 2b. Efficiency levels are not estimated as 
precisely as one might hope. The firm with the highest estimated efficiency level had 



CONFIDENCE STATEMENTS FOR EFFICIENCY ESTIMATES 267 

Table I. Rice farms-Cross-seciional estimation results. 

Variable Period 1 COLS Period 1 MLE Period 6 COLS Period 6 MLE 

Constant* 
SC!t?d 
Urea 
TSP 
Labor 
Land 
DP 
DVl 
DV2 
DRl 
DR2 
DR3 
DR4 
DR5 
-2 54 -2 
2(Ui) 
ii, 

5.8483 5.9540 5.3327 5.5525 
0.0572 0.0583 0.0983 0.0975 
0.1036 0.1028 0.2073 0.2105 
0.0033 0.0034 0.0674 0.0693 
0.1970 0.1970 0.2 122 0.2007 
0.6372 0.6374 0.5194 0.5252 
0.0143 0.0138 -0.1480 -0.1453 

-0.0857 -0.0861 0.0639 0.0568 
0.0853 0.0853 0.1192 0.1175 
0.2192 0.2173 -0.2642 -0.2695 

-0.0325 -0.0330 -0.3744 -0.3712 
0.1388 0.1385 -0.3815 -0.3712 
0.0814 0.0817 -0.0613 -0.0591 
0.1810 0.1829 -0.2864 -0.2668 
0.0185 0.0174 0.0253 0.0462 
0.0632 0.0579 0.0705 0.0564 
0.1084 0.1053 0.1268 0.1714 
0.1195 0.1157 0.1364 0.1593 

The constant term reported for COLS is before correction by I?&). 

X&e 2a. Rice farms-Confidence intervals based on JLMS method, COLS estimates-Period 1. 
- 

Film 
Number EffXency 95% Lbnd 95% Ubnd 90% Lbnd 90% Ubnd 75% Lbnd 75% Ubnd 

164 0.942 1 0.8242 0.9981 0.8482 0.9962 0.8843 0.9902 
118 0.9390 0.8173 0.9980 0.8417 0.9959 0.8786 0.9895 
108 0.9380 0.8151 0.9979 0.83% 0.9958 0.8768 0.9892 
92 0.9029 0.7514 0.9956 0.7777 0.9912 0.81% 0.9782 
87 0.9027 0.7511 0.9955 0.7774 0.9911 0.8193 0.9781 
61 0.9026 0.7511 0.9955 0.7774 0.9911 0.8193 0.9781 
79 0.8479 0.6811 0.9873 0.7067 0.9760 0.7484 0.9479 
16 0.8441 0.6769 0.9863 0.7024 0.9744 0.7440 0.9450 

143 0.8066 0.6398 0.9727 0.6642 0.9531 0.7042 0.9129 

Table 2b. Rice farms--Confidence Intervals based on JLMS method, MLE estimates-Period 1. 

Firm 
Number Efficiency 95% Lbnd 95% Ubnd 90% Lbnd 90% Ubnd 75% Lbnd 75% Ubnd 

164 0.9452 0.8322 0.9982 0.8553 0.9964 0.8901 0.9908 
118 0.9421 0.8253 0.9981 0.8489 0.9961 0.8845 0.9901 
108 0.9411 0.8232 0.9980 0.8469 0.9960 0.8827 0.9899 

19 0.9054 0.7578 0.9957 0.7835 0.9914 0.8243 0.9788 
61 0.9053 0.7576 0.9957 0.7832 0.9914 0.8241 0.9787 
87 0.9052 0.7575 0.9957 0.7832 0.9914 0.8240 0.9787 
79 0.8481 0.6849 0.9866 0.7099 0.9750 0.7506 0.9465 
16 0.8437 0.6803 0.9855 0.7051 0.9730 0.7457 0.9431 

143 0.8040 0.6415 0.9694 0.6652 0.9487 0.7041 0.9078 
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estimated efficiency of 0.9452, but a 95% confidence interval ranged from 0.8322 to 0.9982. 
The median firm had estimated efficiency of 0.9053, with a 95% confidence interval of 
(0.7576,0.9957); and the worst firm in the sample had estimated efficiency of 0.8040 with 
a 95% confidence interval of (0.6415,0.9694). These are fairly wide confidence intervals. 
In fact the uncertainty about the inefficiency level of a given firm is definitely not small 
relative to the within-sample variability of the efficiency measures, and we would have 
little reason to have much faith in our efficiency rankings. The reason for this lack of preci- 
sion is straightforward-most of the variation in ei = vi - ui is due to Vi, not Ui- We have 
(for MLE, t = 1) var(vJ = c, * = 0.0579 and var(z+) = &n - 2)/7r = 0.00633, so the 
variance of v is over nine times as large as the variance of U. This makes it very difficult 
to estimate Ui precisely. 

Next, CGLS and MLE were performed on the entire panel. The variable DSS could now 
be included. Results are in Table 3. Technica efficiencies and confidence intervals were 
produced using the BC technique. These results are contained in Tables 4a and 4b. Effi- 
ciency levels based on the CGLS and MLE estimates are again similar. Not surprisingly, 
the panel data confidence intervals are tighter than their cross-sectional counterparts, because 
var(ui 1 Ei) is smaller with six observations than with one. Nevertheless, the confidence in- 
tervals do not shrink as much as one might hope-compare a 95 % confidence interval for 
the median firm of (0.7638, 0.9945) in Table 4b to (0.7576, 0.9957) in Table 2b. This is 
partly due to having only six observations per firm, and partly to getting a larger value of 
c,’ for the panel than for the t = 1 cross section, which diminishes the value of the panel. 

The within estimates were calculated for the panel, with time-invariant regressors ex- 
cluded to preclude multicollinearity. These results are also in Table 3. The covariance matrix 
for the a;i very nearly exhibited the equicorrelated structure necessary to justify the MCB 
procedure: 

Bble 3. Rice farms-Panel data estimation results. 

Variable 

Constant 
seed 
Urea 
TSP 

Labor 
Land 

DP 
DVl 
DV2 
DSS 
DRl 
DR2 
DR3 
DR4 
DR5 
^2 c 
uv -2 

E(lli) 
k 

OLS 

5.0811 
0.1358 
0.1196 
0.0718 

0.2167 
0.4819 

0.0077 
0.1755 
0.1356 
0.0489 

-0.0500 
-0.0393 
-0.0623 

0.0248 
0.0818 

Within 

0.1208 
0.0918 
0.0892 

0.2431 
0.452 1 

0.0338 
0.1788 
0.1754 
0.0533 

0.1076 

CGLS MLE 

5.0639 5.2073 
0.1327 0.1332 
0.1133 0.1127 
0.0761 0.0769 
0.2230 0.2 194 
0.4771 0.4810 
0.0140 0.0093 
0.1772 0.1767 
0.1444 0.1410 
0.0492 0.0492 

-0.0511 -0.0594 
-0.0441 -0.0480 
-0.0723 -0.0799 

0.0119 0.0150 
0.0751 0.0826 
0.02 14 o.Q215 
0.1076 0.1070 
0.1166 0.1170 
0.0987 0.0987 
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EbZe 4a. Rice farms-Confidence intervals based on BC method, CGLS estimates-Panel data. 

269 

164 
118 

5 
51 
38 
88 

142 
145 
143 

Firm 
Number Efficiency 95% Lbnd 95% Ubnd 90% Lbnd 90% Ubnd 75% Lbnd 75% Ubnd 

0.9979 0.9280 0.9946 
0.9979 0.9267 0.9945 
0.9976 0.9204 0.9938 
0.9890 0.8224 0.9738 
0.9890 0.8224 0.9738 
0.9889 0.8219 0.9737 
0.8951 0.6810 0.8537 
0.8901 0.6769 0.8488 
0.8683 0.6595 0.8274 

0.9648 
0.9642 
0.9608 
0.9002 
0.9002 
0.8999 
0.7660 
0.7615 
0.7422 

0.8848 
0.8830 
0.8744 
0.7628 
0.7628 
0.7624 
0.6287 
0.6249 
0.6089 

0.9990 0.9025 
0.9989 0.9009 
0.9988 0.8930 
0.9944 0.7857 
0.9944 0.7857 
0.9943 0.7852 
0.9215 0.6485 
0.9167 0.6447 
0.8951 0.6281 

Z&Ze 4b. Rice farms-Confidence Intervals based on BC method, MLE estimates-Panel data. 

Firm 
Number Efficiency 95% Lbnd 95% Ubnd 90% Lbnd 90% Ubnd 75% Lbnd 75% Ubnd 

164 0.9643 0.8837 0.9990 0.9013 0.9979 0.!?2.70 0.9945 
118 0.9639 0.8825 0.9989 0.9005 0.9978 0.9263 0.9944 

5 0.9609 0.8746 0.9988 0.8931 0.9976 0.9206 0.9938 
88 0.9010 0.7638 0.9945 0.7867 0.9892 0.8234 0.9742 
51 0.9010 0.7638 0.9945 0.7867 0.9892 0.8234 0.9742 

lo.2 0.9001 0.7626 0.9944 0.7855 0.9890 0.8222 0.9738 
142 0.7602 0.6238 0.9153 0.6435 0.8887 0.6757 0.8473 
145 0.7564 0.6207 0.9111 0.6403 0.8845 0.6723 0.8432 
143 0.7370 0.6045 0.8891 0.6236 0.8624 0.6549 0.82 17 

Mean of 4 var@)$ = .04572 

Standard deviation of ii var(&$ = .002211 

Maximum of Zi var@)$ = .05523 

Minimum of & var(B)$ = -03918. 

MCB intervals of 95 %, 90%) and 75 % were constructed for technical inefficiencies using 
critical values of ) T 1 [!$,846 '/z = 3.42, 3.18, and 2.71, respectively, and are given in Table 
5a. The intervals are too wide to be of much use. For example, the firm with the highest 
&i (and hence with estimated efficiency of 100% by the usual calculation) has a confidence 
interval ranging from 0.5613 to 1. Every firm in the sample has a confidence interval with 
upper limit equal to one; that is, at the 95% confidence level, no firm is revealed to be 
inefficient. In kt, this is still true at the 75% confidence level. 

The MCB intervals are much wider than their BC counterparts based on CGLS and MLE. 
We next attempt to determine the relative importance of three sources of width: estimation 
error, uncertainty of the identity of the most efficient firm, and the multiplicity of the proba- 
bility statement. The easiest of these factors to investigate is uncertainty about the identity 
of the most efficient firm. To do so we simply assume that firm 164, which is the firm with 
the largest ali, is most efficient in the sense of having the largest CY~ (equivalently, smallest 
ui). Under this assumption we construct the MCC intervals with firm 164 as the control. 
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TX& 5~. Rice hrms-MCB confidence intervals--Panel data. 

Firm 
Number gi 95% Lbnd 95% Ubnd 90% Lbnd 90% Ubnd 75% Lbnd 75% Ubnd 

164 5.5561 0.5613 1.0000 0.5874 1.0000 0.642 1 1 .oooo 
118 5.4860 0.4878 1.0000 0.5105 1 .OOoo 0.5580 1 .oooo 
163 5.4838 0.4868 1.0000 0.5094 I .oooo 0.5568 1 .oooo 
166 4.%67 0.2902 1.caM 0.3037 1.0000 0.3320 1 .oOOo 

15 4.9656 0.2899 l.COoO 0.3034 1 .oooo 0.3316 I .oooo 
40 4.9646 0.2896 1.0000 0.3031 1.0000 0.3313 1 .oOOo 

143 4.5982 0.2008 1.0000 0.2101 1 .OOoo 0.2296 1.0000 
117 4.5859 0.1983 1.cooo 0.2075 1.0000 0.2269 1.0000 
45 4.54% 0.1913 1.0000 0.2001 l.OOOO 0.2188 1 .ocOo 

Table Sb. Rice farms-MCC confidence intervals-Farm 164 as control-Panel data. 

Firm 
Number C& 95% Lbnd 95% Ubnd 90% Lbnd 90% Ubnd 75% Lbnd 75% Ubnd 

164 5.5561 
118 5.4860 
163 5.4838 
166 4.9667 

15 4.9656 
40 4.9646 

143 4.5982 
117 4.5859 
45 4.54% 

0.4878 1.0000 0.5105 1 .OOoo 0.5580 1 .oOOo 
0.4868 1.0000 0.5094 1.0000 0.5568 1 .oOOo 
0.29U2 l.COoO 0.3037 1 .OOoo 0.3320 0.9266 
0.2899 1.0000 0.3034 1.0000 0.3316 0.9256 
0.2896 l.OOCXl 0.3031 1 .oooo 0.3313 0.9247 
0.2008 0.7332 0.2101 0.7007 0.2297 0.6410 
0.1983 0.7243 0.2075 0.6921 0.2269 0.6332 
0.1913 0.6985 0.2001 0.6675 0.2188 0.6106 

Confidence intervals of 95 %, 90%) and 75 % required critical values of 1 T 1 f$,,846,,h = 
3.42, 3.18, and 2.71, respectively. Results are in Table 5b. The MCC intervals are necessar- 
ily tighter than the MCB intervals, but not tight enough to be useful. In other words, the 
width of the MC3 intervals is not significantly decreased by knowing which firm is best. 
We can conclude that the width is primarily due to either estimation error or multiplicity 
or both. 

To disentangle the effect of multiplicity on the interval width, we would like to be able 
to construct marginal intervals for each fiim. In the case where MCB reveals a single firm 
as efficient, this can be accomplished with a simple application of the Bontbrroni inequality. 
This will be demonstrated later. In the present case, where there is no single firm revealed 
as most efficeint, the construction of marginal intervals is less clear, because it is necessary 
to make a simultaneous statement about the firms to determine a subset of firms that may 
be efficient, and then to reduce this joint statement to a marginal statement about a single 
firm. However, we can get some idea of the effect of the multiplicity of the intervals just 
by reducing the number of confidence intervals created, which we can do by considering 
a subset of the firms. We therefore redid MCB for only the nine fnms for which we have 
reported results in Table 5a. (However, the parameter estimates are still from the whole 
sample of 171 firms.) Confidence intervals of 95 % ,90%, and 75 % required critical values 
of 1 TI&, s = 2.56, 2.38, and 1.96, respectively. Results are in Table 6a. As was the 
case in’the MCC experiment, controlling for multiplicity did not result in a significant 
tightening of the intervals. For example, for the median firm, compare the new interval 
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7hbZe 4~. Rice farms-Subs& MCB confidence intewals, N = Q-Panel data. 

Finn 
Number bi, 95% Lbnd 95% Ubnd 90% Lbnd 90% Ubnd 15% Lbnd 15% Ubnd 

164 5.5561 0.6494 1.0000 0.6835 1.0000 0.7400 1.0000 
118 5.4860 0.5644 l.oooO 0.5940 1.0000 0.6432 1.0000 
163 5.4838 0.5632 l.oooO 0.5927 l.OOOO 0.6418 1.0000 
166 4.9667 0.3358 0.9849 0.3534 0.9358 0.3827 0.8642 

15 4.9656 0.3354 0.9837 0.3530 0.9347 0.3822 0.8632 
40 4.9646 0.3351 0.9828 0.3527 0.9338 0.3819 0.8624 

143 4.5982 0.2323 0.6813 0.2445 0.6473 0.2647 0.5978 
117 4.5859 0.2296 0.6730 0.2415 0.6394 0.2615 0.5905 
45 4.5496 0.2213 0.6490 0.2329 0.6166 0.2522 0.5695 

lhble 6b. Rice farms-Per comparison confidence. intervals with c~~~~-Panel data. 

Firm Standard 
Number Error 95% Lbnd 95% Ubnd 90% Lbnd 90% Ubnd 75% Lbnd 75% Ubnd 

164 
118 
163 
166 

15 
40 

143 
117 
45 

0.1912 0.6409 1.0000 0.6807 1.0000 0.7483 1.0000 
0.1898 0.6413 1.0000 0.6808 1.0000 0.7479 1.0000 
0.1914 0.3812 1.0000 0.4049 0.7599 0.4451 0.6912 
0.1940 0.3788 0.8102 0.4027 0.7622 0.4432 0.6924 
0.1971 0.3761 0.8144 0.4002 0.7654 0.4412 0.6943 
0.1915 0.2636 0.5584 0.2800 0.5257 0.3079 0.4782 
0.1960 0.2581 0.5565 0.2745 0.5232 0.3025 0.4748 
0.1941 0.2499 0.5347 0.2656 0.5030 0.2924 0.4569 

(0.3354, 0.9837) with N = 9 to the old interval (0.2899, 1.0000) with N = 171. We con- 
clude that the multiplicity component of the intervals width is small, leaving only estinx- 
tion error to account for the large width of the intervals. 

Further evidence on this point is obtained by considering the smallest possible subset of 
firms (N = 2) and assuming that it is known that one of them is the most efficient. Thus, 
as in our MCC calculations, we assert that firm 164 is most efficient and we simply con- 
struct confidence intervals for &,a - CFi for a given value of i. This is a standard calcula- 
tion based on the estimate 6,~ - Gi and its standard error, Se1w.i = [var(d;,& + var(&) 
- 2COV(&,64, aii)]", and using critical values from the standard normal distribution. (Note 
that we have not imposed the equicorrelatedness assumption in this calculation, so our 
results will be slightly different from the results for MCC with N = 2, which would impose 
this assumption.) These are called per comparison intervals; they are given in Table 6b. 

The per comparison intervals are indeed narrower than the MCB and the MCC intervals, 
but they are still tirly wide. For example, for the median firm we still have a 95 % confi- 
dence interval of (0.3788, 0.8102). This confirms our conclusion that, for this data set, 
the width of the confidence intervals is due primarily to the estimation error. As noted 
above, estimation error is important for this data set because T is small and u,’ is large 
relative to var(u&. There is simply too much noise to get a clear picture of the value of 
Ui. The BC method does significantly better because it makes strong distributional assump- 
tions that allow a much better separation of v from U. For this data set there does not seem 
to be a substitute for these strong assumptions. 
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4.2. Texas Utilities-Kimbhukm (1994) 

In this study we reanalyze data originally analyzed by Kumbhakar (1994). Kumbhakar esti- 
mated a cost function, whereas we will estimate the production function. The data set con- 
sists of observations on 10 major privately owned Texas electric utilities observed annually 
over 18 years from 1966 to 1985, and includes information on annual labor, capital, and 
fuel (inputs) for electrical power generation (output). Due to the relatively small number 
of firms a cross-sectional study of the data was precluded. However, with 18 periods of 
observation per firm we have T larger than N, the opposite of the case with the Erwidodo 
rice farm data. 

The model was estimated by CGLS and MLE with results given in Table 7. Notice that 
now f~,’ is small relative to o,“, so our estimates of technical efficiency should be more 
reliable than for the previous data set. It is instructive to point out that numerical accuracy 
became a problem in calculating TEi using equation (4). The small value for u, produced 
extremely large values of pt/cr, which, when evaluated in the standard normal cdf a(*), 
produced technical efficiencies greater than 100%. This was due to rounding error in the 
software package we originally selected. Fortunately, another package was found that eval- 
uated the normal cdf more accurately. Tables 8a and 8b given our results for all 10 firms. 

As expected, the efficiency estimates are much more precise than for the previous data 
set. For example, for firm 8 (one of the two median firms) and using MLE, efficiency 
is estimated as 0.8472 with a 95 % confidence interval of (0.8264,0.8683). These are useful 
results in the sense that the uncertainty about a given firm’s efficiency level is small relative 
to the between-firm variation in efficiencies; we can have some faith in our rankings. 

The within estimator was also calculated (Table 7), and MCB intervals were constructed 
(Table 9a). The covariance matrix for the &i again exhibited an almost-equicorrelated struc- 
ture, so that MCB was applicable. 

Mean of Xi var(&$’ = .06765 

Standard deviation of Xi var(&i = .00289 

Maximum of Xi v~(fi)ij' = .07255 

Minimum of & var@)$ = .06166. 

Table Z Texas utilities--Panel data estimation results. 

Variable OLS Within CGLS MLE 

Constant 
Labor 
Capital 
Fuel 
-2 
% 
-2 
uv 

E(@ 

a* 

-3.7615 -5.0535 
0.0881 -0.1291 -0.09660 
0.3462 0.6275 0.5882 
0.6406 0.5652 0.5807 

0.0079 
0.0029 o.cO29 

0.0709 
0.0126 

.5.0532 

.0.0775 
0.5856 
0.5838 
0.0266 
0.0029 
0.1301 
0.0126 
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Table 8~. Texas utilities-Confidence intervals based on BC method, CGLS estimates-Panel data. 

Fii 
Number Efficiency 95% Lbnd 95% Ubnd 90% Lbnd 90% Ubnd 75% Lbnd 75% Ubnd 

5 0.9982 0.0038 1.0000 0.9949 0.9999 0.9964 0.9998 
3 0.9960 0.9866 0.9999 0.9887 0.9999 0.9919 0.9994 

10 0.9649 0.9413 0.9885 0.9451 0.9848 0.9510 0.9788 
1 0.9325 0.9097 0.9557 0.9133 0.9519 0.9190 0.9460 
8 0.9167 0.8943 0.9396 0.8979 0.9358 0.9035 0.9300 
9 0.8997 0.8777 0.9221 0.8812 0.9184 0.8867 0.9127 
2 0.8973 0.8754 0.9197 0.8788 0.9160 0.8843 0.9103 
6 0.8835 0.8619 0.9055 0.8653 0.9019 0.8707 0.8963 
7 0.8788 0.8573 0.9006 0.8607 0.8971 0.8660 0.8915 
4 0.8555 0.8346 0.8768 0.8379 0.8734 0.8431 0.8679 

Zzble 86. Texas utilities-Confidence Intervals based on BC method, MLE estimates-Panel data. 

Firm 
Number Efficiency 95% Lbnd 95% Ubnd 90% Lbnd 90% Ubnd 75% Lbnd 75% Ubnd 

5 0.9880 0.9685 0.9994 0.9721 0.9989 0.9776 0.9973 
3 0.9793 0.9566 0.9979 0.9604 0.9962 0.9663 0.9923 

10 0.9095 0.8872 0.9322 0.8907 O.!X85 0.8963 0.9227 
1 0.8649 0.8437 0.8865 0.8471 0.8830 0.8524 0.8775 
8 0.8472 0.8264 0.8683 0.8297 0.8649 0.8349 0.8595 
2 0.8322 0.8118 0.8530 0.8151 0.84% 0.8202 0.8443 
9 0.8269 0.8066 0.8475 0.8098 0.8442 0.8149 0.8389 
6 0.8214 0.8013 0.8419 0.8045 0.8386 0.8095 0.8334 
7 0.8181 0.7981 0.8385 0.8012 0.8352 0.8062 0.8300 
4 0.7873 0.7680 0.8069 0.7710 0.8037 0.7759 0.7987 

The MCB intervals successfully determined at the 95 % confidence level that firm 5 was 
the most efficient firm in the sample and that all others were inefficient. Consequently, 
the MCC intervals coincided with the MCB intervals are are not reported separately. In 
fact, firm 5 was identified as most efficient at the 99.9% confidence level, so essentially 
we were certain that it was the best. The confidence intervals for the other firms are wider 
than the corresponding BC intervals, but still not nearly as wide as the Erwidodo rice farm 
data. For example, for firm 8 compare the MCB intervals of (0.7809, 0.8603) to the BC 
interval of (0.8264, 0.8683). 

It is interesting to note that there is very little overlap between the BC and the MCB 
intervals, with the MCB intervals being generally lower. Two opposing sources contribute 
to this difference. The difference between UT and Ui when Nis small should make the BC 
intervals lower, since BC constructs a confidence interval for exp(-uJ whle MCB con- 
structs confidence intervals for exp(ur), and U’ < ui implies exp(-ui) < exp(-ui*). How- 
ever, this is apparently more than offset by the BC technique’s more successful reduction 
of the effects of the estimation error. As noted above, the BC technique can be viewed 
as a set of shrinkages of the within efficiency measures, leading to generally higher effi- 
ciency measures. 
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Y&b& 4b. Texas utilities-MCB and MCC confidence intervals--Panel data. 

Firm 
Number i+ 95% Lbnd 95% Ubnd 90% Lbnd 90% Ubnd 75% Lbnd 75% Ubnd 

5 -4.9952 1 .oooo 1.0000 1 .oOOo I.0000 1.0000 1 .oOOo 
3 -5.0826 0.8730 0.9617 0.8772 0.9571 0.8837 0.9500 

10 -5.1451 0.8201 0.9035 0.8241 0.8991 0.8302 0.8925 
1 -5.1760 0.7951 0.8759 0.7990 0.8717 0.8049 0.8653 
8 -5.1940 0.7809 0.8603 0.7847 0.8562 0.7905 0.8499 
9 -5.2105 0.768 1 0.8462 0.7719 0.842 1 0.7776 0.8359 
2 -5.2176 0.7627 0.8402 0.7664 0.8362 0.7721 0.8300 
7 -5.2362 0.7487 0.8248 0.7523 0.8208 0.7579 0.8148 
6 -5.2366 0.7484 0.8245 0.7520 0.8205 0.7576 0.8144 
4 -5.2669 0.7261 0.7999 0.7296 0.7960 0.7350 0.7901 

Table Sk Texas utilities-Marginal (per comparison) intervals-Panel data. 

Firm Standard 
Number Error 95% Lbnd 95% Ubnd 90% Lbnd 90% Ubnd 75% Lbnd 75% Ubnd 

5 
3 

10 
1 
8 
9 
2 
7 
6 
4 

0.0653 0.8063 1 .oOOo 0.8230 1.0000 0.8501 0.9877 
0.0549 0.7729 0.9586 0.7864 0.942 1 0.8081 0.9169 
0.0380 0.7747 0.8991 0.7840 0.8884 0.7989 0.8718 
0.0356 0.7644 0.8789 0.7730 0.8691 0.7868 0.8539 
0.0316 0.7593 0.8561 0.7666 0.8479 0.7783 0.8351 
0.0401 0.7400 0.8660 0.7494 0.8551 0.7645 0.8383 
0.0431 0.7222 0.8551 0.7320 0.8435 0.7478 0.8257 
0.0442 0.7203 0.8566 0.7304 0.8447 0.7466 0.8464 
0.0352 0.7113 0.8164 0.7293 0.8074 0.7319 0.7935 

Marginal intervals were easily constructed for each firm using the Bonferroni inequality. 
Since we knew the probability with which fiim 5 could be identified as most efficient, we 
simply constructed a joint probability statement with this and a per comparison interval 
and selected the marginal confidence levels so that the Bonferroni inequality produced the 
desired joint confidence level. Here, since we were essentially certain that firm 5 was effi- 
cient, the joint probability statement essentially reduced to a single per comparison proba- 
bility statement. In the rice farm data the per comparison intervals were conditional on 
firm 164 being efficient; we just assumed that this was the case. However, for the current 
data, we knew with almost certainty (99.9% certainty) that firm 5 was efficient, so our 
marginal statement essentially coincides with the per comparison statement, just as the 
MCB intervals coincide with the MCC intervals. 

The marginaVpercomparison intervals are contained in Table 9b. Again the actual stan- 
dard errors were used, since we did not have to appeal to equicorrelatedness to get our 
critical values. As a general statement, the marginal (per comparison) intervals are com- 
parable to the MCB intervals. Surprisingly, in many cases the marginal intervals are actu- 
ally wider than the MCB intervals. This must reflect failure of the equicorrelatedness assump- 
tion underlying our MCB intervals, but it also is a reflection of the relative sizes of Nand T 
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in the data. To be more specific, consider the following expression for the standard error 
of the estimate & - &j: 

Ses,j = [VX(fS$ + Var(Gj) - 2COV(&, Gj)]" 

= [20,2/T + .EsV((p).ij + ijV(P)ii - Es V(P)2i]‘h. (11) 

When T is small and N is large (e.g., T = 6 as in the rice farm data), the term 2az/T is 
large relative to the other three terms, so any differences between~svar(&& ijvar(p)ii and 
Xsvar(&j are unimportant. For MCB we assume i5var(&; = ~jvar(&i?~ = ~5var(&$, 
so these insignificant diflbrences are ignored. When T is large, however, the term 20,2/T 
is small and the aforementioned differences may become significant. However, if we ignore 
this difference in MCB, then the standard error for MCB may be smaller than the standard 
error for some of the marginal (per comparison) intervals. This is less of a problem when 
both N and Tare large, because large Ntends to shrink the V(p) term so any differences 
in the XiV($)ij term will become less pronounced. 

In cases where equicorrelatedness of the Cri cannot be assumed, there are some conser- 
vative MCB approximations available. Matejcik (1992) suggests techiques for adaptive MCB 
intervals that are robust to a generalization of the correlation matrix and compares their 
performance using computer simulation. These techniques are based on several MCC 
methods that are themselves robust and include: an MCC method based on Banjeree’s ine- 
quality due to Tamhane (1977), a procedure using a moment-based approximation to the 
Behrens-Fisher problem due to Tamhane (1977), a method using all-pair-wise procedures 
due to Dunnett (1980), and his own technique based on a heteroscedastic selection proce- 
dure. An obvious line for further research is to examine the applicability of these techniques 
to stochastic frontier models. 

4.3. Egyptian Zleries--Se&e (1990) 

We analyze data previously analyzed by Seale (1990). For a complete discussion of the 
data see Seale (1990). He observed 25 Egyptian small-scale floor tile manufacturers over 
three-week periods for 66 weeks, for a total of 22 separate observation periods. The set 
contains some missing data points, so the number of separate observation periods varies 
across firms, making this an unbalanced panel. The data were collected by the Non-Farm 
Employment Project in 1982-1983. The firms were located in Fayoum and Kalynbiya, 
Egypt. Inputs to the production of cement floor tiles are labor (labor-hours) and machines 
(machine-hours). Output is in square meters of tile. 

The model was estimated by OLS, within and CGLS. The third moment of the OLS 
residuals was positive, so MLE was not attempted. Estimation results are given in Table 10. 
It may be noted that c,’ and U$ are of similar magnitude. For this reason, and because 
the number of firms is similar to the number of periods per firm (for most firms), this 
data set has characteristics that put it in the middle ground between the Erwidodo rice 
t&m data set (Nmuch larger than T, c,’ larger than ai) and the Kumbhakar utilities data 
set (T larger than ZV, c,” larger than a;). We should expect confidence intervals wider than 
for the utilities but narrower than for the rice farms. 
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Table 10. Tileries-Panel data estimation results. 

Variable OLS Within CGLS 

constant -0.2335 0.4732 
Labor 1.1779 1.0075 I .0508 
Machines 0.0347 0.0417 0.0448 
*u -2 0.0842 
QY -2 0.1147 0.1147 
E(4) 0.2315 

Table 11 gives the BC confidence intervals based on the CGLS estimates, for all fnms. 
As a general statement, these confidence intervals are considerably wider than for the utility 
data. They are perhaps a little narrower than the confidence intervals for the rice farm 
data, but this is not entirely clear because the general level of efficiency is lower than it 
was for the rice farm data. 

We next consider the MCB intervals. Because the panel is unbalanced, different Gi are 
based on different numbers of observations, and we cannot expect the equicorrelated structure 
to hold. However, we CLIII still proceed with MCB if pij = corr(c?,,, - Cri, GN - 6j) has 
the following product structure: 

Pij = OiOj, i,j # N 

6, = [K/(T + TN)]‘, i # N. 

See Horrace and Schmidt (1994). This structure held approximately, and so we calculated 
the MCB intervals, which are given in Table 12. As was the case for the BC results, the 
confidence intervals are generally narrower than those for the rice t5rm data but wider 
than those for the utility data. 

MCC and per comparison intervals for the within estimation are contained in Tables 13 
and 14, respectively. Once again, they are not very different from the MCB intervals. 

5. Conclusions 

In this paper we have shown how to construct confidence intervals for efficiency estimates 
from stochastic frontier models. We have done so under a variety of assumptions that cor- 
respond to those made to calculate the efficiency measures themselves. For example, given 
distributional assumptions for statistical noise and inefficiency, the Jondrow et al. or Battese- 
Coelli estimates are typically used, and confidence intervals for these estimates are straight- 
forward. With panel data but without distributional assumptions, efficiency estimates are 
commonly based on the fixed-effects (within) intercepts, and confidence intervals follow 
from the statistical literature on multiple comparisons with the best. 

In our analysis of three panel data sets, we found confidence intervals that were wider 
than we would have anticipated before this study began. The efficiency estimates are more 
precise (and the confidence intervals are narrower) when T is large and when c,’ is large 
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Table II. Tileties-Confidence intervals based on BC method, CGLS estimates-Panel data. 

Firm Efficiency 95% Lbnd 95% ubnd 90% Lbnd 90% Ubnd 75% Lbnd 75% Ubnd 

24 

14 

25 

19 

3 

22 

18 

16 

5 

21 

2 

23 

4 

17 

15 

11 

13 

12 

6 

10 

9 

1 

20 

7 

8 

0.9499 

0.9433 

0.9425 

0.9365 

0.9341 

0.9323 

0.92% 

0.9151 

0.9025 

0.9017 

0.8992 

0.8866 

0.8854 

0.8813 

0.8405 

0.7228 

0.6988 

0.6872 

0.6748 

0.6620 

0.6437 

0.6283 

0.5973 

0.5818 

0.5399 

0.8601 

0.8482 

0.8457 

0.8359 

0.8309 

0.8280 

0.8266 

0.7885 

0.7791 

0.7889 

0.7841 

0.7742 

0.7688 

0.7686 

0.7296 

0.6285 

0.6077 

0.5976 

0.5868 

0.5534 

0.5541 

0.5314 

0.5100 

0.5059 

0.4664 

0.9981 

0.9976 

0.9976 

0.9971 

0.9969 

0.9968 

0.9963 

0.9958 

0.9935 

0.9919 

0.9917 

0.9871 

0.9878 

0.9850 

0.9587 

0.8271 

0.7997 

0.7864 

0.7723 

0.7855 

0.7436 

0.7378 

0.6952 

0.6657 

0.6216 

0.8771 

0.8656 

0.8635 

0.8538 

0.8491 

0.8463 

0.8444 

0.8103 

0.7993 

0.8070 

0.8024 

0.7917 

0.7870 

0.7860 

0.7462 

0.6425 

0.6212 

0.6109 

0.5999 

0.5692 

0.5674 

0.5456 

0.5229 

0.5172 

0.4773 

0.9961 

0.9952 

0.9952 

0.9942 

0.9939 

0.9936 

0.9928 

0.9916 

0.9875 

0.9848 

0.9834 

0.9769 

0.9779 

0.9738 

0.9404 

0.8091 

0.7823 

0.7693 

0.7554 

0.7637 

0.7262 

0.7186 

0.6781 

0.6512 

0.6074 

0.9034 

0.8928 

0.8911 

0.8850 

0.8779 

0.8753 

0.8765 

0.8449 

0.8315 

0.8359 

0.8319 

0.8198 

0.8162 

0.8140 

0.7731 

0.6652 

0.643 1 

0.6325 

0.6211 

0.5950 

0.5888 

0.5686 

0.5437 

0.5354 

0.4949 

0.9881 

0.9880 

0.9858 

0.9851 

0.9843 

0.9826 

0.9797 

0.9713 

0.9670 

0.9660 

0.9544 

0.9555 

0.9498 

0.9098 

0.7815 

0.7556 

0.7431 

0.7297 

0.7307 

0.6998 

0.6894 

0.6521 

0.6290 

0.5858 
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Table 12. Tiler&s-MCB confidence intervals-Panel data. 

Firm Gi 95% Lbnd 95% ubnd 90% Lbnd 90% Ubnd 75% Lbnd 75% Ubnd 

14 0.9881 0.7373 1.0000 0.7566 1.0000 0.7892 1.0000 

24 0.9825 0.7291 1.0000 0.7484 1.0000 0.7803 1 .oooo 

25 0.9770 0.7223 1.0000 0.7417 1.0000 0.7737 1 .oooo 

3 0.9691 0.7136 1.0000 0.7330 1.0000 0.7651 1 .oooo 

19 0.9687 0.7164 1.0000 0.7356 I.0000 0.7673 1 .oooo 

22 0.9685 0.7132 I.OcmO 0.7326 1.0000 0.7647 1.0000 

18 0.9399 0.6987 1.0000 0.7172 1.0000 0.7478 1 .oOQo 

5 0.9061 0.6557 1.0000 0.6748 1.0000 0.7064 1.0000 

21 0.9043 0.6716 1 .oooo 0.6896 1 .oooo 0.7194 1 .oooo 

16 0.9036 0.6386 1.0000 0.6585 1.0000 0.6916 1.0000 

2 0.8834 0.6550 1.0000 0.6728 l.OcoO 0.7023 1 .oooo 

23 0.8811 0.6588 1.0000 0.6763 1.0000 0.7051 1 .ooOo 

4 0.8769 0.6508 1 .oooo 0.6684 1.0000 0.6977 1.0000 

17 0.8497 0.6384 1 .oooo 0.6553 1 .ocoo 0.6833 1 .oooo 

15 0.8121 0.6149 1.0000 0.6311 L.0000 0.6581 1 .ooOo 

II 0.6240 0.5113 1 .oooo 0.5246 1.0000 0.5468 1 .oooo 

13 0.6071 0.5027 1 .ocoo 0.5158 1 .oooo 0.5376 1 .oooo 

12 0.5796 0.4891 1 .oOoo 0.5018 1.0000 0.5230 1 .oOOo 

6 0.5494 0.4745 1 .oooo 0.4870 1.0000 0.5074 0.9772 

10 

9 

1 

20 

7 

8 

0.5190 0.4387 I .oooo 0.4521 1.0000 0.4741 

0.4604 0.4291 0.9673 0.4408 0.9417 0.4601 

0.9843 

0.9022 

0.4475 0.4146 0.9757 0.4266 0.9482 0.4466 0.9058 

0.4256 0.4104 0.9433 0.4219 0.9176 0.4409 0.8779 

0.3987 0.4081 0.8990 0.4188 0.8760 0.4365 0.8406 

0.2818 0.3604 0.8057 0.3701 0.7848 0.3861 0.7522 
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ZzbZe 13. Tileries-MCC confidence intervals-Fanel data. 

Firm Gi 95% Lbnd 95% Ubnd 90% Lbnd 90% Ubnd 75% Lbnd 75% Ubnd 

14 0.9881 

24 0.9825 0.7291 1.0000 0.7484 1.0000 0.7803 1.0000 

25 0.9770 0.7223 l.OOQO 0.7417 1 .oooo 0.7737 1.0000 

3 0.9691 0.7136 1.0000 0.7330 1.0000 0.7651 1.0000 

19 0.9687 0.7164 l.OOQO 0.7356 1.0000 0.7673 1.0000 

22 0.9685 0.7132 1.0000 0.7326 1.0000 0.7647 1 .oooo 

18 0.9399 0.6987 1.0000 0.7172 1.0000 0.7478 1.oocul 

5 0.9061 0.6557 l.OOQO 0.6748 l.OOcO 0.7064 1.0000 

21 0.9043 0.6716 1.0000 0.6896 1.0000 0.7194 l.OOOO 

16 0.9036 0.6386 1.0000 0.6585 1 .ooOo 0.6916 1.0000 

2 0.8834 0.6550 1.0000 0.6728 1.0000 0.7023 1.0000 

23 0.8811 0.6588 1.0000 0.6763 l.OOOO 0.7051 1 .oooo 

4 0.8769 0.6508 1.0000 0.6684 1 .oow 0.6977 1.0000 

17 0.8497 0.6384 1.0000 0.6553 1 .oooo 0.6833 l.OOOil 

15 0.8121 0.6149 1 .oooo 0.6311 1.0000 0.6581 1.0000 

11 0.6240 0.5113 0.9444 0.5246 0.9203 0.5468 0.8830 

13 0.6071 0.5027 0.9318 0.5158 0.9077 0.5376 0.8706 

12 0.56% 0.4891 0.9033 0.5018 0.8803 0.5230 0.8447 

6 0.5494 0.4745 0.8764 0.4869 0.8541 0.5074 0.8195 

10 

9 

1 

20 

7 

8 

0.5190 0.4387 0.8921 0.4520 0.8658 0.4741 0.8254 

0.4604 0.4291 0.8112 0.4408 0.7897 0.4601 0.7566 

0.4475 0.8182 0.4266 0.7952 0.4466 0.75% 

0.4256 0.7910 0.42 19 0.7695 0.4409 0.7362 

0.3987 

0.4146 

0.4104 

0.4081 

0.3604 

0.7539 0.4188 0.7364 0.4365 0.7049 

0.2818 0.6758 0.3701 0.6580 0.3861 0.6308 
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ZibZe 14. Tileries-Per comparison confidence intervals-Panel data. 

Standard 
Firm EUor 95% Lbnd 95% Ubnd 90% Lbnd 90% Ubnd 75% Lbnd 75% Ubnd 

14 

24 

25 

3 

19 

22 

18 

0.1045 0.7958 

0.1137 0.7940 

0.1120 0.7950 

0.1100 0.7907 

0.1075 0.7943 

0.1225 0.7496 

5 

21 

16 

2 

23 

0.1277 

0.1060 

0.1485 

0.1078 

0.1054 

4 0.1148 

17 

15 

I1 

13 

0.1198 

0.1047 

0.1090 

0.1034 

12 0.1118 

6 0.1090 

10 

9 

1 

20 

7 

8 

0.1223 0.4922 0.7950 0.5116 

0.1194 0.4669 0.7456 0.4848 

0.1258 0.4552 0.7453 0.4736 

0.1115 0.4579 0.7089 0.4728 

0.1056 0.4510 0.7822 0.4662 

0.1173 0.3921 0.62 10 0.4069 

1.0000 

1.oocKl 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 0.8725 

1.0000 0.8694 

1.0000 0.8672 

1 .oooo 0.8643 

1 .cKloo 0.8665 

1.0000 0.8278 

0.7173 

0.7472 

0.6869 

1.0000 

1.0000 

1 .OOoo 

I .oooo 

0.7291 

0.7309 

0.7145 

0.6886 

0.6830 

0.5612 

0.5578 

1.0000 

1.0000 

I .oooo 

1.0000 

0.8248 

0.8225 

0.8223 

0.8185 

0.8216 

0.7791 

0.7468 

0.7725 

0.7198 

0.7543 

0.7556 

0.7408 

1 .OOoo 

1.0000 

1.0000 

0.8603 

0.8367 

0.7151 

0.7059 

0.5808 

0.5763 

1 .oooo 

1.0000 

1.0000 

1.0000 

0.9962 

0.8313 

0.8098 

0.5339 0.8275 0.5530 0.7989 

0.5208 0.7984 0.5390 0.7715 

0.7650 

0.7181 

0.7163 

0.6844 

0.6599 

0.5985 

0.7955 

0.8141 

0.7747 

0.7956 

0.7960 

0.7841 

0.7587 

0.7435 

0.6130 

0.6066 

0.5845 

0.5689 

0.5435 

0.5143 

0.5a40 

0.5012 

0.4912 

0.4312 

1 .oOOo 

1 .oOOo 

1 .oooo 

1 .oOOo 

1.0000 

1.0000 

1 .oooo 

1.0000 

I .oooo 

1 .oooo 

1.0000 

l.OOQO 

0.9994 

0.9459 

0.7876 

0.7694 

0.7558 

0.7310 

0.7200 

0.6768 

0.673 1 

0.6477 

0.6263 

0.5648 
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relative to 0,“) and they are less precise when T is small and when CT,’ is small relative to 
a:. However, frankly, in all cases that we considered the efficiency estimates were rather 
imprecise. We suspect that, in many empirical analyses using stochastic frontier models, 
differences across firms in efficiency levels are statistically insignificant, and much of what 
has been carefully explained by empirical analysts may be nothing more than sampling error. 

This is a fairly pessimistic conclusion, though it may turn out to be overly pessimistic 
when more empirical analysis is done. It is therefore important to stress that deterministic 
methods like DEA are not immune from this pessimism. Efficiency measures from DEA 
or other similar techniques are subject to the same sorts of uncertainty as are our estimates. 
The only difference is that we can clearly assess the uncertainty associated with our esti- 
mates while, at present, it is less clear how to assess the uncertainty associated with the 
DEA measures. In our opinion this should continue to be a high-priority item on the DEA 
research agenda. 
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