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Abstract

A substantial body of recent work has opened the way to exploring the statistical properties of DEA estimators
of production frontiers and related efficiency measures. The purpose of this paper is to survey several possibilities
that have been pursued, and to present them in a unified framework. These include the development of statistics
to test hypotheses about the characteristics of the production frontier, such as returns to scale, input substitutability,
and mode] specification, and also about variation in efficiencies relative to the production frontier.
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1. Introduction

The data envelopment analysis (DEA) methodology was developed in the management
science tradition (Charnes, Cooper, and Rhodes 1978, 1981) with a focus on computing
the relative efficiency of different decision-making units (DMUs). The DEA approach
specifies the production set only in terms of properties such as convexity and moxnotonicity,
without imposing any parametric structure on it (Banker, Charnes, and Cooper 1984). Early
work in DEA did not specify any structure for the distribution of deviations from the pro-
duction frontier and, therefore, did not explore the statistical properties of its estimators.
Instead, it was limited to developing different mathematical programs to model different
types of production relations (e.g., Banker and Maindiratta (1986), Banker and Morey
(1986). Even the paper in Econometrica by Banker and Maindiratta (1988) focused only
on checking whether a set of observations on production inuts and outputs could be recon-
ciled with economic efficiency as in Varian’s (1984) algebraic test for consistency with
the weak axiom of cost minimization and whether any of the observations exhibited technical,
allocative, or scale inefficiencies. The DEA approach, therefore, was labeled by some as
nonstatistical (Schmidt 1985; Gong and Sickles 1992).

Recent work in DEA, however, has opened the way to exploring the statistical properties of
its estimators of production functions. Banker (1993) shows that DEA provides a consistent
estimator of arbitrary monotone and concave production functions when (the one-sided)
deviations from the production function are regarded as stochastic variations in the technical
inefficiency of individual observations. This estimator also maximizes the likelihood function
if the probability density function for the inefficiency is monotone decreasing, a more robust
characterization than Schmidt’s (1976) corresponding result for Aigner and Chu’s (1968)
estimators of parametrically specified production frontiers. In addition, the empirical
distribution of the DEA estimator of the technical inefficiency of individual observations
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asymptotically recovers its true distribution. These results are particularly useful because
the DEA inefficiency estimator can be used to construct statistical tests for evaluating
hypotheses about differences in inefficiency distributions for two or more groups of obser-
vations. Monte Carlo experiments reported in Banker and Chang (1994) document superior
results with these DEA-based tests relative to conventional tests based on corrected or-
dinary least squares (COLS) estimation of parametrically specified production functions
(Olson, Schmidt, and Waldman (1980)).

The purpose of this paper is to survey several possibilities that have been pursued in recent
years based on the asymptotic distribution of the DEA estimator. These include the develop-
ment of statistics to test hypotheses about the characteristics of the production frontier, such
as returns to scale, input substitutability, and model specification. The materials in this
paper are not original; I have prepared this paper by collating selected text and results from
several recent papers (Banker 1989; Banker and Chang 1993, 1994, 1995; Banker, Chang,
and Sinha 1994; Banker, Devaraj, and Sinha 1995). However, by presenting different DEA-
based tests of hypotheses in a unified framework, I hope this paper will prove to be a useful
reference to researchers in efficiency measurement and production frontier estimation.

The remainder of this paper has the following structure. In Section 2, T describe the
statistical foundation provided in Banker {1993} for the DEA estimator of DMU efficiency.
In Section 3, I summarize the results of three simulation studies evaluting the performance
of Banker’s (1993) tests of differences in efficiencies of two groups of DMUs. In Section 4,
I describe the construction of statistics to test returns to scale based on the DEA inefficiency
estimator, and the results of some simulation experiments to compare their performance
to conventional tests of returns to scale. I present DEA tests of the input substitutability
hypothesis in Section 5, along with associated simulation results. I describe some tests of
model specification based on the DEA estimator in Section 6, and simulation results com-
paring these tests with conventional parametric methods. Finally, I present conchiding
remarks in Section 7.

2. Statistical Foundation of the DEA Estimator

Let Y; = (yyjp - yrp > Oand X; = (xy, - .. x) > 0,j=1 ... N, be the observed
(R-dimensional) output and (/-dimensional) input vectors in a sample of N observations
generated from the underlying production possibility set P = {(X, Y)| outputs Y can be
produced from inputs X}. Input quantities x;;, { = 1, ... I, are random variables with
positive probabilities throughout their domain sets (<, xy € ®*. Output mix propor-
tion variables m,;, r = 1, ... R, Ele m,; = 1, are also random variables with positive
probabilities throughout their domain sets ont, my € (0, 1) € R, so that m, Ve =
myly; forallr, s =1L ... R,andj =1, ... N.! The inefficiency 0; of an observation
(X;, ¥;) € P, measured radially by the reciprocal of Shephard’s (1970) distance function,
is given by 0, = 0(X;, Y)) = sup{0](X;, 0Y) € P}. The inefficiency is a random variable
comprising both technical factors such as capital equipment, labor skill, and managerial
ability, and random shocks that result in defects, damage, and breakdowns in any produc-
tion process (Aigner and Chu 1968). Such specification permits random factors to influence
the realization of production inefficiencies for different observations, but it precludes meas-
urement errors in inputs and outputs (Férsund, Lovell and Schmidt, 1980; Greene, 1980).
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Based on Banker (1993)?, I specify the following structure for the production set P and
the probability density function f(8) for the inefficiency 0:

Postulate 1. (Monotonicity) If (X}, Y)) € P X, = Xj,and ¥, < Y, then (X5, ¥,) € P.

Postulate 2. (Convexity) If (X;, Y¥)) € Pand (X;, Y5) € Pthen (\\ X; + MXo, N\ Y +
NY,) € Pforall A\, A, = Osuchthat \; + N, = L.

Postulate 3. (Envelopment) If § < 1 then f(8) = 0.
Postulate 4. (Likelihood of efficient performance) If § > 0 then f'*® f(0)d0 > 0.

The DEA estimator of ¢ is obtained as § f by solving the linear programming formula-
tion of the so-called BCC model (Banker, Charnes, and Cooper (1984) given below in (1):

6% = max 6 6}
N
DMK S X )
k=1
N
DN =0 Y, (3)
k=1
N
D=1 4)
k=1
0, \p, = 0. &)

This estimator is statistically consistent, and its asymptotic empirical distribution F5(8)
recovers the true distribution of § under the maintained assumptions embodied in the above
four postulates (Banker 1993, Theorems 5 and 6).3 Korostelev, Simar, and Tsybakov
(1995) show that the DEA estimator in the single-output I-input case converges at the rate
N72/0%2) and that no other estimator can converge with a faster rate. The DEA estimator
also maximizes likelihood if, in addition, the following postulate is satisfied (Banker 1993,
Theorem 2):

Postulate 5. (Decreasing probability density) If 0, = 0., then f(6,) < f(0,).

Banker (1993) also suggests statistical tests of differences in the inefficiency of two differ-
ent types of DMUS, say types Tland T2. Let Gl = {1, ... N} N Tland G2 = {1, ... N}
N T2, GI N G2 = ¢, be the groups of these two types of DMUs in the sample, and
let Ny and N, be the number of observations in the two groups Gl and G2 respectively.
Then Banker (1993) presents the following three test procedures:
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(i) If we maintain the assumption that the inefficiences 6; follow the exponential distribu-
tion for both types of DMUs with means 1 + o, and 1 + o;, respectively, then both
Yieal 2(0}9 — D/oy and Ly 2(0 f — /o, asymptotically follow the chi-square
distribution with 2N, and 2N, degrees of freedom, respectively. Therefore, under the
null hypothesis HO: o, = 0, = o (indicating that both types of DMUs have the same
inefficiency distribution), we can test the null hypothesis HO against the alternative
hypothesis HI: o, > o0, (indicating that the first type is on average less efficient than
the second type), using the test statistic given by Tgy = [Ljq (83 DNV Ejeqe
(BB — 1)/N,] evaluated relative to the F-distribution with (2N1, 2N,) degrees of
freedom

(ii) If we maintain the assumption that the random variables y; = 6; — 1 are distributed
as |N(0 (7,)| i = 1, 2, for the two types of DMUs then both X, (0 — 1)%/0, and

Liego (0 — 1)*/0, asymptotically follow the chi-square dlstrlbutlon w1th N, and N,
degrees of freedom, respectively. Therefore, under the null hypothesis HO: o) = o,
= g, we can test the null hypothesis HO against the alternative hypothesis Hl: ¢; >
o, using the test statistic given by Ty = [Zje @F — DYNV/[Ejeqr 0F — DY N,
evaluated relative to the Fdistribution with (¥,, M) degrees of freedom.

(iii) If no such assumptions are maintained about the probability distribution, then we can
employ a nonparametric Smirnov’s two-sample type test procedure based on the max-
imum vertical distance of the empmcal distribution F&, (93) of DMUs in group Gl
above the empirical distribution F 02(9 ) of DMUs in group G2 In this case, the test
statistic is given by Tgy = max{FGl(BB) F&ODIj = ., N}.

The principle underlying the construction of the test-statistics in (i) and (ii) above can
be extended readily to a few other cases where different assumptions are maintained about
the inefficiency distributions. For instance, if we maintain the assumption that for some
transformation function R(*), R(6)) are distributed as normal, or half-normal, then we can
use the test statistic Tg = [Ejeq (R((Jj))2/N,]/ [Tiec2 (R(B,))ZINZ] to test the null hypothesis.

That the inefficiencies 6; are independently distributed is 2 maintained assumption, and
the distribution of the DEA estimator of inefficiency 03 asymptotically recovers the true
distribution. Therefore, GB are asymptotically mdependent of each other. However, for any
finite sample, the DEA estlmates of inefficiencies of different observations need not be
independently distributed. More importantly, for any finite sample, the distribution of the
DEA estimator 03 need not follow the underlying true distribution of 8. In fact, Banker
(1993) shows that the DEA estimator is biased for finite samples. Therefore, L) 2(0
— D/o; or iy (0 ~ 1)%/0; need not follow the chi-square distribution, these two statistics
for the two groups Gl and G2 need not be independently distributed, and their ratio need
not follow the F-distribution for finite samples. Thus, it is important to evaluate the perfor-
mance of these new tests with systematic simulation studies (Banker 1993, p. 1272).

3. Simulation Studies of Tests of Efficiency Differences

This section presents results of two simulation studies reported earlier in Banker and Chang
(1994, 1995), and a third study by Kittelsen (1995). Banker and Chang’s first study was
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designed to compare Banker’s (1993) tests with traditional methods used in DEA and with
an appropriately specified COLS model. This study also evaluated the results of a new
test using the COLS estimators that is based on Banker’s (1993) Theorem 6 about the asymp-
totic recovery of the true inefficiency distribution in frontier estimation. The second study
evaluates the performance of these various tests under conditions designed to be adverse
to the new DEA-based tests. Specifically, it considers settings that reflect the two most
common criticisms of the DEA methodology: (1) Possible pesence of measurement (or
specification) errors; and (2) explicit incorporation of optimal allocations such as those
embodied in Shephard’s lemma. In addition, the setting is made even more adverse to the
new DEA-based tests by simulating true inefficiency values §; from probability density
functions that vanish at @ = 1 instead of having a mode at § = 1 as assumed in Banker’s
first two tests. Also discussed in this section is a study by Kittelsen (1995) which is similar
to the first Banker and Chang (1994) study except that it only evaluates the occurrence
of Type II errors.

In the first study, Banker and Chang (1994) generated 800 different data sets varying
the specification of three factors: production technology, inefficiency distribution, and sample
size. They considered five different production technologies, four different inefficiency
distributions, and four different sample sizes, and replicated each of the 80 (=5 * 4 * 4)
settings 10 times to yield 800 (=80 * 10) data sets. Banker and Chang (1994) specified
the following five different single output, multiple-input production technologies described
in terms of Cobb-Douglas type production frontiers ¢ = h(X), where g represented the
maximum output that can be produced from the input vector X:

Two-input, one-output technologies:

Linear homogeneous production frontier: g = 10x0-6x ©)
Concave production frontier: g = 10x34x33 N
Convex production frontier: g = 10x%-3x3- (8)

Five-input, one-output technologies:

Concave production frontier: g = 10x32x32x3 1 x$ 123! 9

Convex production frontier: g = 10x%3x9-3x33x92x22 (10)

Each sample generated for this study had two groups of DMUs. The first group of DMUs
comprised 40% of the observations in each sample, and the second group comprised the
remaining 60% of the observations. Four different inefficiency distributions were considered.
The first distribution combined two half-normal distributions that reflect differences in the
inefficiencies of the two groups of DMUs. The random variable y; = 0; — 1 = 0 was
simulated from the half-normal distribution |[N(0, 1)| for the first group of DMUs. The
random variable y; for the second group of DMUs was generated from the half-normal
distribution |N(0, 0.78)]. The second distribution combined two exponential distributions
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with different mean inefficiencies for the two groups. The third distribution had both groups
following the same half-normal distribution, and the fourth distribution had both groups
with the same exponential distribution.

Four different sample sizes: 50, 100, 150, and 200, were considered. The values X; of
the input vector for each observation j were simulated from independent uniform distribu-
tions on the interval [5, 15]. The corresponding value of the output y; = g;/0; for each
observation j was obtained using the production frontier described in (6) to (10) above
and the simulated value of the inefficiency term §; = ; + 1.

Two traditional test procedures, Welch’s mean test and Mann-Whitney test (Siegel and
Castellan 1988), that have been used to test for inefficiency differences between two groups
of DMUs in the existing DEA literature (e.g., Banker, Conrad, and Strauss (1986),
Grosskopf and Valdmanis (1987), and two parametric COLS specifications (loglinear and
translog) of the estimated production frontier, with a dummy variable to test for differences
in the mean inefficiency between the two groups of DMUSs, were evaluated and compared
with Banker’s (1993) tests. Representative results for the concave production frontier case
in (8) with half-normal distributions are reproduced here as Tables 1a and 1b.

Banker and Chang (1994) summarize their results as follows: (1} The new asymptotic
DEA tests outperform COLS-based tests even when the parametric functional form employed
for COLS estimation is identical to the underlying production frontier: (2) the asymptotic
DEA tests are robust in that they perform well for different underlying production fron-
tiers and inefficiency distributions: (3) Welch’s mean and Mann-Whitney tests perform worse
than both the new asymptotic DEA tests and the COLS-based tests: (4) the performance
of COLS-based tests is improved when Banker’s (1993) new test statistics are employed
using COLS estimates of production inefficiencies; and (5) no marked differences in Type
I error are found between the various tests with one-output two-input production
technologies. But, Welch’s mean test, Mann'Whitney test, and COLS-based tests perform
slightly better than the asymptotic DEA tests in terms of proportion of Type II errors with
one-output five-input production technologies.

The most surprising of their results was that the new asymptotic DEA tests outperformed
the conventional COLS-based test even when the parametric fanctional form specified for
COLS estimation was identical to the true underlying production frontier (see also Mensah
and Li, 1993). These results prevailed for all four sample sizes and the two different dimen-
sions of input space. These surprising results were also robust in that they prevailed even
when the underlying production frontier violated the assumptions of concavity or constant
returns to scale for the BCC and CCR models in DEA, and when the true inefficiency
distribution was different from that postulated in Banker’s (1993) DEA test statistic. In
addition, the Welch and MannWhitney tests that have been used in several prior DEA-
based research studies were found to perform the worst in their simulation study. This was
true for all four sample sizes, regardless of the underlying production frontier or the inef-
ficiency distribution used in the generation of the simulated data.

The second study by Banker and Chang (1995) considered conditions particularly favorable
to the parametric cost frontier-based tests, using simulated data on multiple outputs with
measurement errors, generated consistent with Shephard’s lemma. Thus, their experimental
setting violated the DEA assumption of no measurement error (Aigner, Lovell and Schmidt,
1977), and further it explicitly incorporated the assumption of optimal allocation of input
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Table la. Summary of efficiency difference test results for a convex production function. (Source: Banker and

Chang (1994))

Sample Size
Estimation
Model Test Procedure N=50 N=100 N=150 N=200

Banker’s asymptotic BCC exponential 74 4 (3) 5(5) 7 (6)
DEA tests half-normal 7 6) 44 9 9 (8)
CCR exponential 6 (1) 3@ 9 @) 7 (6)
half-normal 8 (D 333 7 (6) 9 (®)
Tests used in prior BCC ‘Welch 5Q) 303 2@2) 7 (3)
DEA literature MannWhitney 4(2) 4 (3) 2@ 7@
CCR Welch 2 () 2 2) 4 (3) 76
MannWhitney 2 2 @) 4 (2) 6 (6)
COLS-based tests loglinear dummy variable 3 3@2) 6 (5) 76)
translog dummy variable 3Q) 1Q) 6 (4) 8 (6)
New COLS-based loglinear exponential 3@ 3 6 (5) 76)
tests with Banker’s half-normal 6 (5) 6 (5) 8 (8) 10 (9)
test statistic translog exponential 3 1) 5@ 6 (5)
half-normal 5@ 3Q) 8 (5 9 (8)

Note: The number reported in each cell is the number of iterations (out of a total of 10 iterations) for which
the corresponding test statistic is significant at the 10% level. The corresponding number in parentheses in each
cell indicates the number of iterations for which the test statistic is significant at the 5% level.

Table Ib. Summary of efficiency difference test results for a convex production function. (Source: Banker and

Chang (1994))

Sample Size
Estimation
Model Test Procedure N=50 N=100 N=150 N=200

Banker’s asymptotic BCC exponential 0O 0 (0) 2 (1) 2 ()
DEA tests half-normal 0 0 (0) 2 (D 2 @)
CCR exponential 0 (0) 0 (0) 1(0) 0 (O)
half-normal 0 ) 1 (0) 1 (0) 1 (0)
Tests used in prior BCC Welch 0 (0) 1Q) 1 () 1)
DEA literature MannWhitney 0 (0) 1) 2 1
CCR Welch 0 (0) L) 1) 1Q)
Mann'Whitney 0 (0) 1 2 (0 2
COLS-based tests loglinear dummy variable 0 () 1D 3O 1)
translog dummy variable 0 (0) 1) 21 1)
New COLS-based loglinear exponential 0 ©) 0O 0 ©) 2 ()
tests with Banker’s half-normal 0 © 0O 2 (L) 2@
test statistic translog exponential 0© 0 (0) 1O 0 (@)
half-normal 0 ©) 0O 2 () 2 O

Note: The number reported in each cell is the number of iterations (out of a total of 10 iterations) for which
the corresponding test statistic is significant at the 10% level. The corresponding number in parentheses in each
cell indicates the number of iterations for which the test statistic is significant at the 5% level.
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resources underlying parametric cost frontier estimation, but not considered in DEA estima-
tion. Further, they generated the logarithm of the inefficiency variable from half-normal or
exponential distributions, so that the modes of the distributions of the simulated inefficien-
cies f); were strictly greater than one, thus violating a key structure specified in Banker’s
(1993) tests. Their study considered an underlying production correspondence involving
two inputs and two outputs, four different inefficiency distributions, two different measure-
ment error distributions, and three different sample sizes (30, 60, and 90). There were 10
replications of each of 24 (=4 * 2 * 3) cells for a total of 240 data samples. Representative
results for the high measurement error case (as defined in Banker, Gadh, and Gorr (1993))
appear in Table 2. In these cases, k = var({n measurement error)/var({n inefficiency) ranges
between 0.1 and 3.4 depending on the different inefficiency distributions.

The most surprising result was that the new DEA-based tests outperformed both the
parametric cost frontier-based tests and Welch’s mean and Mann-Whitney tests in detect-
ing difference in inefficiencies (Type I error) for the multiple-output case even in the presence
of measurement errors. Welch’s mean and Mann-Whitney tests were conservative and per-
formed better than the new DEA-based tests and the paramtric cost frontier-based tests
in terms of proportion of Type Il errors with sample sizes of 30 and 60, but the new DEA-
based tests performed better than the other tests for the sample size of 90.

Table 2a. Summary of statistical test results when the variance of log measurement error is 0.04. (Source: Banker
and Chang (1995))

Panel A: True inefficiency is exponentially distributed with different parameters for the two groups

Sample Size
Estimation Model Test Procedure N =130 N =60 N =90
Banker’s asymptotic BCC exponential 5@3) 10 (8) 7
DEA tests half-normal 6 (5) 10 (10) 8 (8)
Tests used in prior BCC ‘Welch 1 () 7@ 65
DEA literature MannWhitney 1 (1) 6 (5 5@
Parametric cost translog dummy variable 44 8 (8 99

function-based test

Panel B: True inefficiency is half-normally distributed with the different parameters for the two groups

Sample Size
Estimation Model Test Procedure N =130 N =60 N=90
Banker’s asymptotic BCC exponential 6 (5) 5() 6 (4)
DEA tests half-normal 8 (6 53) 7
Tests used in prior BCC Welch 1) 5@ 503)
DEA literature MannWhitney 3@2) 2 @) 3@2)
Parametric cost translog dummy variable 4 (1) 4 4) 5(5)

function-based test

Note: The number reported in each cell is the number of iterations (out of a total of 10 iterations) for which
the corresponding test statistic is significant at the 10% level. The corresponding number in parentheses in each
cell indicates the number of iterations for which the test statistic is significant at the 5% level.
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Table 2b. Summary of statistical test results when the variance of log measurement error is 0.04. (Source: Banker
and Chang (1995))

Panel C: True inefficiency is exponentially distributed with same parameters for the two groups

Sample Size
Estimation Model Test Procedure N =30 N = 60 N=90
Banker’s asymptotic BCC exponential 33 54 1)
DEA tests half-normal 33 53 4 (4)
Tests used in prior BCC Welch 2 (0 4 2) 1 (0)
DEA literature MannWhitney 2 (1) 33 1 (0)
Parametric cost translog dummy variable 2 () 4 (3) 3Q2)

function-based test

Panel D: True inefficiency is half-normally distributed with the same parameters for the two groups

Sample Size
Estimation Model Test Procedure N =30 N =60 N=90
Banker’s asymptotic BCC exponential 3 2 30
DEA tests half-normal 3D 2@ 4 (3)
Tests used in prior BCC Welch 1 3 5@
DEA literature MannWhitney 2 (1) 1 (D 44
Parametric cost translog dummy variable 2(1) 1 (0) 5(5)

function-based test

Note: The number reported in each cell is the number of iterations (out of a total of 10 iterations) for which
the corresponding test statistic is significant at the 10% level. The corresponding number in parentheses in each
cell indicates the number of iterations for which the test statistic is significant at the 5% level.

Kittelsen (1995) performed a simulation study comparing the tests based on Txy and
Ty as in (i) and (ii) above with Welch’s means test. However, he considered only the case
when the true underlying distribution of inefficiencies for both groups of DMUs was iden-
tical. As a result, his study evaluated only the proportion of Type II errors when the null
hypothesis is falsely rejected. He performed 1,000 trials each for samples of size 20, 50,
100, 200, 500, and 1,000. His results indicated that the proportion of Type II errors for
the new tests was 5-6 % for samples of size 20 and reduced to 0% for samples of size 200
and greater. For all sample sizes, the occurrence of Type II errors was considerably less
for these new tests than for Welch’s means test. Thus, his results strongly support the con-
clusions drawn from the first Banker-Chang (1994) study.

Fixing the sample size at 100, Kittelsen then considered half-normal distributions with
different means for the inefficiency variable, two other distributions (gamma and exponen-
tial) for the inefficiency variable, three different distributions for the output variable (nor-
mal, uniform, and lognormal), and three different production frontiers with 1, 2, or 3 in-
puts. The results were remarkably robust; the occurrence of Type II errors remained con-
siderably lower for the new tests than for Welch’s means test. (Kittelsen also conducted
a matched pairs test that has no economic or statistical basis as there are not matched obser-
vations when testing this null hypothesis. Not surprisingly, Kittelsen’s matched pair test
rejected the null hypothesis (when it was true) in more than 99% of the cases!)



148 R.D. BANKER

Kittelsen also evaluated Banker’s (1993) two new tests and Welch’s means test by estimating
the inefficiencies separately for the two groups of DMUs after splitting the sample in each
case so that the DMUs of one type are not used as referent observations for the other type.
Not surprisingly, the proportion of Type II errors increased for all three tests with the smaller
N available to recover the true production frontier; but the new tests continue to perform
better than Welch’s means test. The proportion of Type II errors increased more than the
level indicated by the halving of the sample size; however, this was left unexplained in
his study.

4. Tests of Returns to Scale

Existence of increasing or decreasing returns to scale is one of the most studied
characteristics of production frontiers in economics because of its importance in many policy
decisions. Different DEA models provide estimators for technical inefficiency under dif-
ferent assumptions about returns to scale. Since the empirical distribution of the DEA
estimator of technical inefficiency asymptotically recovers the true distribution, we can
construct different statistics to test hypotheses such as constant return to scale, based on
assumptions about the true distribution of the technical inefficiency variable. In this sec-
tion, I reproduce detailed materials from Banker and Chang (1993) that describe such tests
for returns to scale based on the DEA estimator, and the results of a simulation study that
compares their performance relative to conventional COLS-based tests of returns to scale.

Banker’s (1993) four postulates are logically consistent with both increasing and decreasing
returns to scale, they do not impose constant returns to scale. Next, impose the additional
condition that the production set P exhibits constant returns to scale as embodied in postulate
6 below:

Postulate 6. (Constant returns to scale) If (X, Yy € Pthen (¢ X, rY) € Pforallr > O.

The DEA inefficiency estimator (denoted by 7] f) under the assumptions embodied in
Postulates 1, 2, 3, 4, and 6, is obtained by solving the same linear program in (1) to (5) as
before except that the constraint L4, N, = 1 in (4) is deleted. This corresponds to the
so-called CCR model (Charnes, Cooper, and Rhodes 1978). Note that BC = {)B for all
observations j because GC is the solutlon to a less constrained linear program. It follows
as in Banker (1993) that the estimator 6 € is consistent under the assumptions of Postulates
1, 2, 3, 4, and 6, and the empirical distribution of 6¢ asymptotically recovers the true dis-
tribution of # under these assumptions. Denote the distribution of 6€ by FC. ¢

To construct a test of the constant returns to scale hypothesis, maintain the assumptions
in Postulates 1, 2, 3, and 4 under which the asymptotic empirical distribution of 6% is iden-
tical to the true distribution of 8. Further, under the null hypothesis of constant returns
to scale as embodied in Postulate 6, in addition to the maintained assumptions in the other
four postulates, the asymptotic empirical distribution of 6 ¢ also is identical to the true
distribution of §. This asymptotic correspondence between the empirical distributions of
62 and 0°€ under the null hypothesis of constant returns to scale motivates the following
three test statistics analogous to those in Banker (1993):
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(iv) Maintaining the additional assumptlon that 0 is exponentially distributed, evaluate the
test statistic Tgy = EA.’_I(BC - 1)/23 (63 — 1) relative to the critical value of the F-
distribution with (2N, 2N) degrees of freedom

(v) Maintaining instead the assumption that 6 is half-normally distributed, evaluate the
test statistic Tyy = EN 106 - 1)/E ,(03 — 1)? relative to the critical value of the
F-distribution with (N N) degrees of frccdom

(vi) Maintaining no such assumptlons about the inefficiency distribution, evaluate Tgy, =
max{FC(@F) — FEGP)|j =1, ... N} as a Smirnov test statistic.

The above methods provide “two-sided” tests in the sense that the alternative hypothesis
(to the null hypothesis of constant returns to scale) admits increasing or decreasing returns
to scale, or both, in different regions of the production set. A one-sided test, with the alter-
native hypothesis of “decreasing returns to scale,” can be constructed by considering the
nondecreasing returns to scale assumption embodied in the following postulate:

Postulate 7. (Nondecreasing retumns to scale) If (X, Y) € Pthen (rX, rY) € Pforallr = 1.

The DEA inefficiency estimator denoted by 6 in this case, is obtained by solving the

same linear programmmg formulation in (1) as before except that the constraint 2, A,
= 1 is replaced by Z~, A\, = 1 as in Fare, Grosskopf, and Lovell (1985). Ev1dent1y this

new linear program is less constrained than the first program to estimate 0 and more
constrained than the second to estimate 0f. Therefore, ¢ = 0F = §# for all observa-
tions j = 1, ... N. The inefficiency estimator 6% is Weakly cons1stent under Postulates
1, 2, 3, 4, and 7 and its asymptotic empirical distribution recovers the true distribution
of 0 under these assumptions. If we maintain the assumptions embodied in Postulates 1,
2, 3, and 4, then we can test the null hypothesis of nondecreasing returns to scale in Postulate
7 against the alternative hypothesis of decreasing returns to scale exactly as before except
that 6% and FE(GF) are substituted for € and FC(GC), respectively, in the earlier test
statistics. We can develop tests of the null hypothesis of nonincreasing returns to scale against
the alternative hypothesis now of increasing returns to scale in a similar manner. Note that
if we keep 6 in the numerators of the earlier test statistics, and instead replace 0% in the
denominators with 6% (i.c, treating nondecreasing returns as a maintained assumption) then
we have tests of the null hypothesis of nonincreasing returns to scale against the alternative
hypothesis of increasing returns to scale.

In their simulation experiment, Banker and Chang (1993) considered three different pro-
duction frontiers, four different inefficiency distributions, and four different sample sizes
for a total of 48 (=3 * 4 * 4) cells, performing 30 replications for each cell to yield 1440
(= 30 * 48) data samples. They considered three different Cobb-Douglas type single out-
put two inputs production technologies specified as:

g = 10x}x4 (11)
g = 10 0.4 03 (12)
g = 102989 (13)
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Table 3a. Summary of returns to scale test results for a decreasing returns to scale production function. (Source:
Banker and Chang (1993))

True inefficiency is exponentially distributed with mean inefficiency = 1.6667.

Hypothesis Sample Sizes

Test Procedure and Test Statistics Null Ak, N=50 N=100 N=150 N =200
DEA £ 8f - e @f - 1 CRS VRS 24(13) 27(17) 30(30) 30 (30)
(exponential) £ N \@F — 12l ,8F - 1) NDRS DRS 11(3) 15(8  29(26) 30 (25
o EF - DELGBP -1 NDRS DRS 7() 15() 29@22) 2925

X P - e Bf -1 NIRS TRS 2(1)  0{0) 0 0

T @F - vEfl@F - v NRS RS 1(0)  0(0) 0 (0) 0 (0

N A3C _ 1y N (pB 2

DEA i @F - pUELEF - CRS VRS 20(11) 23(16) 30(30) 30(29)
(half-normal) - gl | GF — 1yl @7 — 1y NDRS DRS 13(5) 16(11) 3026 30 (26)
£ @F - DUEl P - 12 NDRS DRS 8(3) 15(9) 295 29(24)

67 - yEL6F - 12 NIRS TRS 2(1)  0(0) 00 0 (0

o GF — vy (8F - 12 NIRS TIRS 1(1) 0 (0) 0 (0) 0 (0)

DEA Max[FC@H) — FH@PIj=1...N] CRS VRS 22(8) 24(17) 3029 30 (30)

Bmimov)  Mmax[FE@F) — FRGH|j=1...N) NDRS DRS 5(3) 8(3) 24(15 26(2)
Max[FC@EF) — FP@P)|j=1..,N] NDRS DRS 5(3) 9 (3) 24 (15) 26 (21)

Max[FP@P) — FB@Hlj=1..,N] NIRS 1RS 1(0) 1(0) 0 © 1(0)
Max[FC@EF) — FEEHlj=1..N] NRS TS 0@  0(0) 0(0) 00
CoLs G +ép=1 CRS VRS 10(6) 16(12) 23(19) 231
G +a =1 NDRS DRS 15(15) 21(16) 27@3) 27(23)
a +d =1 NRS IRS 1(®) 0(©® 0O 0 (0)

Note: The number reported in each cell is the number of iterations (out of a total of 30 iterations) for which the cor-
responding test statistic is significant at the 10% level. The corresponding number is parentheses in each cell indicates
the number of CRS = constant returns to scale; VRS = variable returns to scale; DRS (IRS) = decreasing (increasing)
returns to scale; NDRS (NIRS) = nondecreasing (nonincreasing) returns to scale.

where the inputs x; and x, were generated randomly for independent uniform probability
distributions over the interval [5, 15].

Four different inefficiency distributions were considered. For the first inefficiency distribu-
tion, the random variable 1//j = Bj — 1 = 0 was generated from a half-normal distribu-
tion |N(0, 0.8356)| for all observations. For the second case, an exponential distribution
with the same mean of 0.6667 was employed. For the third inefficiency distribution a half-
normal distribution |N(0. 0.2000)|, and in the fourth case, an exponential distribution with
a mean of 0.1595 were employed. Four different sample sizes (50, 100, 150, and 200)
were considered. The same parametric functional form was used for COLS estimation as
that used to generate the simulated production data in order to provide a challenging bench-
mark for the evaluation of the new DEA-based tests. Representative results appear in Tables
3(a) and 3(b). The proportion of Type I errors with the DEA-based tests was comparable
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Table 3b. Summary of returns to scale test results for a decreasing returns to scale production function. (Source:
Banker and Chang (1993))

True inefficiency is exponentially distributed with mean inefficiency = 1.6667.

Hypothesis Sample Sizes

Test Procedure and Test Statistics Null.  Alt. N=50 N=100 N=15 N =200

DEA N BF - v f - v CRS VRS 17(9) 26{16§ 27Q0) 30 (25
(exponential) N \GF — 1yl @7 - 1) NDRS DRS 0(0)  0(0) 0(0) 0 (0)
T @f — eGP - » NDRS DRS 00 00 0(0) 10

@7 - v, @f -1 NIRS IRS 16(8) 26(13) 26(17) 27 (22

L 6f - e, GF -1 NIRS IRS 15(8) 26 (13) 26(16) 29 (23)

DEA T 6fF — vzl @F - 12 CRS VRS 11(7) 21(5 2717 30@26
(half-normal) g ¥ \GE — yzEN GF - 1) NDRS DRS 0@©) 00 0 (©® 0 (0)
L G6F — vEl (@P - 1 NDRS DRS 0@ 0 0 (0) 1(0)

(67 - Tl @F — 1y NIRS RS 10(5) 20(13) 25(13) 27 (22)

X6 - DUTLBF ~ 1y NIRS RS 10(5 20(12) 24(12) 29 (22)

DEA Max[FC@f) — FP@PIj=1..,N] CRS VRS 19(16) 18(8)  27(19) 29 (26)
Smimov)  Max[FE@F) - FEEHlj=1...N] NDRS DRS 0(®) 0©® 0@©® 0
Max[FC@f) — FP@P]j=1..,N] NDRS DRS 0(® 0 (0 1(0) 1)

Max[FP@P) — FP@Plj=1..N] NIRS RS 15@) 12(5  25(16) 27 (20)

coLs G +dy =1 CRS VRS 13(9) 16(13) 21Q0) 2725
G +a =1 NDRS DRS 0(0)  0(0) 0 (0) 0 ()

G+ =1 NIRS RS 16(13) 22(16 25@21) 29 27)

Note: The number reported in each cell is the number of iterations (out of a total of 30 iterations) for which the cor-
responding test statistic is significant at the 10% level. The corresponding number is parentheses in each cell indicates
the number of CRS = constant returns to scale; VRS = variable returns to scale; DRS (IRS) = decreasing (increasing)
returns to scale; NDRS (NIRS) = nondecreasing (nonincreasing) returns to scale.

to that for the COLS-based tests when the inefficiency distribution was exponential, but
was worse when the distribution was half-normal. However, the frequency of Type II errors
was lower for the DEA-based tests for both exponential and half-normal distributions,
especially when the variance of the inefficiency distribution was high. Surprisingly, the
DEA-based tests outperformed COLS-based tests even when the underlying production
frontier violated the DEA assumption of concavity.

5. Tests of Input Substitutability

The materials in this section are drawn from Banker, Chang, and Sinha (1994). Implicit
in the design of most operations control and evaluation systems are assumptions about the
nature of the production system. A common assumption is the one embedded in the separate
estimation or optimization of the requirements for different inputs (such as labor and
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materials) independent of the estimation or optimization for other inputs. The opposite
assumption that one input is substitutable for another (such as capital for labor) is also com-
mon in the evaluation of production system alternatives. Separability of inputs is a common
assumption in costing products for purposes of making pricing and mix decisions, and for
designing products for manufacturability by costing alternative design specifications.*

Conventional econometric methods calculate point estimates of elasticities of substitu-
tion. For example, afer estimating a translog cost frontier, Allen elasticity of substitution,
0, are estimated at the sample mean as:

O'ij :Aijs-.l;.SiSj;i,j = 1, ,],] #i (14)

%)
where, 4;; is the estimated second-order input price coefficient in the translog cost fron-
tier; and s; and s; are the cost shares of inputs i and j, respectively. The test of whether
the inputs are separable is operationalized as a test of the null hypothesis g;; = O at the
sample mean (Berndt and Wood 1975). In contrast, the new DEA-based tests developed
by Banker, Chang, and Sinha (1994) evaluate the null hypothesis over the entire sample data.
The four DEA postulates (1, 2, 3, and 4) are consistent with both input substitutability
and separability, but do not impose either substitutability or separability. Refer to a pro-
duction set that does not preclude input substitutability as PSB, and the corresponding
inefficiency measure and its distribution functions as 658 and FSUB. In contrast, if the
production set P exhibits input separability then it can be expressed as follows (Banker 1992):

PP = (X, N, NeEP,i=1,...,1I} (15)
where
P; = {(x;, Y)|input x; is adequate for the production of outputs ¥}. (16)

This generalizes the conventional Leontief technology that uses linear functions g;(Y) —
x; < 0 to represent the relation (x;, Y) € P;.

If each P; and the corresponding probability density function f;(8)) forinputi = 1, ...,
I, satisfy the four DEA postulates with X modified to read as x;, then it can be shown
that PSEP and fSEP(9SEP) also satisfy the four postulates, where 05FF is the reciprocal of
Shephard’s (1970) distance measure given by:

0SEP(X,, Y,) = sup{0]X,/0, ¥,) € PSEF}
min{sup {0;|(x,/0;, Y,) € P}li =1, ..., I}

min{0(x,, Y)li = 1, ..., I} (17

i

and 5% and FSF® are density and distribution functions respectively. Therefore, under
the null hypothesis that the production set P is separable as in (15), the asymptotic empiri-
cal distributions of DEA estimates of 852 and of §5EF are identical, with each retrieving
the true distribution of 6.
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The DEA estimates of §5B are obtained by solving the linear program for the DEA
(Banker, Charnes, and Cooper 1984) model which admits variable returns to scale. The
DEA estimates §i(xio, Y,) for each separate set P; are obtained from a similar linear pro-
gram except that each X} and X; in (2) is replaced by x;, and x;; (and, of course, the right-
hand sides of the constraints in (2) and (3) for the input mefﬁmency model are x;;/6 and
¥; respectively.) Then, 65EP (X, X, Y) = min{d; (x;; » Yli =1, ..., I}. It should be noted
that HSEP is determined from a less constrained mathematical program and therefore, §SE°

> 5B for all i=1L .., N

Based on the asymptotlc correspondence between the empirical distributions of 658 and
§5EP under the null hypothesis of input separability we can construct the following three
test statistics to test the input separability hypothesis analogous to those described earlier:

(vii) Tgy

n

2 (GSEP . 1)/ Z (OSUB _

J=1

N N
(viii) Tyy = Z (é}.SEP - ¥ 2 (éfSUB -1y
Jj=1

Jj=1

(x) Ty

I

max {FSUB@5B) — FSEP@SER)|j = 1, ..., N}

Rejection of the null hypothesis indicates that the sample data do not support the input
separability hypothesis under the maintained assumptions embodied in the four DEA
postulates specified by Banker (1993).

Banker, Chang, and Sinha (1994) generated 480 data sets considering two different pro-
duction technologies (separable and substitutable inputs), two parametric inefficiency
distributions (exponential and half-normal), two levels of mean inefficiencies (high and
low), and three sample sizes (50, 100, and 150), and replicated each of the 24(= 2 * 2
* 2 * 3) settings 20 times to yield 480 data sets. They used the following two production
frontiers:

gsup = 10x36 x4 (18)

gsep = Min{x,, x,} (19)

where x, and x, were drawn randomly and independently from uniform probability
distributions over the interval [5, 15].

Representative results of the simulation experiments appear in Tables 4a and 4b. The
DEA-based tests outperform the COLS-based test when outputs (gsgp) are generated using
the Leontief production technology in (19) that assumes separability of inputs. In fact, the
performance of the COLS-based test worsens for larger samples with the number of cases
for which the null hypothesis of input separability is falsely rejeced increasing with the
increase in sample size. When outputs (ggyp) are generated using the Cobb-Douglas pro-
duction technology in (18) that assumes substitutability of inputs, the performances of the
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Table 4a. Summary of test results for a Leontief-type (separable) production function. (Source: Banker, Chang
and Sinha (1994))

True inefficiency is half-normally distributed with mean inefficiency = 1.6667.

Hypothesis Sample Sizes

Test Procedure Test Statistics Null Al N=35 N=100 N=150

1 DEA Texp = BN, @OFFF — v, 67" - SEP SUB  0(0) 0 (0) 0 (0)
(exponential)

2 DEA Tun = /L, @ — pyLfL, G - 12 SEP SUB 0©) 0O 0 (0
(half-normal)

3 DEA Top = Max[FSEP(@FEP) — pSUB@SUB) j = 1,..N]  SEP SUB 0 (0) 0 (0) 0 (0)
(Smirnov)

4 COLS Teos = 612/5, SEP SUB 12(10) 16(12) 15 (15)

Notes: The number reported in each cell is the number of iterations (out of a total 20 iterations) for which the corresponding
test statistic is significant at the 10 (5)% level.

SEP = input separability; SUB = substitutability.

Table 4b. Summary of test results for a Cobb-Douglas (substitutable) production function. (Source: Banker, Chang
and Sinha (1994))

True inefficiency is half-normally distributed with mean inefficiency = 1.6667.

Hypothesis Sample Sizes

Test Procedure Test Statistics Null Alt. N=5 N=100 N=150

| DEA Txp = LY, @FFF - pfl, @5 - » SEP SUB 13(7) 20(19) 20 Q0)
(exponential)

2 DEA Tyy = T, @F%F — nyE ), @7 - 1»2 SEP SUB 14 (10) 20 (20) 20 0)
(half-normal)

3 DEA Tgy = Max[FPFP@T) - FFB@EIB)j = 1,..N]  SEP SUB  15(9) 16014  20(19)
{Smirnov)

4 COLS Tears = 612/S, SEP SUB 12 (10) 16(13) 15 (13)

Notes: The number reported in each cell is the number of iterations (out of a total 20 iterations) for which the corresponding
test statistic is significant at the 10 (5)% level.

SEP = input separability; SUB = substitutability.

DEA-based tests and COLS-based test are comparable for the small sample size. However,
with an increase in the size of the samples the DEA-based tests outperform the COLS-
based test.

Overall, the results of the simulation experiments suggest that even when the parametric
form specified for the COLS estimation is the same as the true production frontier used
to simulate the data, the DEA-based tests perform very satisfactorily compared to the COLS-
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based test in distinguishing between separable and substitutable forms of input characteriza-
tion. The DEA-based tests are robust and perform well regardless of the form of the true
production technology and inefficiency distribution. The experiments also indicate that the
performance of the tests improves as the sample size increases and as the level of mean
inefficiency decreases. There are no substantial differences in performance across the three
DEA-based tests.

6. Some Tests of Model Specification

The materials in this section are drawn from Banker, Devaraj, and Sinha (1995). A question
that is of considerable interest in many applications is whether a set of variables is signifi-
cant at the margin in characterizing the production correspondence between inputs and
outputs. For specificity, let X and Y represent vectors of input and output variables respec-
tively in the base model, and let Z represent the vector of additional input variables whose
significance we wish to evaluate. (While Z is specified here as a vector of input variables,
the analysis can be adapted easily to address the case when some of these variables are
outputs.) We can estimate 65X, » ¥)) and 03( ;> ¥j) using the BCC-model in (1) to (5)
first with only X and then with (X, Z) as input vectors, respectively. Evidently, 45 X; V) =

68 X;, Z;; Y)). Therefore, under the maintained assumptions embodied in the four DEA
postulates corresponding to the input vector (X, Z), and the null hypothesis that input
variables Z do not influence the production correspondence, and proceeding as before, we
can construct the following test statistics:

(x) Tgy =

|
.
I
—

o [ Fow s

N N
&) Tun = [2 8%x; ) — 1)2}/[2 0%, z; Y) — 1)2}
=1

max {F2G%X; ¥)) — FEO°X;, Z; ¥y)lj = 1, ... N}.

i

(xii) Topm

Simulation studies designed in a manner similar to those described in the earlier sec-
tions indicate that these tests perform as well or better than COLS-based tests even when
the estimated parametric form for COLS estimation is identical to the one used to generate
the simulated data. Representative results appear in Tables 5a and 5b.

The general approach described here can be applied to develop a wide variety of tests
of model specification. For instance, let z; = z(Z)) be an aggregation of the vector Z. Is
this aggregate sufficient in capturing the impact of the variables Z on the production cor-
respondence? Such a hypothesis can be evaluated by comparing the inefficiencies estimated
with (X, z) as the input vector against the inefficiencies estimated with (X, z, Z) as the
input vector, and proceeding using the test statistics described above.
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Table 5a. Summary of test results. Test of the marginal effect (number of Type II errors).

True inefficiency is exponentially distributed with mean inefficiency = 1.18.

Sample Size
Test Procedure 50 100 150
DEA-based tests exponential 1) 0 (0) 0 (©0)
half-normal 1@ 0O 0 (0)
COLS test 5 49 48

Notes: True production frontier: y = 136
H,: x, has no marginal effect on production.

The number reported in each cell is the number of iterations (out of 100) for which the test statistic is significant
at the 5% level (numbers in parentheses are at 10%).

Table 5b. Summary of test results. Test of the marginal effect (100 less number of Type I errors).

True inefficiency is exponentially distributed with mean inefficiency = 1.18.

Sample Size
Test Procedure 50 100 150
DEA-based tests exponential 89 (96) 95 (100) 96 (100)
half-normal 69 (83) 73 (96) 82 (98)
COLS test 67 (78) 93 9% 96 (98)

Notes: True production frontier: y = 1365 15
H,: x, has no marginal effect on production.

The number reported in each cell is the number of iterations (out of 100) for which the test statistic is significant
at the 5% level (numbers in parentheses are at 10%).

7. Concluding Remarks

The principal limitation of the different DEA-based tests described here is that for any
finite sample, the random variates in the numerator or the denominator of the test statistics
Trx and Tyy need not be distributed as chi-squared. Also, they may not be distributed in-
dependently of each other and, therefore, their ratio need not follow the F-istribution.
A similar caveat applies also to the Smirnov-type test described here.

An interesting possibility is to use bootstrapping methods to augment the tests described
in this survey. For instance, since the DEA estimator of inefficiency is biased downward
in finite samples (Banker 1993, Proposition 4), it may be possible to reduce the bias using
bootstrapping methods, and construct these tests based on the bootstrapping estimators.
A caveat is in order, however. Standard proofs for the consistency of the bootstrap estimator
do not apply for the DEA-type nonparametric estimation of general monotone and concave
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production frontiers because of the incidental parameters problem described by Banker
(1993, p. 1266). Thus, much remains to be accomplished in providing a theoretical basis
for applying the bootstrapping methods to nonparametric estimation of general monotone
and concave production frontiers. Furthermore, similar to the DEA-based tests described
in this paper, the distribution of the bootstrap estimator is not known for finite samples.
Unlike these DEA-based tests, however, the performance of the bootstrap estimator in the
DEA context has not been evaluated, to date, using systematic simulation studies.

It is important, therefore, to evaluate the comparative performance of these tests for finite
sample sizes using simulation studies. The initial Monte Carlo studies mentioned here seem
to be promising for the tests described in this paper. However, any such evidence must
be interpreted cautiously as no simulation study exhausts all possibilities. We must con-
tinue similar experimentation to identify conditions under which the DEA-based tests per-
form well and conditions under which they do not (Banker et al. 1987).°

Many interesting directions remain open for extending this line of research. If, for in-
stance, the expected value of DMU inefficiency is modeled as a linear function of a set
of explanatory variables, then consistent estimators of the parameters of this function are
obtained by a two-stage procedure, first obtaining DEA inefficiency estimates and then
regressing them (or appropriate transforms) on the explanatory variables (Theil, 1971;
Banker and Johnston, 1995; Gstach, 1995). While the performance of this procedure re-
mains to be evaluated in simulation studies, it suggests how the consistency property of
the DEA inefficiency estimator can be employed to estimate a wide variety of models.
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Notes

1. Alternative specifications based on output quantities and input mix proportion variables, or on endogenous
input mix decisions based on random input price variables can be also employed to obtain results similar to
those described here.

2. The postulates are specified here for the multiple-input and multiple-output case with a multiplicative ineffi-
ciency term modeled as a random variable. The extension from Banker (1993), where the single-output case
is described with an additive inefficiency term, is straightforward.

3. The proof of Theorem 6 in Banker (1993) also applies equally well to any parametric estimator of an extremal
production function obeying the consistency property. That is, under Postulates 3 and 4, the empirical distribution
of inefficiency scores evaluated relative to such a parametrically estimated production frontier also recovers
the true distribution of 8.

4. Separability of inputs here refers to the determination of the demand for each input (given output quantities
and input prices) independent of the levels of all other inputs. While this is consistent with common usage
in accounting and operations management, it does not correspond to the concept of separability of production
frontiers in economics.

5. It is important, therefore, to allocate time and effort in conducting simulation studies to evaluate performance
under a large number of different conditions rather than conducting a large number of replications for rela-
tively few conditions.
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