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Abstract. The magnetohydrodynamic frequency-wavelength relation, derived by McLellan and 
Winterberg (1968), has been evaluated for an isothermal atmosphere. In particular, the effect which 
an inclined magnetic field and a finite horizontal wavelength have on the critical sonic and internal- 
gravity cut-off frequencies has been examined, in which it has been assumed that the magnetic field 
vector, wave vector, and gravity vector are coplanar. It is shown that the frequency band in which 
vertical wave propagation is impossible in the non-magnetic photosphere, becomes smaller when an 
inclined uniform magnetic field is introduced, and that low frequency magnetically coupled internal- 
gravity waves do not propagate vertically if the horizontal wavelengths associated with this mode 
are greater than a critical wavelength which decreases with field strength. 

It is also demonstrated that an inclined magnetic field will inhibit the resonance that occurs at the 
critical frequency cog in the non-magnetic atmosphere which is a result consistent with recent obser- 
vations of the 'wiggly line structure' in active regions. 

At  the boundary  o f  supergranular cells where the magnetic field is approximately 

vertical and concentrated into knots o f  flux at photospheric  and low chromospher ic  

levels, wave mot ion  across the magnetic lines o f  force will become complicated by the 

extra restoring forces which the field imposes on the wave at depths where the magne- 

tic energy density is comparable  to the gas kinetic energy density. We shall use the 

term fl, defined as 

fl = N k T  ~ (1) 

th roughout  this paper  to indicate the relative importance o f  the forces involved in 

the mot ion  o f  a wave which travels vertically in the photosphere.  At  depths where 

fl>> l, the magnetic forces are small compared  to the kinetic forces, and wave mot ion  
is not  affected by the presence o f  the field at these levels. 

1. Frequency and Wavelength Dependence on the Strength and Orientation 
of the Magnetic Field 

We can now examine the frequency response o f  the photosphere in the presence o f  

a magnetic field and examine the frequency and wavelength dependence on ft. McLellan 
and Winterberg (1968) have derived the hydromagnet ic  dispersion equations f rom a 
linearized system of  equations. These equations relate the frequency and wavelength 
o f  a small ampli tude wave per turbat ion to magnetic field strength, and to the density 
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and sound speed in an exponential, isothermal atmosphere. The relations for Alfv6n 
mode waves, and for slow and fast-mode waves are respectively, 

_ = 0 ,  ( 2 )  
4~r 

[ ( or + - - k + 4 0o]_I + - i )  ( k  - + 
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where Vs is the constant sonic velocity,/~o is the magnetic field strength which is 
assumed uniform,/~ is the total wave vector so that _K= [kf, ~o is the equilibrium 
density. B~ and k~ are the components of the magnetic field and wave vector respec- 
tively in the direction of the gravitational acceleration, which is taken as (0, 0, -g~). 

Equations (2) and (3) represent a local relationship between frequency and wave- 
length, because the variation of density over the vertical wavelength of the pertur- 
bation is assumed negligible. Therefore, the validity of these equations is restricted to 
perturbations whose wavelengths are small compared to the scale height of the atmo- 

"~,~ave< V~/gT" Furthermore, Equations (2) and (3) are derived from the sphere, i.e. 2 
fundamental equation of motion and the equations of continuity, entropy, the equation 
of state, and the equation of magnetic induction. Additionally, the gas has been as- 
sumed to be compressible, and the dissipative effects arising from viscosity, heat 
conductivity, and electrical resistivity are assumed negligible. The linearization of 
the equation of motion further requires that the perturbed density, pressure, and 
magnetic terms are small compared to their equilibrium values. 

In active regions of the solar photosphere, the precise value of the magnetic field 
strength at the line forming levels is still uncertain for two reasons. Firstly, if the 
magnetic field is concentrated into knots which occupy a small fraction of the area of 
the magnetometer slit, then the observed field will represent an averaging of the mag- 
netic field over the individual elements from the entire slit area. Recent observational 
work by Howard and Stenflo (1972) indicates that the boundary of supergranular 
cells is composed of filamentary structures, in which the magnetic field is highly 
concentrated deep in the photosphere, and spreads rapidly with height. 

Secondly, Harvey and Livingston (1969) have pointed out that many of the photo- 
spheric lines which are used for magnetograph measurements are temperature sensitive 
and weaken in active regions. The corresponding change in profile of these lines 
introduces errors in calibration which could be as large as a factor two or three. 
Therefore, estimates of the magnetic field strength at the boundary of supergranular 
cells range from 60 G to 250 G. In the present computations, the dispersion relation 
(3) has been evaluated for magnetic field strengths in the range 1 G to 300 G. 

Bel and Mein (1971) have used McLellan and Winterberg's relations (2) and (3), 
and evaluated these equations for the active photosphere in the case of purely vertical 
propagation, so that the horizontal wave number k, = 0. However, as we are examining 
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the modification of the frequency response of the photosphere in the resonant range 
of 300 s in the presence of a magnetic field, it is essential that we allow/~ to have a 
horizontal component. From observations, the five-minute period oscillation is 
typically associated with long but finite horizontal wavelengths of the order of several 
thousand kilometers (Ulrich, 1970). We would like to consider the general case and 
examine the effects which a finite horizontal wavelength and an inclined magnetic 
field have on the frequency response of the photosphere. 

If we assume/~o, g, and/~ have components (B x, 0, B~), (0, 0, - gz) and (kx, 0, k~) 
respectively, for which we assume the form k~= +a+ib-igv/2VZs, we may expand 
the terms of Equation (3) and obtain a complex quadratic polynomial in co. We have 
restricted this analysis to coplanar solutions by assuming By and ky are zero in order 
to simplify the rather cumbersome algebraic expressions. However, computations 
which have been performed for the more general case of (B~, By, B~), (kx, ky, k~) and 
(0, 0, g~) modify the important results of this and the following section only slightly. 

If  we set a = 0 in these equations and solve for ~o, we will obtain the frequencies for 
which vertical wave propagation does not occur. For the non-magnetic case (/~ = 0) 
vertical wave propagation does not occur in the frequency band o) s > co > cog. 

The terms of Equation (3) have been evaluated using the values of density and 
temperature for which Qo=3.54x 10 -9 gm/cm -3 and T=4170 (K) at temperature 
minimum in the Harvard-Smithsonian Reference Atmosphere (Gingerich et al., 1971). 

The value 7 = 1.3 has been selected as the mean ratio of specific heats for the photo- 
sphere because, in the first approximation, lowering 7 from its adiabatic value of 2, 
reflects the energy losses due to radiation. The solutions of the dispersion of Equation 
(3) have been plotted as frequency a) against horizontal wave number k,  in Figure 1 
for selected magnetic field strengths and field inclinations. 

In Figure la and lc the curves drawn correspond to the solution of Equation (3) 
for a one gauss magnetic field, for which f l=2 x 10 4 at Zsooo=10 -4. A one gauss 
field at this depth has a negligible effect on the frequency response of the photosphere, 
and therefore, at levels where fi~> 1, the solution of Equation (3) corresponds closely 
to the solution of the dispersion relation when/~o = 0. The solution for the one gauss 
case when b=-gT/2V2,  (thick curves) divides the diagnostic diagram into three 
distinct regions. Region I corresponds to vertically propagating sonic-gravity waves 
which travel upwards, provided the frequency co is greater than the critical sonic 
frequency co s. If  r < co0, vertical wave propagation is restricted to the internal-gravity 
mode (Region III). Waves with frequencies in Region II are essentially horizontal 
waves which are non-propagating in the vertical direction, and are so termed eva- 
nescent. 

However, a relatively weak magnetic field modifies somewhat the response of the 
photosphere in this frequency band. Since the magnetic terms in the dispersion equa- 
tion provides for solutions for which b= +kx+ gT/2V~ (thin curves in Figure 1), we 
find that the magnetic field imposes a horizontal spatial dependence on the condition 
for energy conservation in vertically travelling waves. Specifically, if kx is small 
compared to gT/2V~, i.e. if2~ is large compared to the scale height of the atmosphere, 
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Fig. 1. Region I of the diagnostic diagram consists of vertically propagating magnetosonic-gravity 
waves, and Region llI is comprised of magnetically coupled internal-gravity waves. Both Regions I 
and III are bounded by the solution of the dispersion equation in which the real component of kz(a) 
is set equal to zero, and the imaginary component (b) is b ~ --g7/2~ ~ (thick curves). Waves in these 
regions are both vertically propagating and energy conserving. The thin curves correspond to waves 
in which b = =k kx § gT/2Vs ~, This solution corresponds to waves which are energy conserving when 
propagating vertically if kx< gT/2 V~ ~ (Lx>> 2 Vs~/ gT). If  k:~>> gT/2 Vs 2 (2~<2 V~2/ g) the waves are atten- 

uated rapidly and are non-energy conserving. 

Fig. la. B0 = 1 G and the field is inclined 1 deg with respect to ~. 

then magnetically coupled waves can propagate  vertically, and expand in amplitude 

with increasing height, thereby conserving energy. In  Figure 1 these wave solutions 

are represented by the thin curves, and occur in Regions I and III .  This wave solution 
is of  particular physical importance since waves with growing amplitude will even- 
tually steepen sufficiently to form shock waves, and the rapid dissipation o f  mechanical 
energy once a finite amplitude discontinuity has developed can heat upper  levels o f  

the chromosphere and corona. F r o m  this analysis we find that  if an inclined magnetic 
field is present, vertically travelling magnetically-coupled waves will be energy 
conserving modes if the horizontal  scale associated with these waves is large compared  
to the scale height o f  the atmosphere, i.e. if 2=> V~/g~.  

I f  ~-x is small compared to the scale height o f  the atmosphere, we find that  magneti-  
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B0 = 300 G and the field is inclined 1 deg with respect to ft. 

cally coupled waves are no longer energy conserving. This case is not of physical 
importance considering the transmission of mechanical energy to upper levels of  the 
solar atmosphere, since waves with horizontal scale sizes 2 x < V~/97 will be attenuated 
quite severely. In this respect, this case is not of  physical importance when formulat- 
ing a model of chromospheric heating in magnetic regions. 

If  we now increase the magnetic field strength to 300 G, so that fl = 0.261 at 75000 = 
= 10-4, we note that the solution of  Equation (3) (Figures 1 b and 1 c) is substantially 
altered. The effect of  an approximately vertical magnetic field (Figure lb) is to alter 
the co (kx) dependence in such a way that perturbations with horizontal wavelengths 
which are large compared to the scale size 2V2~/97, i.e. for horizontal wavelengths 

2 2~ >>2 Vs/97, vertical wave propagation at high frequencies takes place in the sonic- 
gravity mode. However, as the beta of the gas is less than unity in this case, a sonic- 
gravity wave is coupled to the magnetic field, because the magnetic restoring forces 
in Equation (3) are large compared to the gas kinetic forces. In this case, vertical 
wave propagation occurs in the magnetosonic-gravity mode, and as the curve bounding 
Region I in Figure lb is asymptotic to cos as k~ tends to zero, fast and slowmode 
waves propagate vertically in Region I provided co > co s. 
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B0 = 1 G and the field is inclined 45 deg with respect to 6. A magnetic field strength of 1 G 
has a negligible effect on the frequency response of the atmosphere because fl>> 1. 

I f  we incline the magnet ic  field (with respect to 9) through 45 degrees in Figure ld,  
we note that  in Region I, m (kx) is no longer asymptot ic  to co s as k ,  tends to zero. 
Therefore,  for  an inclined magnet ic  field, magnetosonic  waves may  propaga te  verti- 
cally at frequencies o~<ms. I f  in Equat ion  (3) we set a = 0  and k x = 0 ,  and let b- -  
= - 9 7 / 2 V  2 we will obtain the critical magnetosonic-gravi ty  frequency me, where 

;) l ;  ' 
toe = a)s -- + ~s -- + 7fl (4) 

and 0 = arccos (B=/Bo). Therefore,  at  levels where fl < 1, the critical magnetosonic-  
gravity frequency is less than  the critical sonic-gravity frequency co s when the field 

is inclined f rom the vertical. 
I f  the horizontal  wavelength is small compared  to the scale height o f  the a tmosphere ,  

so that  2 ~  V2/'~9, a vertically travelling low frequency wave will p ropaga te  as a 
magnetical ly coupled internal-gravity wave when fl < 1. Magnetical ly coupled internal- 
gravity waves p ropaga te  vertically at frequencies greater than  the critical frequency 
coo, because the limiting curve co (k~) in region I I I  is not  asymptot ic  to co o as k~ tends 
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B0 = 300 G and the field is inclined 45 deg with respect to ~. Both curves bounding Regions 
I and lII are no longer asymptotic to cog or cog. 

to infinity when fl < 1. Setting a =  0 in Equation (3) and solving for the frequency co 
in the limit as kx~oe ,  we find that co is unbounded by kx, and the frequency tends to 
infinity in the limit as the horizontal wavelength approaches zero. 

The effect which an inclined magnetic field has throughout all solutions of  Equation 
(3) is to decrease the frequency band in which vertical wave propagation does not occur, 
and introduce vertically propagating fast and slow modes in place of  the evanescent 
waves in the frequency band cos > co > cog. This indicates that the levels where co < cos 
or co > cog, a wave need not be reflected when an inclined magnetic field of  sufficient 
strength permeates the photosphere. At levels where f in  1, magnetically coupled 
waves may appear which can propagate energy vertically for a larger range of fre- 
quencies than can the magnetically uncoupled modes. 

2. The Resonant Frequency Response of  the Active Photosphere 

Howard et  al. (1968), and more recently Blondel (1971) have observed the 'wiggly 
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line structure' in active and non-active regions in photospherically formed spectral 
lines. Blondel has found that in active regions, in the resonant range of 300 s, the 
lobe of the power spectrum is reduced by approximately 20~o to 25~. He also finds 
that the velocity amplitudes for waves of periods less than 240 s is strengthened in 
magnetically active regions. 

In order to examine the effect which an inclined magnetic field has on the resonant 
frequency response of the active photosphere, we will derive an expression for the 
vertical velocity amplitude in terms of the magnetic field strength and the wave 
vector/~. 

The maximum frequency response of an isothermal atmosphere, which is permeated 
by an inclined magnetic field can be obtained by first deriving a relation for the rate 
of variation of pressure with time (Equation (8)) from the equations of continuity 
(5), entropy (Equation (6)), and the equation of state (Equation (7)), which are 

~e 
- -  + V .  (e" 17) = O, (5) 
Ot 

ds •s 
- + 1 7 . V s  = 0 ,  (6 )  

dt Ot 

~e ds Oe 1 d e = o s  e + ~ P I  dP, (7) 
s 

and 
Op' 

- V~eog  - e o V ~ V .  ~7, ( 8 )  
Ot 

where P '  is the time-dependent pressure perturbation at the height z=0,  given as 

P' = P (m, K)  e i (kxx-ot) (9) 

Likewise, we can represent the vertical and horizontal velocity fields as 

and 

�9 ~ . ' _  
V~ = u~,e'(K r ~t), (10) 

u e i (g.;-cot) v~ = ~ , ( 1 1 )  

where u~ and u~ are the horizontal and vertical velocity amplitudes respectively. 
In order to simplify the algebraic expressions in this paper, we have again restricted 

ourselves to solutions for which the magnetic field vector, velocity vector, and gravity 
vector are coplanar. In fact, it has been found that an extension of these equations to 
the more general case where 17,/7 and ~ have components (Vx, Vr, V~), (Bx, By, Bz) 
and (0, 0, - g z )  respectively, does not significantly affect the conclusions obtained 
for the coplanar solutions. 

It is now possible to solve for the vertical velocity amplitude u~ by substituting 
relations (9) through (11) into Equation (8), for which we obtain 
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An algebraic equation which relates the ratio v~/v~ in Equation (12) to the frequency, 
wave number, and magnetic field strength can be obtained by expanding the terms 
of Equation (13)* which gives the velocity amplitudes ~= (v~, 0, v~). 

We take the magnetic field/~o and wave vector/~ to have components (B~, 0, B~) 
and (k~, 0, kz) respectively. 

o,~ - v ? ( # : . ~ ) # :  + i ( ~ . O ) g  + i(:, - 1) ( R . ~ ) ~  + 

+ 47~o ~o x {g  • [R x (~ x ~)]} = o. 03) 

If we expand the terms of  Equation (13) and resolve the equation in the vertical 
direction (unit vector ~) and horizontal direction (unit vector 7) we will obtain 

7 {c02v~ - iv~gk:, - V~ 2 (k2vx + k~k~v~) + 

1 
- - -  [Bz (k 2 + k 2) (Bzv x - B~v~)]} + ~ {m2v~ - ivzgk~ + 

4rC0o 

- i ( y -  1)k.v.g - i ( ? -  1) k~vzO - V? (k~k~vx + k,~v~) + 
1 

+ - -  [B~ (k~ + k~) (B~v. - B~v~)]} = 0, (14) 
&ZOo 

where ~ is the velocity vector defined by 

(~, t )  = ~ = ue  ~ (~'~-~') (15) 

Setting both bracketed expressions equal to zero, we obtain two simultaneous equa- 
tions, each of  which is in terms of  v~ and Vz. Upon solving for the ratio of v J r  x in 
each of  the simultaneous equations, we obtain the relations 

(I) __ Vs K x  z 2 2 

f ( w ,  K,  B)  = Vz 4nQo 
y - Y = -  BY z- . . . .  ' 

and 

f(r K,  B)  = Vz 
~x B~ 

2 2 _ _ _ ( k  z + k  z ) _ i o k z  7 ] o~ 2 - V S k ~  4nOo 

(17) 

* For derivation of Equation (13) see Equation (12) of McLellan and Winterberg (1968). 
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Worrall (1972)has shown for the non-magnetic case (/~= 0) that an isothermal atmo- 
sphere which is subjected to pressure fluctuations at its base will respond singularly 
at the internal-gravity frequency cot Worrall finds that in the absence of dissipative 
viscosity and heat conductivity, the vertical velocity amplitude for oscillations at cog 
varies exponentially rather than sinusoidally with height, i.e. the vertical wave number 
associated with oscillations at cog is purely imaginary (kz=ig/V2).  Furthermore, the 
singular response of the atmosphere at coo is independent of the horizontal scale of 
the exciting fluctuations, i.e. this particular solution is independent of 2~. In a manner 
of speaking, the atmosphere heaves in phase at the internal frequency cog when no 
magnetic field is present. 

Therefore, as a check for consistency of Equations (16) and (17) in the non-magnetic 
case, we set/~0 = 0 in both equations, and examine the value of co and kz for which 
the ratio vJv~ diverges. From Equations (16) and (17) we cannot examine the diver- 
gence of v~ or v~ separately, since by solving one of these equations in terms of the 
other, both v~ and v~ cancel. This leaves us with only the dispersion relationship for 
a non-magnetic isothermal atmosphere. However, if we substitute the quantities 
CO=COg= g/Vs( ~ -  1) 1/2 and k~=ig/V 2 into Equations (16) and (17) we find that the 
ratio v J r  x diverges. This truly indicates that the vertical velocity field vz becomes 
infinitely large for this particular case, since from Worrall (1972) it is known that the 
response of an isothermal atmosphere at the critical frequency cog when k~=ig/V 2 
provides for waves which are propagating only horizontally. Therefore, v~ will be 
finite and v~ will be infinite for this particular solution. 

This is supported by observations of Tanenbaum et al. (1969) of the five minute 
period oscillation in 'quiet' regions. Their work suggests that the photosphere responds 
in phase at a single frequency which is independent of the horizontal wavelength. If 
this model of the frequency response of the photosphere is correct for 'quiet' regions, 
the addition of an inclined magnetic field will be such as to prevent resonance from 
occurring at the critical frequency cog. 

It would be of interest now to examine the maximum frequency response of the 
atmosphere in the presence of an inclined magnetic field. We can use either Equations 
(16) or (17) as the relationf(co, K, B) in Equation (12). It is possible to obtain the 
total differential of Equation (12) with respect to co, and set the resulting expression 
equal to zero, in order to find the maximum frequency response of the atmosphere. 

"P (~,, = G ~' (co, + 3k z (P  (co, K) ~co " 

However, obtaining the total differential product (aco/Ok~) (~k~/aco) from the dis- 
persion relation is algebraically tedious. Furthermore, this equation cannot be solved 
in closed form, so that we shall examine the divergence of the vertical velocity amplitude 
directly from Equation (12). 

Therefore, as an approximate treatment, if the vertical velocity amplitude [Uz/ 
P (co, K)] is a maximum, then [uJP (co, K)]-I  approaches zero. Putting f (co, K, B) 
equal to Equation (16), we can solve for the frequency co=comax in Equation (12) at 
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which the atmosphere responds most  efficiently. Doing  this we obtain 

2 Vs ~g2 L4=~~ 4~o%BxB~/ ~g)l (19) OJma x -~- (~ - -  1 ) -~- ( k  2 -Jr- k 2)  Jff ~ k  z - , 

In  order to make Equat ion (19) exact, we would in principle have to replace the prod- 

uct term involving the magnetic field by the expression 

F rom this approximate treatment,  it is clearly shown in Equat ion (19), by setting 

the magnetic terms equal to zero, that  the singular response o f  an isothermal a tmo- 
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Fig. 2. The vertical velocity amplitude [uz/P(co, K)] plotted against the frequency m for selected 
magnetic field strengths. The horizontal wavelength 2x = 5000 kin, and the magnetic field is inclined 
45 deg with respect to ~. The solutions corresponding to expanding wave amplitudes are shown by 

the dotted curves, and the damped waves are indicated by the solid curve. 

Fig. 2a. Magnetic field intensity is 3 G, and a maximum in the frequency response of the atmosphere 
occurs at the internal frequency c~g (solution 2). 
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sphere occurs at the critical internal-gravity frequency, as has been shown previously 
by Worrall (1972). In a steady-state, the non-magnetic photosphere will amplify 
fluctuations at the resonance frequency ~og, and the energy imparted by fluctuations 
at the base of the atmosphere will be propagated essentially as a horizontal wave. 

It is now possible to solve Equation (12) numerically, using various values of mag- 
netic field strength, and determine at which frequencies the atmosphere will amplify 
pressure fluctuations which are imparted at its base. This has been accomplished 
using the IBM 360/44 computer at the University of Cambridge. The results of 
these computations for a 3 G and 300 G field are shown in Figures 2a and 2b. 
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Fig. 2b. Magnetic field intensity is 300 G, and the maximum frequency response of the atmosphere 
(solution 2) is shifted to lower frequencies. Additionally, high frequency waves (co > co~) carry a 

higher energy flux in magnetic regions (solutions 1 and 3). 

From Equation (12) we obtain four solutions for [u=/P (09, K)]  which have been 
plotted against frequency ~. In these computations we have assumed that the hori- 
zontal wavelength associated with the five minute period oscillation in the photo- 



THE FIVE-MINUTE PERIOD OSCILLATION IN MAGNETICALLY ACTIVE REGIONS 59  

sphere is of the order of 5000 km. For the 3 G solution, a maximum in the vertical 
velocity amplitude [uz/P (co, K)] occurs at approximately the critical internal fre- 
quency cog (solution (2)). In fact, if the magnetic field was identically equal to zero 
[uz/P (co, K)] would be infinite at this frequency. However, an inclined magnetic 
field makes the vertical velocity amplitude finite at this frequency. Furthermore, 
solution (2) in Figure 2 corresponds to downward propagating waves, which expand 
in amplitude (expanding wave amplitude indicated by dotted curve; diminishing 
amplitude by dashed curve). Solution 1, 3 and 4 provide for both upward and down- 
ward propagating waves, which expand and diminish in amplitude. However, in 
relation to the relative magnitude of [Uz/P (co, K)] of these solutions, and of solution 
2, it is evident that the preferred response of the atmosphere occurs at frequencies 
near coo. 

If we increase the magnetic field intensity to 300 G (see Figure 2b), it is clear from 
solution 2 that the maximum frequency response of the atmosphere is shifted to lower 
frequencies, and that high frequency waves (see solution 1 and 3) in the range co > cos 
carry a higher energy flux. This qualitatively substantiates the observations of Blondel 
(1971), who has observed an enhancement in the velocity amplitude of long period 
waves in the range of 700 s, and short period oscillations with periods of 240 s and 
smaller, in active regions of the photosphere. 

It is of further interest to note that the long period oscillations correspond to down- 
ward propagating waves. From Figure 2b it is evident that only high frequency 
waves, i.e. at frequencies co>cos, are upwardly propagating. This makes magneto- 
sonic-gravity waves an important mechanism for transmitting mechanical energy 
vertically from the active photosphere to the active chromosphere. 

3. Discussion and Summary of Results 

From the results of Section 1, it has been shown that the frequency response of an 
isothermal atmosphere is substantially altered when permeated by an inclined mag- 
netic field. In applying these results to active regions of the solar photosphere, it 
should be emphasized that several mathematical simplifications were necessary in 
order to obtain solutions. In particular, the assumption that the density is constant 
over the vertical wavelength will lead only to qualitative results when the vertical 
wavelength becomes large as compared to the local scale height of the atmosphere. 

Additionally, the degree to which the magnetic field interferes with wave motion 
is dependent on height, so a complete treatment of this problem would have to include 
the variation of fl with optical depth, as well as the effects of a non-homogeneous 
magnetic field. 

As applied to the active photosphere, the results of these computations indicate 
that when fl < 1, vertically travelling low frequency waves, with horizontal wavelengths 
which are large compared to the mean scale height of the photosphere, propagate 
in the magneto-acoustic gravity mode. Magnetically coupled internal-gravity waves 
do not propagate if the horizontal wavelength is greater than 2V~/g?. 
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Furthermore, the frequency band from which vertically propagated waves in non- 
magnetic regions are excluded, i.e. frequencies co for which cos>co>co,, is made 
smaller in active regions having a magnetic field such that/~ < 1. 

This result indicates that at levels where /~ ~ 1, vertically propagating internal- 
gravity waves need not be reflected upon reaching a level where cos>co> coo" For 
sufficiently large magnetic field strengths, say 300 G, for which/3 = 0.261 at tempera- 
ture minimum, the mechanical energy associated with wave perturbations will be 
channelled into a transverse motion of the magnetic lines of force. At levels where 
fl ~ 1, some of the energy contained in the internal modes and sonic modes are propa- 
gated in magnetic modes, and the characteristics of wave motion above active regions 
are determined essentially by the configuration and strength of the magnetic field at 
heights where/~ ~ 1. 

One of the most important features of diagnostic diagram ld is that the cut-off 
frequency for magnetically coupled internal-gravity waves is increased substantially 
when an inclined magnetic field of moderate strength permeates the atmosphere. 
This result is of particular importance since it indicates that waves which are either 
trapped standing internal waves below the temperature minimum, or purely vertical 
evanescent modes in the photosphere, become vertically travelling waves in the active 
photosphere. As a consequence, the mechanical energy associated with long period 
oscillations in the 'quiet' photosphere can penetrate to the chromosphere, where the 
dissipation of this energy by shock formation can provide an enhancement of heating 
at upper levels of the solar atmosphere. 

Thomas et al. (1971) suggest that the five-minute oscillation in 'quiet' regions is 
the result of standing internal-gravity waves which they assume are driven from 
below by the 'piston' action of rising granules. They find that at low chromospheric 
levels where hydrogen becomes predominantly ionized, the critical frequency cog 
decreases, trapping the internal resonant modes inside the photosphere and low 
chromosphere. From the results of these computations, if a magnetic field of sufficient 
strength permeates the photosphere, then internal-gravity waves may continue to 
propagate vertically. The magnetic field provides a mechanism by which energy, 
which is originally contained in the trapped resonant modes of the photosphere and 
low chromosphere, may 'leak' into the upper chromosphere and corona, by channelling 
along the magnetic lines of force. The energy which is removed from the five-minute 
period oscillation in the internal-gravity mode of the photosphere and placed in the 
magnetic modes is propagated to the upper chromosphere and corona, where the 
dissipation of this energy produces localized heating around the magnetic tubes of 
flUX. 

Additionally, it has been shown that the resonant response of the photosphere at 
the critical internal frequency coo is not affected when the magnetic field is strictly 
vertical. Accordingly, this model indicates that the field should have an appreciable 
horizontal component at photospheric depths. This result is in fact consistent with 
recent observations by Howard and Stenflo (1972). 

In Section 2 it has been shown that pure resonance at the critical frequency coo 
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does not occur when a moderately strong inclined magnetic field is present. The solu- 

tion of Equation (4) in the magnetic case provides for magnetically coupled waves 

which travel either upwards or downwards, with growing or decreasing amplitudes. 

I f  the 'quiet '  photosphere responds in phase at the critical frequency ~o o (Worrall, 
1972; Deubner, 1972), then in magnetically active regions one should observe a 
reduction in power contained in the resonance lobe of the power spectrum at the 
critical frequency coo, and a phase change in the 'wiggly line structure' in the wings 
and cores of  photospherically formed spectral lines, if the wavelength of magnetically 
coupled oscillations are greater than the depths of  the line forming levels. 

We may conclude that for moderately strong magnetic fields in the photosphere, 
where fl can be of the order of  unity, the modification of the oscillations which cause 
the 'wiggly line structure' becomes important  at high levels in the solar atmosphere. 
Furthermore, magnetic modes which grow in amplitude in the photosphere could 
form shocks, for which the dissipation of mechanical energy from the waves could 
explain the temperature enhancement of  several hundred degrees which has been 
observed by Chapman and Sheeley, Jr. (1968). Further investigations are required 
which incorporate a non-linear theory in order to obtain a model of  wave mode 
coupling, for which an accurate estimate of  the amount of  acoustic energy which is 
channelled into magnetic shocks and dissipated in the active solar atmosphere can be 

obtained. 
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