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Hypothesis Tests Using Data Envelopment Analysis 

Abstmct 

A substantial body of recent work has opened the way to exploring the statistical properties of DEA estimators 
of production frontiers and related efficiency measures. The purpose of this paper is to survey several possibilities 
that have been pursued, and to present them in a unified framework. These include the development of statistics 
to test hypotheses about the characteristics oftheptoduction frontier, such as returns to scale, input substitutability, 
and model specification, and also about variation in efficiencies relative to the production frontier. 
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1. Introduction 

The data envelopment analysis (DEA) methodology was developed in the management 
science tradition (Charnes, Cooper, and Rhodes 1978, 1981) with a focus on computing 
the relative efficiency of different decision-making units (DMUs). The DEA approach 
specifies the production set only in terms of properties such as convexity and monotonicity, 
without imposing any parametric structure on it (Banker, Charnes, and Cooper 1984). Early 
work in DEA did not specify any structure for the distribution of deviations from the pro- 
duction frontier and, therefore, did not explore the statistical properties of its estimators. 
Instead, it was limited to developing different mathematical programs to model different 
types of production relations (e.g., Banker and Maindiratta (1986), Banker and Morey 
(1986). Even the paper in Ecunometrim by Banker and Maindiratta (1988) focused only 
on checking whether a set of observations on production inuts and outputs could be recon- 
ciled with economic efficiency as in Varian’s (1984) algebraic test for consistency with 
the weak axiom of cost minimization and whether any of the observations exhibited technical, 
allocative, or scale inefficiencies. The DEA approach, therefore, was labeled by some as 
nonstatistical (Schmidt 1985; Gong and Sickles 1992). 

Recent work in DEA, however, has opened the way to exploring the statistical properties of 
its estimators of production functions. Banker (1993) shows that DEA provides a consistent 
estimator of arbitrary monotone and concave production functions when (the one-sided) 
deviations from the production function are regarded as stochastic variations in the technical 
inefficiency of individual observations. This estimator also maximizes the likelihood function 
if the probability density function for the inefficiency is monotone decreasing, a more robust 
characterization than Schmidt’s (1976) corresponding result for Aigner and Chu’s (1968) 
estimators of parametrically specified production frontiers. In addition, the empirical 
distribution of the DEA estimator of the technical inefficiency of individual observations 
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asymptotically recovers its true distribution. These results are particularly useful because 
the DEA inefficiency estimator can be used to construct statistical tests for evaluating 
hypotheses about differences in inefficiency distributions for two or more groups of obser- 
vations. Monte Carlo experiments reported in Banker and Chang (1994) document superior 
results with these DEA-based tests relative to conventional tests based on corrected or- 
dinary least squares (COLS) estimation of parametrically specified production hmctions 
(Olson, Schmidt, and Waldman (1980)). 

The purpose of this paper is to survey several possibilities that have been pursued in recent 
years based on the asymptotic distribution of the DEA estimator. These include the develop- 
ment of statistics to test hypotheses about the characteristics of the production frontier, such 
as returns to scale, input substitutability, and model specification. The materials in this 
paper are not original; I have prepared this paper by collating selected text and results from 
several recent papers (Banker 1989; Banker and Chang 1993, 1994, 1995; Banker, Chang, 
and Sinha 1994; Banker, Devaraj, and Sinha 1995). However, by presenting different DEA- 
based tests of hypotheses in a unified framework, I hope this paper will prove to be a useful 
reference to researchers in efficiency measurement and production frontier estimation. 

The remainder of this paper has the following structure. In Section 2, I describe the 
statistical foundation provided in Banker (1993) for the DEA estimator of DMU efficiency. 
In Section 3, I summarize the results of three simulation studies evaluting the performance 
of Banker’s (1993) tests of differences in efficiencies of two groups of DMUs. In Section 4, 
I describe the construction of statistics to test returns to scale based on the DEA inefficiency 
estimator, and the results of some simulation experiments to compare their performance 
to conventional tests of returns to scale. I present DEA tests of the input substitutability 
hypothesis in Section 5, along with associated simulation results. I describe some tests of 
model specification based on the DEA estimator in Section 6, and simulation results com- 
paring these tests with conventional parametric methods. Finally, I present concluding 
remarks in Section 7. 

2. Statistical Foundation of the DEA Estimator 

Let I;- = (ylj, . . . YRj) > 0 and Xj G (~tj, . . . Xlj) > 0, j = 1, . . . N, be the observed 
(R-dimensional) output and (Z-dimensional) input vectors in a sample of N observations 
generated from the underlying production possibility set P = {(X, Y)l outputs Y can be 
produced from inputs X}. Input quantities xij, i = 1, . _ . Z, are random variables with 
positive probabilities throughout their domain sets (d, xi”> C a+. Output mix propor- 
tion variables “rj, r = 1, . _ . R, Cf=t in,j = 1, are also random variables with positive 
probabilities throughout their domain sets (J$, J#) C_ (0, I) E ai+, SO that 1~l*i/urj = 
17z,yj/y,j for all I*, s = 1, . . . R, and j = 1, . . . N. ’ The inefficiency Oj of an observation 
(Xj, q) c P, measured radially by the reciprocal of Shephard’s (1970) distance function, 
is given by ej E 0(XZ, $) = SLIP (01 (Xj, Oq) C P} . Th e inefficiency is a random variable 
comprising both technical factors such as capital equipment, labor skill, and managerial 
ability, and random shocks that result in defects, damage, and breakdowns in any produc- 
tion process (Aigner and Chu 1968) _ Such specification permits random factors to influence 
the realization ofproduction inefficiencies for different observations, but it precludes meas- 
urement errors in inputs and outputs (Fdrsund, Love11 and Schmidt, 1980; Greene, 1980). 
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Based on Banker (1993)*, I specify the following structure for the production set P and 
the probability density functionf(0) for the inefficiency 8: 

PostuZate Z. (Monotonicity) If (Xl, YJ c Z’, X2 1 Xt, and Y2 I Yt then (X,, Y2) c Z! 

Postulate 2. (Convc&y) If (X1, Y,) E P and (X2, Y2) c P then (X,X, + X2X2, ht Y, + 
X2 Y2) c P for all X1, X, 2 0 such that X, + X2 = 1. 

Postulate 3. (Envelopment) If 0 < 1 then f(0) = 0. 

Postulate 4. (Likelihood of eficient performance) If 6 > 0 then j,“” f (B)dB > 0. 

The DEA estimator of 0 is obtained as 8; by solving the linear programming formula- 
tion of the so-called BCC model (Banker, Charnes, and Cooper (1984) given below in (1): 

BjB=maxB (1) 

x,x, I xj (2) 
k=l 

hk Yk 2 e Yj 

k=l 
(3) 

N 

chk=l 
k=l 

(4) 

(5) 

This estimator is statistically consistent, and its asymptotic empirical distribution F’(0) 
recovers the true distribution of f3 under the maintained assumptions embodied in the above 
four postulates (Banker 1993, Theorems 5 and 6).3 Korostelev, Simar, and Tsybakov 
(1995) show that the DEA estimator in the single-output Z-input case converges at the rate 
N-*‘(‘+*) and that no other estimator can converge with a laster rate. The DEA estimator 
also maximizes likelihood if, in addition, the following postulate is satisfied (Banker 1993, 
Theorem 2): 

Postulate 5. (Decreasing probability density) If (3, 2 et, then f(02) I f(0,). 

Banker (1993) also suggests statistical tests of differences in the inefficiency of two differ- 
ent types of DMUs, say types Tl and T2. J-et Gl = (1, _ . . N] fl Tl and G2 = (1, . . . N) 
f7 T2, Gl fl G2 = (6, be the groups of these two types of DMUs in the sample, and 
let N, and N2 be the number of observations in the two groups Gl and G2 respectively. 
Then Banker (1993) presents the following three test procedures: 
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(i) If we maintain the assumption that the inefficiences ej follow the exponential distribu- 
tion for both types of DMUs with means 1 + u, and 1 + q, respectively, then both 
EjEGI 2(8j” - 1)/a, and EjEG2 2(@? - 1)/a* asymptotically follow the chi-square 
distribution with 2Nt and 2N2 degrees of freedom, respectively. Therefore, under the 
null hypothesis HO: (pi = a2 = c (indicating that both types of DMUs have the same 
inefficiency distribution), we can test the null hypothesis HO against the alternative 
hypothesis Hl: ut > a2 (indicating that the first type is on average less efficient than 
the second type), using the test statistic given by TEx = [CjEG, (87 - l)/NJ/[C,,, 
(6; - 1)lN2] evaluated relative to the F-distribution with (2N,, 2N2) degrees of 
freedom. 

(ii) If we maintain the assumption that the random variables ~j = ej - 1 are distributed 
as IN(e, Ui)l, i = 1, 2, for the two types of DMUs then both Cj~GI (gy - B2/at and 
cj~G2 (of - l)2/a2 asymptotically follow the chi-square distribution with N1 and N2 
degrees of freedom, respectively. Therefore, under the null hypothesis HO: cI = a2 
= a, we can test the null hypothesis HO against the alternative hypothesis Hl: o1 > 
02 using the test statistic given by THN = [EjEGl (87 - 1)2/Nl]/[CjcG2 (8jB - 1)2/N2] 
evaluated relative to the F-distribution with (N,, Nz) degrees of freedom. 

(iii) If no such assumptions are maintained about the probability distribution, then we can 
employ a nonparametric Smirnov’s two-sample type test procedure based on the max- 
imum vertical distance of the empirical distribution $& (BjB) of DMUs in group Gl 
above the empirical distribution @2(8js> of DMUs in group G2. In this case, the test 
statistic is given by TsM = lnax(~&(@ - @*@)lj = 1, . . .) N>. 

The principle underlying the construction of the test-statistics in (i) and (ii) above can 
be extended readily to a few other cases where different assumptions are maintained about 
the inefficiency distributions. For instance, if we maintain the assumption that for some 
transformation function Rc), R(ej) are distributed as normal, or half-normal, then we can 
USC the tC.St StatiStiC TR = [CjEGI (R(Oj))*/Nl]/[Cj,G2 (R(0j))2/N2] to test the null hypothesis. 

That the inefficiencies 0, are independently distributed is a maintained assumption, and 
the distribution of the DEA estimator of inefficiency 8f asymptotically recovers the true 
distribution. Therefore, 6f are asymptotically independent of each other. However, for any 
finite sample, the DEA estimates of inefficiencies of different observations need not be 
independently distributed. More importantly, for any finite sample, the distribution of the 
DEA estimator 67 need not follow the underlying true distribution of 8. In fact, Banker 
(1993) shows that the DEA estimator is biased for finite samples. Therefore, EjEGl 2(6! 
- 1)/0i or Cj~Gl(87 - l>‘/cri need not follow the chi-square distribution, these two statistics 
for the two groups Gl and G2 need not be independently distributed, and their ratio need 
not follow the F-distribution for finite samples. Thus, it is important to evaluate the perfor- 
mance of these new tests with systematic simulation studies (Banker 1993, p- 1272). 

3. Simulation Studies of Tests of Efficiency Differences 

This section presents results of two simulation studies reported earlier in Banker and Chang 
(1994, 1995), and a third study by Kittelsen (1995). Banker and Chang’s first study was 
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designed to compare Banker’s (1993) tests with traditional methods used in DEA and with 
an appropriately specified COLS model. This study also evaluated the results of a new 
test using the COLS estimators that is based on Banker’s (1993) Theorem 6 about the asymp- 
totic recovery of the true inefficiency distribution in frontier estimation. The second study 
evaluates the performance of these various tests under conditions designed to be adverse 
to the new DEA-based tests. Specifically, it considers settings that reflect the two most 
common criticisms of the DEA methodology: (1) Possible pesence of measurement (or 
specification) errors; and (2) explicit incorporation of optimal allocations such as those 
embodied in Shephard’s lemma. In addition, the setting is made even more adverse to the 
new DEA-based tests by simulating true inefficiency values 0, from probability density 
functions that vanish at 0 = 1 instead of having a mode at 19 = 1 as assumed in Banker’s 
fist two tests. Also discussed in this section is a study by Kittelsen (1995) which is similar 
to the first Banker and Chang (199.4) study except that it only evaluates the occurrence 
of Type II errors. 

In the first study, Banker and Chang (1994) generated 800 different data sets varying 
the specification of three factors: production technology, inefficiency distribution, and sample 
size. They considered five different production technologies, four different inefficiency 
distributions, and four different sample sizes, and replicated each of the 80 (=5 * 4 * 4) 
settings 10 times to yield 800 (=80 * 10) data sets. Banker and Chang (1994) specified 
the following five different single output, multiple-input production technologies described 
in terms of Cobb-Douglas type production frontiers q = IQ), where q represented the 
maximum output that can be produced from the input vector X 

Two-input, one-output technologies: 

Linear homogeneous production frontier: q = ~OX’~~J$.~ (6) 

Concave production frontier: q = lO~p~x$~ 

Convex production frontier: q = lOn~*~$~ 

(7) 

(8) 

Five-input, one-output technologies : 

Concave production frontier: q = ~OX~*X~*X~~X~~X~’ (9) 

Convex production frontier: q = 10x~3x~3x~~3x~2x~2 (10) 

Each sample generated for this study had two groups of DMUs. The first group of DMUs 
comprised 40% of the observations in each sample, and the second group comprised the 
remaining 60% of the observations. Four different inefficiency distributions were considered. 
The first distribution combined two half-normal distributions that reflect differences in the 
inefficiencies of the two groups of DMUs. The random variable #j = 0, - 1 1 0 was 
simulated from the half-normal distribution lN(O, l)\ for the first group of DMUs. The 
random variable $j for the second group of DMUs was generated from the half-normal 
distribution IN(O, 0.78)1. The second distribution combined two exponential distributions 
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with different mean inefficiencies for the two groups. The third distribution had both groups 
following the same half-normal distribution, and the fourth distribution had both groups 
with the same exponential distribution. 

Four different sample sizes: 50, 100, 150, and 200, were considered. The values Xj of 
the input vector for each observation j were simulated from independent uniform distribu- 
tions on the interval [5, 151. The corresponding value of the output yj = qjl8j for each 
observation j was obtained using the production frontier described in (6) to (10) above 
and the simulated value of the inefficiency term Bj = gj + 1. 

Two traditional test procedures, Welch’s mean test and Mann-Whitney test (Siegel and 
Castellan 19SS), that have been used to test for inefficiency differences between two groups 
of DMUs in the existing DEA literature (e.g., Banker, Conrad, and Strauss (1986), 
Grosskopf and Valdmanis (1987), and two parametric COLS specifications (loglinear and 
translog) of the estimated production frontier, with a dummy variable to test for differences 
in the mean inefficiency between the two groups of DMUs, were evaluated and compared 
with Banker’s (1993) tests. Representative results for the concave production frontier case 
in (8) with half-normal distributions are reproduced here as Tables la and lb. 

Banker and Chang (1994) summarize their results as follows: (1) The new asymptotic 
DEA tests outperform COLS-based tests even when the parametric functional form employed 
for COLS estimation is identical to the underlying production frontier: (2) the asymptotic 
DEA tests are robust in that they perform well for different underlying production fron- 
tiers and inefficiency distributions: (3) Welch’s mean and Mann-Whitney tests perform worse 
than both the new asymptotic DEA tests and the COLS-based tests: (4) the performance 
of COLS-based tests is improved when Banker’s (1993) new test statistics are employed 
using COLS estimates of production inefficiencies; and (5) no marked differences in Type 
II error are found between the various tests with one-output two-input production 
technologies. But, Welch’s mean test, Mann-Whitney test, and COLS-based tests perform 
slightly better than the asymptotic DEA tests in terms of proportion of Type II errors with 
one-output five-input production technologies. 

The most surprising of their results was that the new asymptotic DEA tests outperformed 
the conventional COLS-based test even when the parametric functional form specified for 
COLS estimation was identical to the true underlying production frontier (see also Mensah 
and Li, 1993). These results prevailed for all four sample sizes and the two different dimen- 
sions of input space. These surprising results were also robust in that they prevailed even 
when the underlying production frontier violated the assumptions of concavity or constant 
returns to scale for the BCC and CCR models in DEA, and when the true inefficiency 
distribution was different from that postulated in Banker’s (1993) DEA test statistic. In 
addition, the Welch and Mann-Whitney tests that have been used in several prior DEA- 
based research studies were found to perform the worst in their simulation study. This was 
true for all four sample sizes, regardless of the underlying production frontier or the inef- 
ficiency distribution used in the generation of the simulated data. 

The second study by Banker and Chang (1995) considered conditions particularly tiorable 
to the parametric cost frontier-based tests, using simulated data on multiple outputs with 
measurement errors, generated consistent with Shephard’s lemma. Thus, their experimental 
setting violated the DEA assumption of no measurement error (Aigner, Love11 and Schmidt, 
1977), and further it explicitly incorporated the assumption of optimal allocation of input 
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Zrble la. Summary of efficiency difference test results for a convex production function. (Source: Banker and 
Chang (1994)) 

Sample Size 
Estimation 

Model Test Procedure N = 50 N = 100 N = 150 N= 200 

Banker’s asymptotic 
DEA tests 

Tests used in prior 
DEA literature 

COLS-based tests 

New COLS-based 
tests with Banker’s 
test statistic 

BCC 

CCR 

BCC 

CCR 

loglinear 
translog 

loglinear 

translog 

half-normal 
exponential 
half-normal 

Welch 
Mann-Whitney 
Welch 
Mann-Whitney 

dummy variable 
dummy variable 

exponential 
half-normal 
exponential 
half-normal 

7 (4) 4 (3) 5 (5) 7 (6) 
7 (‘4 4 (4) 9 (7) 9 (8) 
6 (1) 3 (2) 9 (4) 7 (6) 
8 (7) 3 (3) 7 (6) 9 (8) 

5 (2) 3 (3) 2 (2) 7 (3) 
4 (2) 4 (3) 2 (2) 7 (4) 
2 (1) 2 (2) 4 (3) 7 (5) 
2 (1) 2 (2) 4 (2) 6 (6) 

3 (1) 3 (2) 6 (5) 7 (5) 
3 (2) 1 (1) 6 (4) 8 (6) 

3 (1) 3 (1) 6 (5) 7 (5) 
6 (5) 6 (5) 8 (8) 10 (9) 
3 (1) 1 (1) 5 (1) 6 (5) 
5 (4) 3 (2) 8 (5) 9 (8) 

Note: The number reported in each cell is the number of iterations (out of a total of 10 iterations) for which 
the corresponding test statistic is significant at the 10% level. The corresponding number in parentheses in each 
cell indicates the number of iterations for which the test statistic is significant at the 5% level. 

Table Ib. Summary of efficiency difference test results for a convex production function. (Source: Banker and 
Chang (1994)) 

Banker’s asymptotic 
DEA tests 

Tests used in prior 

DEA literature 

COLS-based tests 

New COLS-based 
tests with Banker’s 
test statistic 

Estimation 
Sample Size 

Model Test Procedure N = 50 N = 100 N = 150 N= 200 

BCC exponential 0 (0) 0 (0) 2 (1) 2 (1) 
half-normal 0 (0) 0 (0) 2 (1) 2 (2) 

CCR exponential 0 (0) 0 (0) 1 (0) 0 (0) 
half-nomial 0 (0) 1 (0) 1 (0) 1 (0) 

BCC Welch cl (0) 1 (1) 1 (1) 1 (1) 
MannWhitney 0 (0) 1 (1) 2 (1) 1 (1) 

CCR Welch 0 (0) 1 (1) 1 (0) 1 (1) 
Mann-Whitney 0 (0) 1 (1) 2 (0) 2 (1) 

loglinear dummy variable 0 (0) 1 (0 3 (0) 1 (1) 
translog dummy variable 0 (0) 1 (0 2 (1) 1 (1) 

loglinear exponential 0 (0) 0 (0) 0 (0) 2 (1) 
half-normal 0 (0) 0 (0) 2 (1) 2 (1) 

translog exponential 0 (0) 0 (0) 1 (0) 0 (0) 
half-normal 0 (0) cl (0) 2 (1) 2 (0) 

Note: The number reported in each cell is the number of iterations (out of a total of 10 iterations) for which 
the corresponding test statistic is significant at the 10% level. The corresponding number in parentheses in each 
cell indicates the number of iterations for which the test statistic is significant at the 5% level. 
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resources underlying parametric cost frontier estimation, but not considered in DEA estima- 
tion. Further, they generated the logarithm of the inefficiency variable from half-normal or 
exponential distributions, so that the modes of the distributions of the simulated inefficien- 
cies 0, were strictly greater than one, thus violating a key structure specified in Banker’s 
(1993) tests. Their study considered an underlying production correspondence involving 
two inputs and two outputs, four different inefficiency distributions, two different measure- 
ment error distributions, and three different sample sizes (30, 60, and 90). There were 10 
replications of each of 24 (=4 * 2 * 3) cells for a total of 240 data samples. Representative 
results for the high measurement error case (as defined in Banker, Gadh, and Gorr (1993)) 
appear in Table 2. In these cases, k = var(fn measurement error)/var(&r inefficiency) ranges 
between 0.1 and 3.4 depending on the different inefficiency distributions. 

The most surprising result was that the new DEA-based tests outperformed both the 
parametric cost frontier-based tests and Welch’s mean and Mann-Whitney tests in detect- 
ing difference in inefficiencies (Qpe I error) for the multiple-output case even in the presence 
of measurement errors. Welch’s mean and Mann-Whitney tests were conservative and per- 
formed better than the new DEA-based tests and the paramtric cost frontier-based tests 
in terms of proportion of Type II errors with sample sizes of 30 and 60, but the new DEA- 
based tests performed better than the other tests for the sample size of 90. 

Bble 2n. Summary of statistical test results when the variance of log measurement error is 0.04. (Source: Barker 
and Chang (1995)) 

Panel A: True inefficiency is exponentially distributed with different parameters for the two groups 

Sample Size 

Estimation Model Test Procedure N= 30 N=60 N= 90 

Banker’s asymptotic 
DEA tests 

BCC exponential 
half-normal 

5 (3) 10 (8) 7 (7) 
6 (5) 10 (10) 8 (8) 

Tests used in prior BCC Welch 1 (0) 7 (4) 6 (5) 
DEA literature Mann-Whitney 1 (1) 6 (5) 5 (4) 

Pammetric cost tianslog dummy variable 4 (4) 8 (8) 9 (9) 
function-based test 

Panel B: True inefficiency is half-nonnally distributed with the different parameters for the two groups 

Sample Size 

Estimation Model Test Procedure N= 30 N=60 N= 90 

Banker’s asymptotic BCC exponential 6 (5) 5 (5) 6 (4) 
DEA tests 

Tests used in prior 
DEA literature 

Parametric cost 
function-based test 

BCC 

translog 

half-normal 

Welch 
Mann-Whitney 

dummy variable 

8 (6) 5 (5) 7 (7) 

1 (1) 5 (4) 5 (3) 
3 (2) 2 (2) 3 (2) 

4 (1) 4 (4) 5 (5) 

Note: The number reported in each cell is the number of iterations (out of a total of 10 iterations) for which 
the corresponding test statistic is significant at the 10% level. The corresponding number in parentheses in each 
cell indicates the number of iterations for which the test statistic is significant at the 5% level. 
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Table 2b. Summary of statistical test results when the variance of log measurement error is 0.04. (Source: Banker 
and Chang (1995)) 

Panel C: True inefficiency is exponentially distributed with same parameters for the two groups 

Sample Size 

Estimation Model Test Procedure N = 30 N=60 N= 90 

Banker’s asymptotic 
DEA tests 

Tests used in prior 
DEA literature 

Parametric cost 
function-based test 

BCC 

BCC 

trans1og 

exponential 3 (3) 5 (4) 1 (1) 
half-normal 3 (3) 5 (5) 4 (4) 

Welch 2 (0) 4 (2) 1 (0) 
Mann-Whitney 2 (1) 3 (3) 1 (0) 

dummy variable 2 (1) 4 (3) 3 (2) 

Panel D: True inefficiency is half-normally distributed with the same parameters for the two groups 

Sample Size 

Estimation Model Ted Procedure N = 30 N=60 N = 90 

Banker’s asymptotic 
DEA tests 

Tests used in prior 

DEA literature 

Parametric cost 
function-based test 

BCC 

BCC 

translog 

exponential 
half-normal 

Welch 

Mann-Whitney 

dummy variable 

3 (1) 2 (1) 3 (3) 
3 (1) 2 (2) 4 (3) 

1 (1) 3 (1) 5 (4) 
2 (1) 1 (1) 4 (4) 

2 (1) 1 (0) 5 (3 

Note: The number reported in each cell is the number of iterations (out of a total of 10 iterations) for which 
the corresponding test statistic is significant at the 10% level. The corresponding number in parentheses in each 
cell indicates the number of iterations for which the test statistic is significant at the 5% level. 

Kittelsen (1995) performed a simulation study comparing the tests based on Tm and 
THN as in (i) and (ii) above with Welch’s means test. However, he considered only the case 
when the true underlying distribution of inefficiencies for both groups of DMUs was iden- 
tical. As a result, his study evaluated only the proportion of Type II errors when the null 
hypothesis is fXsely rejected. He performed 1,000 trials each for samples of size 20, 50, 
100, 200, 500, and 1,000. His results indicated that the proportion of Type II errors for 
the new tests was 5-6 % for samples of size 20 and reduced to 0% for samples of size 200 
and greater. For all sample sizes, the occurrence of Type II errors was considerably less 
for these new tests than for Welch’s means test. Thus, his results strongly support the con- 
clusions drawn from the first Banker-Chang (1994) study. 

Fixing the sample size at 100, Kittelsen then considered half-normal distributions with 
different means for the inefficiency variable, two other distributions (gamma and exponen- 
tial) for the inefficiency variable, three different distributions for the output variable (nor- 
mal, uniform, and lognormal), and three different production frontiers with 1, 2, or 3 in- 
puts. The results were remarkably robust; the occurrence of Type II errors remained con- 
siderably lower for the new tests than for Welch’s means test. (Kittelsen also conducted 
a matched pairs test that has no economic or statistical basis as there are not matched obser- 
vations when testing this null hypothesis. Not surprisingly, Kittelsen’s matched pair test 
rejected the null hypothesis (when it was true) in more than 99% of the cases!) 
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Kittelsen also evaluated Banker’s (1993) two new tests and Welch’s means test by estimating 
the inefficiencies separately for the two groups of DMUs after splitting the sample in each 
case so that the DMUs of one type are not used as referent observations for the other type. 
Not surprisingly, the proportion of Type II errors increased for all three tests with the smaller 
N available to recover the true production frontier; but the new tests continue to perform 
better than Welch’s means test. The proportion of Type II errors increased more than the 
level indicated by the halving of the sample size; however, this was left unexplained in 
his study. 

4. Tests of Returns to Scale 

Existence of increasing or decreasing returns to scale is one of the most studied 
characteristics of production frontiers in economics because of its importance in many policy 
decisions. Different DEA models provide estimators for technical inefficiency under dif- 
ferent assumptions about returns to scale. Since the empirical distribution of the DEA 
estimator of technical inefficiency asymptotically recovers the true distribution, we can 
construct different statistics to test hypotheses such as constant return to scale, based on 
assumptions about the true distribution of the technical inefficiency variable. In this sec- 
tion, I reproduce detailed materials from Banker and Chang (1993) that describe such tests 
for returns to scale based on the DEA estimator, and the results of a simulation study that 
compares their performance relative to conventional COLS-based tests of returns to scale. 

Banker’s (1993) four postulates are logically consistent with both increasing and decreasing 
returns to scale, they do not impose constant returns to scale. Next, impose the additional 
condition that the production set P exhibits constant returns to scale as embodied in postulate 
6 below: 

Postz&&e 6. (Constant reftinzs to scale) If (X, Y) E P then (rX, r Y) E P for all r > 0. 

The DEA inefficiency estimator (denoted by e,“) under the assumptions embodied in 
Postulates 1, 2, 3, 4, and 6, is obtained by solving the same linear program in (1) to (5) as 
before except that the constraint Cf==, Xk = 1 in (4) is deleted. This corresponds to the 
so-called CCR model (Charnes, Cooper, and Rhodes 1978). Note that i,c 2 6; for all 
observations j because g,c is the solution to a less constrained linear program. It follows 
as in Banker (1993) that the estimator fiC is consistent under the assumptions of Postulates 
1, 2, 3, 4, and 6, and the empirical distribution of ic asymptotically recovers the true dis- 
tribution of 0 under these assumptions. Denote the distribution of s^’ by $. 

To construct a test of the constant returns to scale hypothesis, maintain the assumptions 
in Postulates 1, 2, 3, and 4 under which the asymptotic empirical distribution of gB is iden- 
tical to the true distribution of 8. Further, under the null hypothesis of constant returns 
to scale as embodied in Postulate 6, in addition to the maintained assumptions in the other 
four postulates, the asymptotic empirical distribution of eC also is identical to the true 
distribution of 0. This asymptotic correspondence between the empirical distributions of 
eB and tic under the null hypothesis of constant returns to scale motivates the following 
three test statistics analogous to those in Banker (1993): 
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(iv) Maintaining the additional assumption that 0 is exponentially distributed, evaluate the 
test statistic TEx = CjN_t(if - 1)/C&($? - 1) relative to the critical value of the F- 
distribution with (2N, 2N) degrees of freedom. 

(v) Maintaining instead the assumption that 0 is half-normally distributed, evaluate the 
test statistic THN = C,&(i,c - l)/C,~,((?~ - l)* relative to the critical value of the 
F-distribution with (N, N) degrees of freedom. 

(vi) Maintaining no such _assumptions about the inefficiency distribution, evaluate TSM = 
rnax(Fc(O,c) - F”(S,qlj = 1, . . . N} as a Smirnov test statistic. 

The above methods provide “two-sided” tests in the sense that the alternative hypothesis 
(to the null hypothesis of constant returns to scale) admits increasing or decreasing returns 
to scale, or both, in different regions of the production set. A one-sided test, with the alter- 
native hypothesis of “decreasing returns to scale,” can be constructed by considering the 
nondecreasing returns to scale assumption embodied in the following postulate: 

Postulate Z (Nondecreasing returns to scale) If (X, Y) c P then (rX, I I’) C P for all r 2 1. 

The DEA inefficiency estimator denoted by eE in this case, is obtained by solving the 
same linear programming formulation in (1) as before except that the constraint Cc, hk 
= 1 is replaced by CE”=, Xk 1 1 as in Fare, Grosskopf, and Love11 (1985). Evidently this 
new linear program is less constrained than the first program to estimate f3,!, and more 
constrained than the second to estimate 6)c. Therefore, i,c 2 g,F 1 87 for all observa- 
tions j = 1, . . . N. The inefficiency estimator eE is weakly consistent under Postulates 
1, 2, 3, 4, and 7, and its asymptotic empirical distribution recovers the true distribution 
of 0 under these assumptions. If we maintain the assumptions embodied in Postulates 1, 
2,3, and 4, then we can test the null hypothesis of nondecreasing returns to scale in Postulate 
7 against the alternative hypothesis of decreasing returns to scale exactly as before except 
that GE and FE(eE) are substituted for 6’ and F’(e^‘), respectively, in the earlier test 
statistics. We can develop tests of the null hypothesis of nonincreasing returns to scale against 
the alternative hypothesis now of increasing returns to scale in a similar manner. Note that 
if we keep e^’ in the numerators of the earlier test statistics, and instead replace f?” in the 
denominators with 6” (i.e, treating nondecreasing returns as a maintained assumption) then 
we have tests of the null hypothesis of nonincreasing returns to scale against the alternative 
hypothesis of increasing returns to scale. 

In their simulation experiment, Banker and Chang (1993) considered three different pro- 
duction frontiers, four different inefficiency distributions, and four different sample sizes 
for a total of 4X (=3 * 4 * 4) cells, performing 30 replications for each cell to yield 1440 
( = 30 * 48) data samples. They considered three different Cobb-Douglas type single out- 
put two inputs production technologies specified as: 

(13) 
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X&k 3~. Summary of returns to scale test results for a decreasing returns to scale production function. (Source: 
Banker and Chang (1993)) 

True inefficiency is exponentially distributed with mean inefficiency = 1.6667. 

Hypothesis Sample Sizes 

Test Procedure and Test Statistics Null Ah. N=50 N=loo iv=150 N=200 

DBA 
(exponential) 

DEA 
(half-normal) 

DEA 
(Smimov) 

cow 

CRS VRS 24 (13) 27 (17) 

NDRS DRS 11 (3) 15 (8) 

NDRS DRS 7 (2) 15 (7) 

NRS TRS 2 (1) 0 (0) 

NlRs TRS 1 (0) 0 (0) 

CRS VRS 20 (11) 23 (16) 

NDRS DRS 13 (5) 16 (11) 

NDRS DRS 8 (3) 15 (9) 

NRS RS 2 (1) 0 (0) 

NrRs IRS 1 (1) 0 (0) 

CRS VRS 22 (8) 24 (17) 

NDRS DRS 5 (3) 8 (3) 

NDRS DRS 5 (3) 9 (3) 

MS TRS 1 (0) 1 (0) 

NrRs TRS 0 (0) 0 (0) 

CRS VRS 10 (6) 16 (12) 

NDRS DRS 15 (15) 21 (16) 

NlFCi IRS 1 (0) 0 (0) 

30 (30) 

29 (26) 

29 (22) 

0 (0) 

0 (0) 

30 (30) 

30 (26) 

29 (25) 

0 (0) 

0 (0) 

30 (29) 

24 (15) 

24 (15) 

0 Ku 

0 (0) 

23 (19) 

27 (23) 

0 (0) 

30 (30) 

30 (25) 

29 (25) 

0 (0) 

0 (0) 

30 (29) 

30 (26) 

29 (24) 

0 (0) 

0 (0) 

30 (30) 

26 (22) 

26 (21) 

1 (0) 
0 (0) 

23 (21) 

27 (23) 

0 (0) 

Note: The number reported in each cell is the number of iterations (out of a total of 30 iterations) for which the cor- 
responding test statistic is significant at the 10% level. The corresponding number is parentheses in each cell indicates 
the number of CRS = constant returns to scale; VRS = variable returns to scale; DRS (lRS) = decreasing (increasing) 
returns to scale; NDRS (NlRS) = nondecreasing (nonincreasing) returns to scale. 

where the inputs x1 and x2 were generated randomly for independent uniform probability 
distributions over the interval [5, 151. 

Four different inefficiency distributions were considered. For the first inefficiency distribu- 
tion, the random variable $j = 0, - 1 1 0 was generated from a half-normal distribu- 
tion IN(O, 0.8356)] f or all observations. For the second case, an exponential distribution 
with the same mean of 0.6667 was employed. For the third inefficiency distribution a half- 
normal distribution )N(O. 0.2000)], and in the fourth case, an exponential distribution with 
a mean of 0.1595 were employed. Four difterent sample sizes (50, 100, 150, and 200) 
were considered. The same parametric functional form was used for COLS estimation as 
that used to generate the simulated production data in order to provide a challenging bench- 
mark for the evaluation of the new DEA-based tests. Representative results appear in Tables 
3(a) and 3(b). The proportion of Type I errors with the DEA-based tests was comparable 
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7ZbZ.c 3b. Summary of returns to scale test results for a decreasing returns to scale production function. (Source: 
Banker and Chang (1993)) 

True inefficiency is exponentially distributed with mean inefftcienq = 1.6667. 

Hypothesis Sample Sizes 

Test Procedure and Test Statistics NUll Alt. iv=50 N=loo N=lxl N12@ 

DEA Ei”=,(if - l)/‘qL@~ - 1) CRS VRS 17 (9) 26 (16) 27 (20) 30 (25) 
(exponential) ~y=~(y _ l)Ic~zI(~; _ ,) NDRS DRS 0 (0) 0 (0) 0 (0) 0 (0) 

CjQBj ̂ C - l)lE:jN,,(G,o - 1) NDRS DRS 0 (0) 0 (0) 0 (0) 1 (0) 

Ei”-l(iy - l)/Ei”=,(ei” - 1) NrRs IRS 16 (8) 26 (13) 26 (17) 27 (22) 

Ej=1(8j N -c - l)/Cj=I(~~ N - 1) NIRS TRS 15 (8) 26 (13) 26 (16) 29 (23) 

DFLA c,%l(iy - l)‘/~&=l(iy - 1)2 CRS VRS 11 (7) 21 (15) 27 (17) 30 (26) 
(half-normal) qclcijf _ I)zIc~l(~f _ 1)2 NDRS DRS 0 (0) 0 (0) 0 (0) 0 (0) 

Ej”@,? - l)zIEi”=,(~~ - 1)2 NDRS DRS 0 (0) 0 (0) 0 (0) 1 (0) 

Cj=I(Oj N -D - l)‘/Cj=l(iy N - 1)’ NRS IRS 10 (5) 20 (13) 25 (13) 27 (22) 

ci”=@F - l)YEg=l(Bf - I)2 NlRS IRS 10 (5) 20 (12) 24 (12) 29 (22) 

DFA MaX[PC(if) - k’“(if)i”,l j = 1. . ,Nj CRS VRS 19 (16) 18 (8) 27 (19) 29 (26) 

(Smimov) Max[?@) - ““(i,e)l = j 1. ,ry1 NDRS DRS 0 (0) 0 (0) 0 (0) 0 (0) 

Max[F’(f?,?) - FD(g,?)l j = 1.. ,Nj NDRS DRS 0 (0) 0 (0) 1 (0) 1 (1) 

Max[?D(&q - k;“($f)l j = 1. .,Nl NlRS IRS 15 (4) 12 (5) 25 (16) 27 (20) 

COLS oil + ITi2 = 1 CRS VRS 13 (9) 16 (13) 21 (20) 27 (25) 

&I + 22 2 1 NDRS DRS 0 (0) 0 (0) 0 (0) 0 (0) 

o;, + liz s- 1 NIRS TRS 16 (13) 22 (16) 25 (2 I) 29 (27) 

Note: The number reported in each cell is the number of iterations (out of a total of 30 iterations) for which the cor- 
responding test statistic is significant at the 10% level. The corresponding number is parentheses in each cell indicates 
the number of CRS = constant returns to scale; VRS = variable returns to scale; DRS (IRS) = decreasing (increasing) 
returns to scale; NDRS (NfRS) = nondecreasing (nonincreasing) returns to scale. 

to that for the COLS-based tests when the inefficiency distribution was exponential, but 
was worse when the distribution was half-normal. However, the frequency of Type II errors 
was lower for the DEA-based tests for both exponential and half-normal distributions, 
especially when the variance of the inefficiency distribution was high. Surprisingly, the 
DEA-based tests outperformed COLS-based tests even when the underlying production 
frontier violated the DEA assumption of concavity. 

5. Tests of Input Substitutability 

The materials in this section are drawn from Banker, Chang, and Sinha (1994). Implicit 
in the design of most operations control and evaluation systems are assumptions about the 
nature of the production system. A common assumption is the one embedded in the separate 
estimation or optimization of the requirements for different inputs (such as labor and 
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materials) independent of the estimation or optimization for other inputs. The opposite 
assumption that one input is substitutable for another (such as capital for labor) is also com- 
mon in the evaluation of production system alternatives. Separability of inputs is a common 
assumption in costing products for purposes of making pricing and mix decisions, and for 
designing products for manufacturability by costing alternative design specifications4 

Conventional econometric methods calculate point estimates of elasticities of substitu- 
tion. For example, afer estimating a translog cost frontier, Allen elasticity of substitution, 
aij, are estimated at the sample mean as: 

‘Tij = 
Aij + SiSj 

SiSj 

; i,j = 1, . . ., I;j Z i 

where, Aij is the estimated second-order input price coefficient in the translog cost fron- 
tier; and St and Sj are the cost shares of inputs i and j, respectively. The test of whether 
the inputs are separable is operationalized as a test of the null hypothesis aij = 0 at the 
sample mean (Bemdt and Wood 1975). In contrast, the new DEA-based tests developed 
by Banker, Chang, and Sinha (1994) evaluate the null hypothesis over the entire sample data. 
The four DEA postulates (1, 2, 3, and 4) are consistent with both input substitutability 
and separability, but do not impose either substitutability or separability. Refer to a pro- 
duction set that does not preclude input substitutability as Ps*, and the corresponding 
inefficiency measure and its distribution functions as esuB and FsuB. In contrast, if the 
production set P exhibits input separability then it can be expressed as follows (Banker 1992): 

PsEp c (X, y)l(Xi, Y) E Pi, i = 1, . . ., Z} (15) 

where 

Pi E {(Xi, Y)linput Xi is adequate for the production of outputs Y). (16) 

This generalizes the conventional Leontief technology that uses linear functions a(y) - 
Xi 5 0 to represent the relation (Xi, Y) E Pi. 

If each Pi and the corresponding probability density functionA(8J for input i = 1, . . . , 
Z, satisfy the four DEA postulates with X modified to read as xi, then it can be shown 
that PsEp andfSEP(BSEP) also satisfy the four postulates, where fZsEP is the reciprocal of 
Shephard’s (1970) distance measure given by: 

esEP(xo, Yoj = sup{eIxJe, yoj E PEP) 

= min{sup (0i I(xi,lBi, YO) c Pi} 1 i = 1, . . . , Z> 

= min{8&, Y,)li = 1, . . ., Z} (17) 

and f ‘nP and FSEP are density and distribution functions respectively. Therefore, under 
the null hypothesis that the production set P is separable as in (15), the asymptotic empiri- 
cal distributions of DEA estimates of esuB and of esEP are identical, with each retrieving 
the true distribution of 8. 
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The DEA estimates of I!?‘~ are obtained by solving the linear program for the DEA 
(Banker, Chame_s, and Cooper 1984) model which admits variable returns to scale. The 
DEA estimates ei(xio, Y,) for each separate set Pi are obtained Tom a similar linear pro- 
gram except that each X, and Xj in (2) is replaced by Xi& and Xij (and, of course, the right- 
hand sides of the constraints in (2) and (3) for the input inefficiency model are X,/B and 
q respectively.) Then, JSEP (4, 5) = min{gi(xij, q)li = 1, . . . , Z}. It should be noted 
thataFEp is determined from a less constrained mathematical program, and therefore, gsEp 
1 Bsm forallj = 1, . . . . ZV. 

Based on the asymptotic correspondence between the empirical distributions of e^suB and 
GSEP under the null hypothesis of input separability we can construct the following three 
test statistics to test the input separability hypothesis analogous to those described earlier: 

(vii) Tm s 
j=l j=l 

(‘iii) THN E C (gJEp - 1)2/ 5 (8Tj”” - 1)’ 
j=l j=l 

(ix) TsM = max(P(8yq - ~sEp(~~Ep)I j = 1, . . . ) jv} 

Rejection of the null hypothesis indicates that the sample data do not support the input 
separability hypothesis under the maintained assumptions embodied in the four DBA 
postulates specified by Banker (1993). 

Banker, Chang, and Sinha (1994) generated 480 data sets considering two different pro- 
duction technologies (separable and substitutable inputs), two parametric inefficiency 
distributions (exponential and half-normal), two levels of mean inefficiencies (high and 
low), and three sample sizes (50, 100, and 150), and replicated each of the 24( = 2 * 2 
* 2 * 3) settings 20 times to yield 480 data sets. They used the following two production 
frontiers: 

0 6 0.4 qsm = 10x1. x2 (18) 

%iEP = Mhh x2) (1% 

where x1 and x2 were drawn randomly and independently from uniform probability 
distributions over the interval [5, 151. 

Representative results of the simulation experiments appear in Tables 4a and 4b. The 
DEA-based tests outperform the COLS-based test when outputs (qsup) are generated using 
the Leontief production technology in (19) that assumes separability of inputs. In fact, the 
performance of the COLS-based test worsens for larger samples with the number of cases 
for which the null hypothesis of input separability is falsely rejeced increasing with the 
increase in sample size. When outputs (qsm) are generated using the Cobb-Douglas pro- 
duction technology in (18) that assumes substitutability of inputs, the performances of the 
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Table 41. Summary of test results for a Leontief-type (separable) production function. (Source: Banker, Chang 
and Sinha (1994)) 

True inefficiency is half-normally distributed with mean inefficiency = 1.6667. 

Hypothesis Sample Sizes 

Test Procedure Test Statistics Null AR. N=5 N=lOO N=lSO 

1 DEA Tmp - CiN_, q,, - l)/CjN,, (@jsw - 1) SEP SUB 0 (0) 0 (0) 0 (0) 
(exponential) 

2 DEA Tag 
= E” (B^SEP - I)z/E!= @SW - 1)~ 

3-I I Jl I 
SEP SUEZ 0 (0) 0 (0) 0 (0) 

(half-normal) 

3 DEA 

(Smirnov) 

TsM I Max[FSEP(8y) - F’*($“)l j = 1,. .N] SEP SUB 0 (0) 0 (0) 0 (0) 

4 COLS TcoLs - i+$, SEP SUB 12 (IO) 16 (12) 15 (15) 

Notes: The number reported in each cell is the number of iterations (out of a total 20 iterations) for which the corresponding 
test statistic is significant at the 10 (S)% level. 

SEP = input separability; SUB = substitutability. 

ZzbZe 46. Summary of test results for a Cobb-Douglas (substitutable) production function. (Source: Banker, Chang 
and Sinha (1994)) 

True inefficiency is half-normally distributed with mean inefficiency = 1.6667. 

Test Procedure Test Statistics 

Hypothesis 

Null Alt. 

Sample Sizes 

N = 5 N = 100 N = 150 

1 DEA T,, I CjN,, (iy - l)/$, (8jsuB - 1) SEP SUB 13 (7) 20 w 33 cm 
(exponential) 

2 DEA TH,,, = El!=, @jSEP - l)VC,~, (8ji”” - l)* SEP SUB 14 (10) 20 (20) 20 v-0) 
(half-normal) 

3 DEA 
(Smirnw) 

TsM I Max[FSEP(8y) - FsuB(8jsuB)I j = 1,. .Nl SEP SUB 1.5 (9) 16 (14) 20 (19) 

4 COLS T COLS = k/Rl SEP SUB 12 (10) 16 (13) 15 (13) 

Notes: The number reported in each cell is the number of iterations (wt of a total 20 iterations) for which the corresponding 
test statistic is significant at the 10 (5)% level. 

SEP = input separability; SUB = substitutability. 

DEA-based tests and COLS-based test are comparable for the small sample size. However, 
with an increase in the size of the samples the DEA-based tests outperform the COLS- 
based test. 

Overall, the results of the simulation experiments suggest that even when the parametric 
form specified for the COLS estimation is the same as the true production frontier used 
to simulate the data, the DEA-based tests performvery satisfactorily compared to the COLS- 
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based test in distinguishing between separable and substitutable forms of input characteriza- 
tion. The DEA-based tests are robust and perform well regardless of the form of the true 
production technology and inefficiency distribution. The experiments also indicate that the 
performance of the tests improves as the sample size increases and as the level of mean 
inefficiency decreases. There are no substantial differences in performance across the three 
DEA-based tests. 

6. Some Tests of Model Specification 

The materials in this section are drawn from Banker, Devaraj, and Sinha (1995). A question 
that is of considerable interest in many applications is whether a set of variables is signifi- 
cant at the margin in characterizing the production correspondence between inputs and 
outputs. For specificity, let X and Yrepresent vectors of input and output variables respec- 
tively in the base model, and let 2 represent the vector of additional input variables whose 
significance we wish to evaluate. (While 2 is specified here as a vector of input variables, 
the analysis can be adapted easily to address the case when some of these variables are 
outputs.) We can estimate e^“(q, 3) and e^“(q, Zj; 5) using the BCC-model in (I) to (5) 
first with only X and then with (X, Z) as input vectors, respectively. Evidently, SE& 5) L 
8’(Xj, Zj; 5). Therefore, under the maintained assumptions embodied in the four DEA 
postulates corresponding to the input vector (X, Z), and the null hypothesis that input 
variables Z do not influence the production correspondence, and proceeding as before, we 
can construct the following test statistics: 

(x) TEX = l 1 
(xi) THN = 1 
(xii) TSM = max{~~(P(~; q)) - F&(P(q, zj; 5))lj = 1, . . . N] . 

Simulation studies designed in a manner similar to those described in the earlier sec- 
tions indicate that these tests perform as well or better than COLS-based tests even when 
the estimated parametric form for COLS estimation is identical to the one used to generate 
the simulated data. Representative results appear in Tables 5a and 5b. 

The general approach described here can be applied to develop a wide variety of tests 
of model specification. For instance, let zj = z(Zj) be an aggregation of the vector Z. Is 
this aggregate sufficient in capturing the impact of the variables Z on the production cor- 
respondence? Such a hypothesis can be evaluated by comparing the inefficiencies estimated 
with (X, z) as the input vector against the inefficiencies estimated with (X, z, Z) as the 
input vector, and proceeding using the test statistics described above. 
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ZzbZe 5a. Summary of test results. Test of the marginal effect (number of Type II errors). 

True inefficiency is exponentially distributed with mean inefficiency = 1.18. 

Sample Size 

Test Procedure 50 100 150 

DEA-based tests exponential 1 (1) 0 (0) 0 (0) 

half-normal 1 (2) 0 (0) 0 (0) 

COLS test 5 (6) 4 (9) 4 (8) 

Notes: True production frontier: y = G6’ 
Ho: ~2 has no marginal effect on production. 

The number reported in each cell is the number of iterations (out of 100) for which the test statistic is significant 
at the 5% level (numbers in parentheses are at 10%). 

Z?bZe 5b. Summary of test tesults. Test of the marginal effect (100 less number of Qpe I errors). 

True inefficiency is exponentially distributed with mean inefficiency = 1.18. 

Sample Size 

Test Procedure 50 100 150 

DEA-based tests exponential 89 (96) 95 (100) 96 (100) 

half-normal 69 (83) 73 w3 82 (98) 

COLS test 67 (78) 93 (98) 96 (98) 

Notes: True production frontier: y = G6’ X$.‘~ 
Ho: 3 has no marginal effect on production. 

The number reported in each cell is the number of iterations (out of 100) for which the test statistic is significant 
at the 5% level (numbers in parentheses are at 10%). 

7. Concluding Remarks 

The principal limitation of the different DEA-based tests described here is that for any 
finite sample, the random variates in the numerator or the denominator of the test statistics 
Tm and THN need not be distributed as chi-squared. Also, they may not be distributed in- 
dependently of each other and, therefore, their ratio need not follow the F-distribution. 
A similar caveat applies also to the Smirnov-type test described here. 

An interesting possibility is to use bootstrapping methods to augment the tests described 
in this survey. For instance, since the DEA estimator of inefficiency is biased downward 
in finite samples (Banker 1993, Proposition 4), it may be possible to reduce the bias using 
bootstrapping methods, and construct these tests based on the bootstrapping estimators. 
A caveat is in order, however. Standard proofs for the consistency of the bootstrap estimator 
do not apply for the DEA-type nonparametric estimation of general monotone and concave 
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production frontiers because of the incidental parameters problem described by Banker 
(1993, p. 1266). Thus, much remains to be accomplished in providing a theoretical basis 
for applying the bootstrapping methods to nonparametric estimation of general monotone 
and concave production frontiers. Furthermore, similar to the DEA-based tests described 
in this paper, the distribution of the bootstrap estimator is not known for finite samples. 
Unlike these DEA-based tests, however, the performance of the bootstrap estimator in the 
DEA context has not been evaluated, to date, using systematic simulation studies. 

It is important, therefore, to evaluate the comparative performance of these tests for finite 
sample sizes using simulation studies. The initial Monte Carlo studies mentioned here seem 
to be promising for the tests described in this paper. However, any such evidence must 
be interpreted cautiously as no simulation study exhausts all possibilities. We must con- 
tinue similar experimentation to identi@ conditions under which the DEA-based tests per- 
form well and conditions under which they do not (Banker et al. 1987).’ 

Many interesting directions remain open for extending this line of research. If, for in- 
stance, the expected value of DMU inefficiency is modeled as a linear fi.mction of a set 
of explanatory variables, then consistent estimators of the parameters of this function are 
obtained by a two-stage procedure, first obtaining DEA inefficiency estimates and then 
regressing them (or appropriate transforms) on the explanatory variables (Theil, 1971; 
Banker and Johnston, 1995; Gstach, 1995). While the performance of this procedure re- 
mains to be evaluated in simulation studies, it suggests how the consistency property of 
the DEA inefficiency estimator can be employed to estimate a wide variety of models. 
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1. Alternative specifications based on output quadities and input mix proportion variables, or on endogenous 
input mix decisions based on random input price variables can be also employed to obtain results similar to 
those descried here. 

2. The postulates are specified here for the multipleinput and multipleoutput case with a multiplicative ineffi- 
ciency term modeled as a random variable. Ihe extension from Banker (1993), where the single-output case 
is described with an additive inefficiency term, is straightforward. 

3. The proof of Theorem 6 in Banker (1993) also applies equally well to any parametric estimator of an extremal 
production function obeying the consistency propetiy. That is, under Postulates 3 and 4, the empirical distribution 
of inefficiency scores evaluated relative to such a parametrically estimated production frontier also reCOvers 
the true distribution of ~9. 

4. Separability of inputs here refers to the determination of the demand for each input (given output quantities 
and input prices) independent of the levels of all other inputs. While this is consistent with common usage 
in accounting and operations management, it does not correspond to the concept of separability of production 
frontiers in economics. 

5. It is important, therefore, to allocate time and effort in conducting simulation studies to evaluate performance 
under a large number of different conditions rather than conducting a large number of replications for rela- 
tively few conditions. 
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