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Abstract. This paper presents a new class of exact solutions describing the non-linear force-free field 
above a spatially localized photospheric bipolar magnetic region. An essential feature is the variation 
in all three Cartesian directions and this could not be modelled adequately with previously known 
symmetric force-free fields. Sequences of force-free fields are constructed and analyzed to simulate the 
slow growth of a pair of spots on the photosphere. The axis connecting the spots executes rotational 
motion, distorting the photospheric neutral line separating fluxes of opposite signs. We show directly 
from the analytic solutions that the resulting reversal of the positions of the spots relative to the 
background field is associated with (i) the creation of magnetic free energy, (ii) the severe shearing of 
localized low-lying loops in the vicinity where the photospheric transverse field aligns with the photo- 
spheric neutral line, and (iii) the emergence and disappearance of flux from the photosphere at these 
highly stressed regions. The model relates theoretically for the first time these different magnetic field 
features that have been suggested by observation and theoretical considerations to be flare precursors. 
A general formula, based on the virial theorem, is also given for the free energy of a force-free field, 
strictly in terms of the field value at the photosphere. This formula has obvious practical application. 

1. Introduction 

T h e  evo lu t ion  of solar  m a g n e t i c  fields t h rough  successive fo rce - f ree  s ta tes  has been  

s tud ied  with m a t h e m a t i c a l  m o d e l s  by  m a n y  p e o p l e  (Low, 1981a,  and  re fe rences  

there in) .  These  mode l s  were  a i m e d  at desc r ib ing  the quas i - s t eady  magne t i c  fields 

in the  solar  act ive region .  The  fo rce - f r ee  a s sumpt ion  seems  r e a s o n a b l e  since the  

act ive reg ion  field is typica l ly  a few h u n d r e d  gauss or  m o r e  and the  p l a sma  be ta  is 

much  smal l e r  than  uni ty  (Gold ,  1964). Wi th  these  mode ls ,  a full M H D  desc r ip t ion  

of the  field evo lu t ion  is avo ided  and as a first a p p r o x i m a t i o n ,  we need  to solve  a 

s equence  of s tat ic-el l{ptic  p rob l ems .  

The  magne t i c  field evolves  as the  resul t  of p h o t o s p h e r i c  mo t ions  and the t r anspo r t  

of magne t i c  flux th rough  the  p h o t o s p h e r e .  Much  of the  mode l l i ng  effort  so far  has 

c o n c e n t r a t e d  on the effect of on ly  the  p h o t o s p h e r i c  mo t ions  of the  magne t i c  

foo tpo in t s ,  with the  in te res t  of knowing  bow a magne t i c  field evolves  to a cri t ical  

conf igura t ion  for  a flare or  o t h e r  e rup t ions  to occur  (Low, 1977a,  b, 1980a;  Jockers ,  

1978;  Birn  et al., 1978;  Pr ies t  and  Milne ,  1980; Su, 1980). The  bas ic  effect is 

non l inea r  and  to r e n d e r  the  p r o b l e m  t rac tab le ,  it has been  p o p u l a r  to t r ea t  the  two 

d i m e n s i o n a l  Car t e s i an  system.  The  i n d e p e n d e n c e  of the  th i rd  Car t e s i an  c oo rd ina t e  
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gives rise to an arcade-like geometry. This model proved useful for the theoretical 
demonstration of basic properties, but it does not give insight into realistic situations 
with three dimensional variation. The interest of this paper is in the situation of a 
bipolar pair of spots having formed in the photosphere amidst a background field. 
As the spots grow in size and execute proper motion, electric currents are generated 
in the electrically highly conducting atmosphere. This manifests in the twisting of 
the 'frozen-in' field lines. Such a setting is widely accepted to be prone to flare 
eruptions (Zirin, 1974). Of particular interest is the case where the pair of spots 
rotates around to reverse the positions of the leading and following polarities, 
causing each spot to intrude into a region of opposite polarity (see, e.g., Zirin, 
1970a, b; Zirin and Tanaka, 1973; Zirin and Lazareff, 1975; Rust, 1976). A 
two-dimensional consideration will clearly not be adequate. 

The study of solar magnetic fields is limited by two difficulties. The first is that 
only the photospheric magnetic field can be measured to fine spatial resolutions 
(Beckers, 1971; Harvey, 1977; Stenflo, 1978). It is therefore necessary to extra- 
polate theoretically for the field above the photosphere from their measured 
photospheric values. The second difficulty is that, even within the force-free approxi- 
mation which conveniently decouples the influence of the plasma, this extrapolation 
is an intractable nonlinear problem (Schmidt, 1968; Sakurai, 1981a). In con- 
sequence, our knowledge of the magnetic field structures above the photosphere 
must rely on a synthesized picture based on magnetograms, Ha morphology of 
chromospheric fibrils, X-ray pictures of plasma loops and so on (see, e.g., Svestka, 
1976; Sturrock, 1980). It will be useful to find exact solutions of force-free fields 
through which the various field structures, implied by different sets of observational 
data, can be related in a unified manner. 

The equations for a force-free field B are: 

V x B = a B ,  (1) 

( B . V ) ~  = 0 ,  (2) 

where a is a scalar function. The problem for a constant a is a completely solvable 
linear problem (Chandrasekhar and Kendall, 1957; Nakagawa and Raadu, 1972) 
but there is no physical justification for assuming a to be constant everywhere. It 
is, in fact, easy to show that the nonlinear non-constant a fields are the ones more 
likely to be found in nature (Sakurai, 1979; Low, 1981a). As for these nonlinear 
fields, known solutions are restricted to highly symmetric ones such as the above 
two dimensional Cartesian system or the cylindrically symmetric system (Lfist and 
Schlfiter, 1954; Barnes and Sturrock, 1972). For the purpose of this paper, another 
class of nonlinear force-free fields will be considered. These fields possess a high 
degree of mathematical symmetry if transformed into a suitable coordinate system 
with the advantage that the force-free equations (1) and (2) can be solved trivially 
in closed form. However, their symmetry imposes no serious restriction on the 
geometry of the situation we are interested in, namely, that of an isolated bipolar 
magnetic region. 
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2. Model Construction 

Consider an initial potential field Bpot in the half space bounded below by the plane 
z -- 0 representing the photosphere: 

( - a ( z + a )  ay ) 
Bvot=B0 0, y ~ z + a ) 2 ,  y2+(z+a)2  , (3) 

where B0 and a are constants. We use Cartesian coordinates x, y, and z. The 
potential field is produced by an infinite straight line current running along the line 
y = 0, z = - a  below the photosphere. Suppose the magnetic field evolves as the 
result of photospheric motion and the transport of flux through the photosphere. 
If we assume the process to be very slow and at each instant of time, the field is 
force-free, we would then need to solve Equations (1) and (2) subject to the 
distribution of the photospheric normal flux, 

Bz (x, y, O) = Bn (x, y) , (4) 

where Bn (x, y) is given at each instant of time. Let us take the electrical conductivity 
to be infinite and regard the plasma to be frozen into the magnetic field. The above 
boundary value problem is complicated by the need to account for the evolutionary 
history, relating footpoints, one to another, in terms of field line connectivity 
(Sturrock and Woodbury, 1967). A different field line connectivity for the same 
boundary condition (4) can give a different force-free field. This is evidently an 
intractable problem. Our need in this paper to allow for variation in all x, y, and 
z coordinates is an added burden. 

Let us now impose some purely mathematical symmetry to the above problem 
to make the problem tractable without compromising on the essential physical 
feature of varying in all three Cartesian directions. Set up a spherical polar coordin- 
ate system with its origin located at (0, 0 , - a )  in the Cartesian system, and with 
the polar axis located on the line y = 0, z = - a  along which lies the line current 
responsible for the potential field Bpot. The relationship between the two coordinate 
systems is sketched in Figure 1. The next step is to make the ansatz that the 
force-free field in the above situation of flux emergence is axially symmetric in the 
polar coordinate system. This means that the magnetic field is of the form 

1 r l o U  o u  1 
B - r sin O [ r  0-0 r - ~ r  0 + V(U)d~J (5) 

in the usual polar notation, where V is a free function of one variable and the 
force-free equations (1) and (2) reduce to the scalar equation: 

02U sin O 0 ( 1  O_U'] dV(U) 0 (6) 
Or 2 + r 2 c ~ O \ s i n O - ~ ]  + V(U)  d ~ -  ' 

with 
dV(U) 

a -  d U  (7) 
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Fig. 1. Positioning of the polar coordinate system. 
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These axisymmetric fields were considered previously by Morikawa (1969), Cohen 
et al. (1973), and Milsom and Wright (1976). It follows that we can generate 
sequences of models for an isolated biopolar region by taking force-free field 
solutions of this axisymmetric system and transforming them to the Cartesian 
coordinate system in Figure 1. In this way, we obtain specific models without having 
to solve directly the above boundary value problem with the complicated condition 
of field line connectivity. In effect, we have turned the mathematical problem 
around, by giving the force-free field directly and using it to determine the field 
line connectivity and the boundary condition (4). The usefulness of such an approach 
becomes clear from the physically interesting models that we now proceed to 
construct. 

Equation (6) is nonlinear and a numerical t reatment is in general necessary. 
There is a special case for which its complete integral can be written down in close 
form, namely, when U is a strict function of r and Equation (6) integrates to give 

( d U ' ~ = + [ V ( U ) ] 2 = A 2  (8) 
dr ] 

where A is a constant. It follows from Equations (5) and (7) that, with A = Boa, 

B =  Boa [cos r  ~p(r)~b] (9) 
r sin O 
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and 

dq~(r) 
a = , ( 1 0 )  

dr 

where ~ is a free generating function. Equation (9) describes a vector of magnitude 

B o a / r  sin 0 lying in the spherical surface of radius r. The generating function r  
is the orientation of this vector for a given spherical surface. As we move through 
successive spherical surfaces of increasing r, the vector orientation would vary 
according to ~(r). A simple transformation from the spherical to the Cartesian 
coordinate systems gives the magnetic field components: 

Boa 
Bx = - - -  cos r  (11) 

r 

Boaxy  B o a ( z  + a )  . 
By - r [ y 2 + ( z  +a)2] cos q~(r) y - ~ z  +~a) 2 sin q~(r), (12) 

B o a x ( z  + a) Boay  
Bz = r[y2+ (z +a)2] cos ~(r) + y e + ( z  +a)2 sin r  (13) 

where r z = x 2 + Y 2 + (z + a )2. At the photosphere z = 0, the normal field distribution 

is 

Bo a2x ~[(x 2 + y2 + a 2)1/2] 
Bn(x,  y ) = B z ( x ,  y, 0 ) - ( x 2 + y 2 + a 2 ) l / 2 ( y 2 + a 2  ) cos + 

Boay  . ~[(x 2+y2+a2) l /2]  (14) + y2 + a--------7 sm 

In the following section, we discuss the morphology of these force-free fields as 
generated by specific sequences of the generating function q~. 

3. Magnetic Field Morphology 

The first thing to notice is that setting ~ = ~r/2 for all r gets us the initial potential 
field Bpot. This is clear from Equation (9) which gives, for ~ = ~-/2, the potential 
field due to a line current running along the polar axis. 

Next consider the generating function 

= ~ o + ( ~ l - q ~ o ) ( r - a ) / ( r o - a ) ,  r<=ro 

=q~l, r > r o ,  (15) 

where ~o, ~1, and ro are constants. Thus, q~ increases from go to 91 linearly with r 
until r = ro, beyond which ~ is constant at ~1. The associated magnetic field is 
force-free with a constant a (see Equation (10)) in the space r =< ro whereas outside 
r =< ro, the field is just the undisturbed potential Bo. In physical terms, we are looking 
at field changes that are spatially located around the origin x = y = z = 0. Thus, a 
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is not constant everywhere. The magnetic field is continuous everywhere in z > 0 
but the electric current density J = ~B is discontinuous at the surface r = r0 where 

changes abruptly from a constant value to zero. In the perspective of the polar 
coordinate system, Equations (9) and (15) describe a vector whose orientation on 

the spherical surface r = a is ~o. As we pass through successive spherical surfaces 
of increasing r, the vector orientation q~ increases linearly with r until q~ = ~1 at 
r = to, beyond which ~ remains constant at ~a. A smoother variation in ~ could 
have been prescribed, for example, 

q~ (r) = ~ tanh , (16) 

but the properties we wish to illustrate can be appreciated just as well with the 
mathematically less complicated case of Equation (15). 

In Figure 2, we plot the contours of constant photospheric field Bz(x, y, 0) for 
each of these generating functions, setting a = 1, ro = 3. In each plot, the solid lines 
denote upward fluxes and the broken lines downward fluxes. Contours are spaced 
at intervals of 0.05B0. Figure 2a shows the case of the potential field Bpot which 
is invariant in the x direction. Inspection of Equation (3) shows that IBz(x, y, 0)1 is 

maximum at the location indicated. Notice that the neutral line, defined by the 
vanishing of Bz(x, y, 0), is just the dotted straight line y = 0. In Figure 2b, the 
contours show a bipolar region resembling a pair of spots whose presence distorts 
the otherwise straight neutral line. For ~ with increasingly steep gradients, that is, 
for larger values of a, these features are enhanced as shown in Figures 2c and 2d. 
If these contour plots were time sequence data from an active region, taken with 
a longitudinal field magnetograph, we would interpret them as follows. A pair of 
spots with opposite polarities has emerged across the neutral line of the background 
field. As the spots grow, they execute clockwise rotational motion. The neutral line 
is progressively distorted with the tendency to reverse the positions of the leading 
and following spots relative to the background field. One outstanding feature is 
the intrusion of each spot into a region of opposite magnetic polarity. The strong 
association of such a development with flare eruptions is well supported by specific 
case histories (Zirin, 1970a, b, 1972b; Zirin and Tanaka, 1973; Zirin and Lazareff, 
1975; Rust, 1976; Tanaka, 1976). Let  us look at this development in terms of our 
theoretical solution. 

In a two dimensional consideration, such as the case of invariance in the x 
direction, distinction can be made between flux changes due to proper  motion of 
magnetic footpoints and that due to flux emergence. With three dimensional 
variation, the matter is not simple. It is often quite ambiguous, looking at mag- 
netograms, whether a spot grows because of new flux emerging locally or because 
there is net inward transport of pre-existing flux from nearby regions which are 
also evolving themselves. Zirin (1970b) cautioned that the apparent rotation of a 
spot may be the occurrence of new spots in successive rotated positions. In the 
sequence of theoretical magnetograms in Figure 2, the spots are growing in the 
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Fig. 2. Longitudinal field magnetograms for the force-free fields with r = rr/2 and ~o = r rr/4, 
o, - (=/2). 

sense that  the i r  forms b e c o m e  m o r e  p r o n o u n c e d  and thei r  peak  field s t rengths  

increase  as t ime progresses ,  The  m a x i m u m  values  of IBz (x, y, 0)[ in F igures  2a, b, c, d, 

a re  r espec t ive ly  0.5, 0.65, 0.77, and 1.0, in units of Bo. H o w e v e r ,  the  to ta l  flux of 

a given sign for  the  ent i re  r eg ion  dec reases  s l ightly with t ime.  If we in tegra te  

Bz(x, y, 0) of a given sign up to a circle of rad ius  po = (r~-a2) I/2 c e n t e r e d  at the  
2 , 2 J  2 .  origin x = y  = O, the  to ta l  flux of a given sign in the  reg ion  x ~-y = p o  is 

Po 

1 
F =Bo f dp2( ~sin gZ4 (a2+p2)lla Osinh O ) , (17) 

0 
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where O and 0 are given by 

sin O = (Ct2+P2) -1/2 P COS ( p ( x / ~ )  , (18) 

sinh O = a - l p  sin ( p ( x / ~ ) .  (19) 

We remind the reader that we have constructed r such that field changes are 
confined to a finite region of space, namely r <- ro. Figure 3a displays the integrand 
in Equation (17), which we denote by f(p), for the four force-free fields. The total 

flux F is just the area under the curve f(p) from p = 0 to p = p0 in each case. In 
the sequence (po = ~-/2, ~-/4, 0, - (7r/2) ,  the total flux F decreases moderately. 
Hence, the growth of the pair of spots and their intrusion into regions of opposite 

Fig. 3. 
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The  funct ion f(p) for (i) the  force-free fields with ~ l  = rr/2 and ~o = ~r/2, ~r/4, 0 , - ( I r / 2 ) ,  
(ii) the force-free fields with ~1 = 0 and r = 0 , -  (~r/4), - ( ~ r / 2 ) , -  lr, 
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polarities take place with a net loss of flux below the photosphere.  Another  example, 

shown in Figure 3b, will be presented later, in which the spot motion is accompanied 
with a moderate  increase in the total flux of one sign. The development of flaring 

conditions does not depend on whether the total flux is increasing or decreasing. 
Although flares are associated with the growth of active regions, flares at the decay 
phase of a sunspot are not uncommon (Zirin, 1970b). Flares must depend on the 
availability of free energy and the development of conditions for liberating it. This 
point is illustrated well by our theoretical solution. From Equation (9), the magnetic 
energy density is 

2 

IBIZ/8~r = B~/8~ a (20) y2 + (z + a)2 

with the remarkable property that it is independent of the generating function ~r 

Hence, as the field evolves through the sequence q~0 = ~-/2, ~-/4, 0, -(~r/2),  the 
magnetic energy at each point in the half space z > 0 remains constant. The free 
energy of a magnetic field is the amount  of magnetic energy in excess of the lowest 
minimum attributed to the potential field having the same normal field distribution 
at the boundary (Sturrock, 1967). Moreover,  the potential field with this absolutely 
minimum energy is unique for a given boundary normal field distribution (Jackson, 
1962). Let us look at the initial potential field Bpot with ~o = 7r/2. By the uniqueness 
theorem, we conclude there gpot is at the lowest energy and there is no free energy 
in the system. For the other three configurations, q~0 = ~r/4, O, -(~r/2), we know 
the field is not potential in each case and therefore must be at a higher energy than 
that of its respective potential field. Thus, we conclude that free energy is available 
for these three configurations. In summary, as the field passes through the sequence 
~,o = ~/2,  ~r/4, 0, - (~r/2), the local energy density does not change but fractions 
of it become available to be liberated as free energy. In this sense, the field is 
evolving towards a flare producing stage. 

To evaluate the actual amount  of free energy available is not possible by analytic 
methods, as far as we can tell. The task involves solving for the potential field 
satisfying the same normal field distribution given in Equation (14). In terms of 
the Green's  function, the potential field is B = 17g, where (Levine, 1975) 

I B~(x', y') 
O(x, y, z) = dx' dy'  [(x -x ')2+(y -y')2+z2]l/2" (21) 

z=O 

With the solution in explicit form, one goes on to compute the difference in energy 
between the force-free field given by Equations (11), (12), (13) and the potential 
field. In practice, a numerical method is needed for evaluating ~ (e.g., Schmidt, 
1964; Levine, 1975; Sakurai, 1981b). In the paper to follow, we will compute the 
associated potential fields, both to evaluate the free energy and to compare the 
morphologies of both force-free and the associated potential field (Low and Chal- 
mers, 1981). In calculating the free-energy, we do not need to know the values of 
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both the force-free and potential field everywhere. The photospheric values alone 
are sufficient to determine the free energy, as we show in the Appendix. This opens 
up the prospect that if we are able to improve the spatial resolution and the 
technology of vector magnetographs (Harvey, 1977; Stenflo, 1978; Hagyard et al., 
1981), we can evaluate magnetic free energy in the solar atmosphere without having 
to solve for non-linear force-free fields. 

i I I I ~ ~% \ , \ \ ' ~ ' ~ . ' ,  % . .  ii t 
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Fig.  4.  T r a n s v e r s e  field m a g n e t o g r a m s  fo r  t h e  f o r c e - f r e e  f ields w i t h  ~ol = l r / 2  a n d  q~o = ~ r / 4 , - 0 r / 2 ) .  

In Figure 4, we display the pattern of directions of the vector formed in the 
plane of the photosphere by the field components Bx(x,  y, 0) and By(x,  y, 0). Two 
cases are shown, 4oo = rr/4 and 4Oo = -0r/2) .  These are theoretical examples of data 
that one would obtain from a vector magnetograph that measures the photospheric 
transverse field (Hagyard et al., 1981). We have superposed our data against a 
backdrop of the contours of constant normal field Bz (x, y, 0). Of particular interest 
are the regions around the points P+ and P-,  marked in Figure 2 for visual clarity, 
where the transverse field aligns along the neutral line. Such features are absent 
in the 4oo = r data. Visual inspection of data for other values of 4o0 not presented 
here shows that as 4oo increases, such an alignment forms progressively. Analyses 
of the Marshall Space Flight Center vector magnetograms show that the alignment 
of the transverse field with the neutral line is a strong indicator of a potential flare 
site (Smith et al., 1981). We go on to consider the three dimensional field lines in 
this location and compare them with field lines elsewhere. We wilt find the former 
to be highly sheared low lying loops, a feature also known to be flare related 
(Vorpahl et al., 1975; Petrasso et al., 1975; Vorpahl, 1976; Su, 1980; Cheng, 
1977). Our theoretical solution, thus, provides a theoretical association between 
these two independently observed flare features. 
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Fig. 5. Projected views of selected field lines of the force-free field with r = ~-/2 and r = -(~-/2). 
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The sub-figures in Figure 5 are plots of selected field lines of the q~o = - (7r /2)  
force-free field. The sub-figures on the left column shows sets of field lines with 
footpoints rooted on a circle of some selected radius, centered at x = y = 0 on the 
photosphere. These field lines are seen projected on the x - y  plane. In the 
background, we have the faint contours of constant B~(x, y, 0) for purpose of 
geometric reference. To indicate the height of these field lines, we plot in the 
corresponding sub-figures on the right column, the same set of field lines seen 
projected against the y - z  plane. With magnetograph data, it is the three 
dimensional view of the field lines above the photosphere that is not available 
because we cannot, in practice, extrapolate for the force-free field. 

It is customary to assume that Ha fibrils are aligned along local magnetic fields 
(Zirin, 1972). If we were to select field lines from the three sets in Figure 5, identify 

them with Ha fibrils and view them projected on the x, y plane, the conspicuous 
feature of fibril-crossing' is produced (Zirin, 1970a). This flare related feature arises 
from the rotation of the spots, with field lines stretched and rotated beneath other 

field lines that suffer less changes because they are anchored in the quiet far regions. 
Notice that there are no field lines connecting the two regions of maximum 

IBz(x, y, 0)[. Field lines from each of these regions lead to regions of weaker 
IB~ (x, y, 0)[. It is thus misleading to visualize, based on longitudinal magnetograms 
alone, the two regions of maximum ]Bz(x, y, 0)[ to be the two ends of a flux rope. 

We mark with Greek alphabets in Figure 5 the field lines located near P~, 
characterized by the alignment of the photospheric transverse field with the neutral 
line. It is clear that these field lines, compared, to others are low lying, highly 
sheared to run almost parallel and above the neutral line. We suggest that such a 
setting is suited for the formation of a dark filament (Tandberg-Hanssen, 1974). 
To demonstrate filament structure requires taking gravity into account and this lies 
outside the scope of the force-free approximation. Moore and Zirin (unpublished), 
as reported by Kahler et al. (1980), found that a small low-lying dark filament can 
be found in association with almost every flare. If we view the magnetic field in 
terms of Equation (9) in polar coordinates, it is easy to see that progressive 
steepening ~p (r) leads to winding of the field line about the polar axis. On the plane 
z = 0, pairs of magnetic footpoints on either sides and near the neutral line approach 
each other as they are sheared along the neutral lines. Su (1980) has shown 
theoretically with a two-dimensional Cartesian model that this type of footpoint 
motion leads to low lying loops. It is also clear from the perspective of the polar 
coordinates that flux passes through the plane z = 0 by having field lines aligned 
along the neutral line and disappearing below z = 0. We suggest that this process 
leads to filament formation if the interaction between plasma gravity, and magnetic 
field were accounted for and the subsequent activation of the filament initiates the 
flare. 

We return to Equation (10) to note that setting ~0(r) constant everywhere leads 
to a = 0. Hence ~ = ~r/2 is merely one of a class of potential fields. Let  us look at 
other members of these potential fields. Figure 6 shows the two fields ~p = 0 and 
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Fig. 6. The  po ten t i a l  fields ~ = 0 and  ~ = ~r/4. 
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9 = ~r/4. In the first, the contours of constant Bz(x, y, 0) show a bipolar region 
symmetrically placed about a straight neutral line running on the y axis. The thick 
lines showing field lines projected on the xy plane exhibit no shear, or 'fibril- 
crossing'. In the second field, the bipolar field has a slant in its neutral line in the 
vicinity of the origin. The projected field lines also appear regular, without shear. 
This field is actually the linear superposition of the field 9 = ~-/2, and 9 = 0 as is 
evident from Equation (9) for a constant 9. The former is just the potential field 
Bpot given by Equation (3). Potential fields are linear. 

We have considered the sequences of force-free fields generated by Equation 
(15) for different values of 90 and for 91 = 0 and rr/4, respectively. In each case, 
we find the appearance of new spots which evolve into the polarity reversal 
configuration. The sequence beginning with 9 = 0 is an interesting comparison with 
the previous sequence beginning with the 9 = ~'/2 potential field that we analyzed 
in detail. The new sequence evolves with an increase in the total flux of a given 
sign. In other words, the appearance of spots and the reversal of polarities take 
place with the emergence of new flux through the photosphere.  The integrated flux 
functions f(p), which is the integrand appearing in Equation (17), for 91 = 0 and 
9o = 0, ~r/4, -(~r/2) ,  -Tr are shown in Figure 3b. In Figure 7, we plot selected 
field lines in different projections for the case 9i  = 0, 90 = - T r  representing an 
advanced stage of spot growth and rotational motion. We find the polarity reversal 
is associated with developments of sheared low lying loops located where the 
photospheric transverse field aligns along the neutral line. In the perspective of the 
polar coordinates in Figure 1, it is in these localized regions where field lines emerge 
through the photosphere in the form of highly sheared loops. 



56 B . c .  LOW 

L 
,o~176 Y 

Fig. 7. T h e  fo rce - f ree  field with q~l = 0 and  r = - i t .  
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4. Discussion 

In this paper, we have provided a theoretical relationship between different magnetic 
field features that have been identified separately by observation to indicate likely 
flare sites. In terms of sequences of exact force-free fields, we show by direct 
illustration how the global topology of the polarity reversal of a pair of spots implies 
local geometries of highly sheared, low lying loops in the vicinity where the 
photospheric transverse field aligns with the neutral line (Zirin, 1970a, b; Prata, 
1972; Zirin and Tanaka, 1973; Vorpahl, 1976; Kahler et al., 1975; Petrasso et al., 
1975; Vorpahl et al., 1975; Zirin and Lazareff, 1975; Rust, 1976; Low, 1977a; 
Tanaka, 1976; Smith et al., 1981). The formation of these sites is accompanied by 
the creation of magnetic free energy. The model also shows that as the field evolves, 
flux may emerge or disappear through the photosphere at these highly stressed 
locations. The association between flux emergence and flare eruption has been well 
documented (Rust, 1968; Vorpahl, 1973; Zirin and Tanaka, 1973; Rust et al., 
1975) and is the basis of some flare theories (Canfield et al., 1974; Heyvaerts et 

al., 1977). We suggest that flux may occasionally disappear below the photosphere 
at the neutral line, also leading to flare eruptions. What is important is whether 
the evolution, driven either by flux emergence or disappearance, brings about the 
availability of free energy to be released. As is well known, flares occur during 
both the build up and the decay phases of an active region. Rust (1976) draws the 
conclusion from various observations that except for the very large proton flares, 
the rate of change of flux involved in a flare do not differ from the normal growth 
or decay rates associated with sunspot fields (Rust, 1968, 1972, 1973; Livingston, 
1974; Ribes, 1969). 

We suggest the geometry of low-lying loops at a potential flare site is conducive 
to the formation of a dark filament. The destabilization of the filament, if it exists, 
may be an obvious agent initiating the flare, an idea made familiar by many 
observations of flares involving large and conspicuous filaments (Martin and Ram- 
sey, 1972; Martin, 1973; Zirin and Tanaka, 1973; Roy and Tang, 1975; Rust et 
al., 1975; Tanaka, 1976, etc). In this connection, the unpublished observations of 
Zirin and Moore is significant in that almost every flare is associated with a dark 
filament, often very small and not easy to detect. 

In practice, we can only calculate for the potential field based on the longitudinal 
magnetograms. Even with better spatially resolved transverse magnetograms, the 
force-free field cannot be extrapolated. Without being able to compare the calcu- 
lated potential field with the force-free field, no meaningful conclusion can be 
drawn on the amount of energy which is free for a flare release. The following 
converse situation emphasizes the point. The sequence of force-free fields shown 
in Figure 2 all have the same  magnetic energy at each point in space. Without a 
comparison with the associated potential field, there is no way to know what fraction 
of the magnetic energy is free for each of the force-free field. This limitation of 
not being able to compare magnetic energies has contributed largely to the lack 
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of clear observational result on the relationship between magnetic energy and the 
flare. We will take up this matter in the next paper of this series where we will 
calculate the associated potential fields numerically and compare both potential 
and force-free fields in terms of their energy and field morphologies (Low and 
Chalmers, 1981). For the present, we wish to emphasize the practical importance 
of the formula in the Appendix for the total free energy, first derived by Molodensky 
(1974) for the purpose of theoretical stability analysis. It does not appear that the 
extrapolation of nonlinear force-free fields from magnetograms will be practical in 
the near future although work is in progress towards a numerical treatment (Sakurai, 
1981a). The formula in the appendix allows us to calculate the free energy in terms 
of the photospheric vector field without the need to solve for the nonlinear force-free 
field everywhere. The free energy is a quantity of great physical significance in flare 
study. The prospect of being able to extract it directly from observational data 
should provide new incentives for improving the present technology of vector 
magnetograph as well as the theory of interpreting the magnetograph raw data. 

Finally, the analytic force-free fields we analyzed are a special subset of the bigger 
class of fields generated by Equation (6). It will be interesting to go on to consider 
the models of this bigger class. A numerical study will probably be necessary. 
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Appendix 

Consider the vector identity (Chandrasekhar, 1961) 

r" [(V • B) • B] = �89 2 + V" [(B" r)B -�89 (I.1) 

Integrate over a volume V, making use of Gauss theorem to obtain 

I r.[(VxB)xB]dV= I �89 dV+ f [(B.r)B-�89 (I.2) 

s 

where S is the boundary surface of V. For a force-free field, the term on the left 
side vanishes giving 

I8@BZdV=�88 (B'r)B] . dS (I.3) 2 - -  

t~ s 
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Thus, the total magnetic energy of a force-free field is given by the field values at 

the boundary. This relationship was first derived by Molodensky (1974) in a 

theoretical discussion on stability. For application to the Sun, let z = 0 be the 
photosphere and consider a force-free field B r /whose  c~ vanishes in the far region 

(X2q_ y 2 +  Z2)1/2..+ 00. The field therefore deviates from the potential state only in 

a finite region centered around x = y = z = 0, such as those force-free fields treated 

in this paper.  Now construct the potential field B p having the same normal flux 
distribution at z = 0 as that of B fr and having the same asymptotic values as Ber in 

the far region (x 2+ y g +  Z 2)1/2..~ (30. A unique solution exists and this potential field 

is the state of the absolutely lowest magnetic energy. The idea of the free magnetic 

energy derives from the consideration that when all the electric currents in the 

a tmosphere  z > 0 are dissipated in a flare, what is left in z > 0 would be the potential 

field B p due to electric currents below z = 0, which is assumed to be unchanged in 
the process. The free magnetic energy is thus 

1 f (Bfr .Bf i Bp alE=-~-~Tr - "BO) d V  

z > O  

Since B ff and B p are both force-free, a direct application of (I.3) gives 

(I.4) 

i 
AE = ~ J dx dy [x(B,ff-Bx)+y(ByP ff -By)]Bz,P ff (I.5) 

z=O 

the other surface integrals having dropped out since B ff and B p are equal on those 

surfaces. In practice, the three components  of B ff at z = 0 are to be provided by a 

vector magnetograph.  Based on the Brzf(X, y, 0) given, the potential field B p is 
constructed by, say, the Schmidt program (Schmidt, 1964). From the potential  

solution, we obtain the x and y components  of B p at z = 0. We then have sufficient 
information to evaluate the free energy alE. 

The formula (I.3) can be extended from the virial theorem to the case of a field 

which is not force-free but in static equilibrium with plasma pressure and gravity 

(Low, 1980b). 
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