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Abstract. Various manners of determination of a magnetic field are reviewed briefly from the stand- 
point of practicality and uniqueness. Then a practical representation of magnetic fields in terms of a 
class of force-free magnetic field is described. The proposed scheme is based on the physical con- 
sideration that in the chromosphere and lower corona a quasistatic magnetic field must be nearly 
force-free and that for the class of force-free magnetic field, i.e., V • B=c~B with c~=constant, 
the magnetic field can be determined uniquely from the observed dis tribution of the vertical component 
of a magnetic field. The applicability ,of the representation is demonstrated by examples and the 
limitations are discussed. 

1. Introduction 

The importance of the magnetic field configuration has been illustrated in a number of  

astrophysical problems, such as pulsars (Goldreich and Julian, 1969; Ostriker and 
Gunn, 1969), magnetic stars (e.g. Mestel, 1967), stellar winds (Mestel, 1968a, b; 
Mestel and Selley, 1970) and many others. In solar physics, many examples of  the 

magnetic field configurations have been proposed in connection to specific models 
of sunspots (Schltiter and Temesvary, 1958; Chitre, 1963; Deinzer, 1965; Yun, 1971 ; 

Simon and Weiss, 1970), the solar wind (Weber and Davis, 1967), prominences 
(Kippenhahn and Schliiter, 1957; Rust and Roy, 1971), coronal structures (Altschuler 
and Newkirk, 1969; Pneuman and Kopp, 1971), as well as chromospheric structures 
(Schatzman, 1961 ; Nakagawa et al., 1971, hereafter referred to as Paper I;  Raadu and 
Nakagawa, 1971, referred to as Paper II). The manner of  determination of the magnetic 
field in these studies can be classified into the following three categories: (1) the poten- 

tial (current-free) magnetic field, (2) the force-free magnetic field, and (3) the magneto- 
static equilibrium field. 

We may review briefly these various manners of determination in terms of the 
practical applicability and unique representation of a magnetic field on the basis of  
observation. A magnetic field B is characterized by the solenoidal condition, V. B = 0, 
which leads to the general representation by a vector potential A, i.e. B = V x A. I t  is 
known that a unique representation then requires the choice of  a 'gauge' for A, for 
example the Coulomb gauge, V - A =  0. The magnetic field at a point r is given by 

( r ) = f V ' •  J(r ' ) ]  k/r - r ' l ]  d r ' ,  (1) 

which follows by solving A through the equation for the current density J,  i.e., 
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V2A= 4rc,l. In Equation (1), the differentiation and integral refer to the coordinate of 
the volume current at r'. Equation (1) illustrates the basic difficulty of the determina- 
tion of a magnetic field in a medium carr3ing an electric current, namely, that a 
magnetic field cannot be determined unless the electric current distribution is known. 

The potential field representation avoids this difficulty by placing, in essence, the 
electric current on the boundary surfaces. Then the determination of the magnetic 
field is replaced by a mathematically straightforward boundary value problem for 
the potential (Schmidt, 1964; Rust and Roy, 1971; Altschuler and Newkirk, 1969). 
On the other hand in the determination of a magnetic field through the magneto- 
static equilibrium, the distribution of the electric current is deduced from the require- 
ment of equilibrium (Schl~iter and Temesvary, 1958; Chitre, 1963; Deinzer, 1965; 
Yun, 1970, 1971 ; Simon and Weiss, 1970; Pneuman and Kopp, 1971). This manner of 
determination is realistic, but requires an elaborate numerical solution for each 
specific set of the physical parameters, such as the distribution of pressure, density, 
temperature, opacity, as well as velocity. Consequently, this method has been con- 
fined mostly to the construction of theoretical models rather than solving the practical 
boundary value problem. In this view, the force-free magnetic field approach is an 
intermediate approximation, as the electric current is given by the magnetic field 
through the force-free condition (3 IIB), i.e., 

V • B = ~B, (2) 

where ~ is in general a scalar function of coordinates. It is evident in Equation (2) 
that c~=0 corresponds to the potential and that ~ is a constant along a magnetic line 
of force; the latter follows from the solenoidal condition by taking the divergence of 
the equation. For a general spatial function of ~, however, Equation (2) leads to a 
mathematical problem more complex than the magnetostatic case. 

The boundary value problem is discussed by Grad and Rubin (1958). There are 
intrinsic difficulties in specifying the boundary condition from observations. Natural 
boundary conditions would fix the end points of field lines and would depend on 
the past history of photospheric motions (Schmidt, 1966, 1968). If the current on the 
boundary is used this can only be prescribed over the region of positive flux or over 
the region of negative flux (Schmidt, 1968), as the value of ~ must be the same at 
both ends of a field line. Hence the possible application to the practical boundary 
value problem is confined to the case of ~ = constant. 

In the solar atmosphere an examination of the force balance readily revelas the 
dominance of the magnetic field in the chromosphere and lower corona (Sturrock 
and Woodbury, 1967). A negligible departure from a force-free structure is sufficient 
to balance all non-magnetic forces. Thus for a quasistatic magnetic field in these 
layers it is plausible to assume the prevalence of a force-free magnetic field. Further 
it has been shown in Papers I and II, that reasonable topological similiarities can be 
obtained between the Ha observed features and the force-free magnetic field for an 
appropriate constant value of ~. 

Therefore, in this paper, we describe a generalized and practical representation of 



ON PRACTICAL REPRESENTATION OF MAGNETIC FIELD 129 

a constant e force-free magnetic field suitable to solve the boundary value problem. 
Although limited by the assumption of constant e, the present formulation can 
provide practical means of comparison of the features observed in He filtergrams and 
the configuration of a magnetic field, including the possible estimate of the energy 
content of the magnetic field. The applicability of the present formulation is demon- 
strated through the examples of the topological comparison of the He features and 
the local configuration of the magnetic field similar to those considered in Papers I 
and II. The limitations and possible improvements of the representation are also 
discussed. 

2. Theoretical Formulations 

It is known that a magnetic field can be specified by two scalar functions, as the require- 
ment of the choice of a gauge for a vector potential and the solenoidal condition 
imply (Liist and Schltiter, 1954; Chandrasekhar, 1961). We shall, therefore, represent 
a magnetic field in terms of two arbitrary scalar functions and write for a system of 
Cartesian coordinates, 

B = V x  V x ( P I ~ ) + V x ( T I ~ ) =  

= 0) 

where P and T are the two arbitrary scalar functions, and 1 x, ly and 1~ are the unit 
vectors in the three principal directions. 

For a given magnetic field B, the functions P and T are not unique. Suppose that 
(P+  ~b) and (T+  0) also give the same magnetic field B. Then from Equation (3) 

V x V x (~bl~) + V x (01~)-- 0. (4) 

The vertical component of this equation is, 

V ~  = 0, (5) 

where the subscript H indicates that only derivatives with respect to x and y are taken. 
The solution to this equation is in general 

(o = ~e  ( f  (x + iy, z)) (6) 

where f i s  an analytic function of the variable (x+iy). The horizontal component of 
Equation (4) is 

VHO x 1~ + v ~  ~zz = 0 .  (7)  

Now &b/~z is also an analytic function of (x + iv) and by Equation (7) 0 is an orthogonal 
function in the xy plane. Hence, 

0 0 
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Thus the choice of P and T for a given magnetic field B is arbitrary to within the 
choice of a function f ( x  + iy, z) analytic in (x + iy). In particular we notice that the 
choice of z dependence for f i s  quite arbitrary. Also from condition (7) it follows that 

V~0 = 0. (9) 

Both 0 and ~b are harmonic functions of x and y. 
From Equation (3) the curl of the magnetic field B is given by 

V •  (V• T l ~ ) + V x  (-V2pI~) (10) 

We now consider the special case of the force-free condition (2) for which a is a 
constant. In this case Equation (2) may be written in terms of poloidal and toroidal 
components, 

v • v • { ( T  - + V • { ( a T  - V2P)  ix} = 0 .  (11)  

By comparison with Equation (4) we see that the general solution to Equation (11) is, 

T - = r ( 1 2 )  

and 
c~T - V2p = 0, (13) 

where qS, 0 are as defined by Equations (6) and (8). For the particular choice of the 
arbitrary function, f =  0, the equations reduce to 

T = c~P. (14) 

V2p = -- 0~2p. (15) 

The choice of a constant ~ force-flee field leads to particularly simple equations for 
P and T. In general for variable c~, the force-free Equation (2) cannot be immediately 
written in poloidal and toroidal components and the analysis does not proceed in 
the simple way outlined above. The force-free Equation (1 t) breaks up into a poloidal 
and toroidal part which are each separately equal to zero, only for the particular 
choice of a solution given by Equations (14) and (15). 

In seeking the solution P, we note that the observation can provide the boundary 
condition in terms of the horizontal distribution of the line of sight component, say, 
the vertical component B~ (x, y), of the magnetic field at the level of the atmosphere, 
say z=0. This suggests readily the separation of the horizontal and the vertical 
variables in the solution P. Further by demanding the solution to be bounded for 
z~oo, we find the general solution of Equation (15) can be written in the form 

1 eik.x_(k2_a2)t/2z e = ~- Bk (16) 

k~-O 

k =kx+kx ,  x----xl~+ylr, and k # 0  excludes kx=ky=0. In where k=kx+l~+kyl~, 2 2 2 
Equation (16) Ba's are the Fourier coefficients of the observed B~(x, y, z=0), i.e., 

B,~(x, y, z = O) = Boo + Z Bk e'k'*, (17) 
k r  
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where Boo denotes the value of B~ (z=0) averaged over the domain of the Fourier 
expansion. It should be noted that in the present formulation the solenoidal condition 
V . B = 0  is strictly satisfied, thus the domain of analysis must be chosen so that 
Boo should be zero or negligible in comparison with other coefficients. With the 
solution P given in Equation (1 6), the components of the magnetic field become from 
Equation (3), 

Bx = k~ [06k r _ kx @2 _ 062)1/2] Bke,k.,-(k2-~}*/~, (18) 

k r  

B, -- ~ [06k~ + k , (k  2 - 062) 1/2] Bke &'x-(kL~2)'/2z , (19) 

kr 
B~ = ~ Bke ik'*-(~=-~)'/~. (20) 

kr  

For the topological comparison, we must evaluate the configuration of the mag- 
netic lines of force. This is achieved by evaluating the successive spatial coordinates 
x i (i= x, y, z) of a magnetic line of force in terms of the arc length s. Then, for a 
specific line of force, the successive coordinates x~ can be given by 

dx i 1 d2xi 
X i (S "~- AS) : X i (S) q- -~S z~S ~- ~.. ~S ~ (ZIS) 2 J r - ' " .  ( 2 1 )  

The direction cosines dxjds  are 

dxi g,(s) 
- (22) 

ds B ( s ) '  

where B(s )=[~ , iB  [ (s)] 1/2. Equation (22) follows by eliminating a function f ( s )  
between the equation of the magnetic line of force, 

dx dy dz 
- f ( s ) ,  

- B ,  6 )  - 

i.e., 
dxl = f (s) B i (s), (23) 

and the defining equation 

ds2 = 2 dx2. (24) 
i 

3. Physical and Topological Characteristics of  Solution 

It follows from Equation (2) that the parameter 06 is related to the magnitude as 
well as the direction of the electric current density. Topologically, a large value of 
c~ induces a strong twist of a magnetic field line, with the direction of twist depending 
on the sign 06. Some additional physical as well as topological characteristics of 
the solution follow from Equation (18)-(20). First the vertical dependence of 
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exp [ - ( k  2 -  c~2)1/2z] imposes a condition on the maximum value of ~(e~,x) in terms of 
the minimum value of k (kml ~), Namely, for a physically realizable solution we must 
have ~ .... < k,,j~. The topological consequence of this requirement is that for a given 
domain (k~i~) , the small scale (i.e. large k) magnetic features would appear like 
those of the potential field (e = 0), as C~m~ x can be neglected in comparison with large 
k>>kmi~. In other words, in the present representation only features of large scale 
lengths could appear to be affected strongly by the variation of the value of parameter 
e, and those affected features are associated with the magnetic lines of force reaching 
the height comparable to the horizontal scale. These topological characteristics 
seem to be in agreement with observations. Foukal (1971), showed that newly emerged 
small scale features always resemble the potential field configuration, while Saito 
and Billings (1964) showed the presence of a complex twist for a long-lived large 

scale coronal magnetic field. 
To be more specific, let us consider the topology of the solution given by a single 

term in the Fourier series, say a representative horizontal wave number k o. Then the 
vertical dependence fl = (k~ -  c~2) 1/2 becomes a constant, and we can rewrite Equation 
(3) in the form 

= .  ( v , e )  • l= (v e) - k el , (2S) 

8 

b 

C 

d 

Fig. 1. The topological comparison of Ha observation (Big Bear Solar Observatory, 9 September 
1970) and the lines of force of force-free magnetic fields for various twist angles y; a, :~=75 ~ 

b, y = 60 ~ c, 7 -= 45~ and d, ), = 30 ~ 
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where 
•P OP 

VnP = ~xx 1:, + -;y ly, (26) 
oy 

VHP is a vector perpendicular to the contour of B~ (i.e. P=const)  and (VHP)x 1~ is a 
vector tangential to the contour. Thus the twist angle 7 by which a magnetic line of 
force intersects the contour of B~ is given by 

P 
t a n T = - ,  i.e., c~=k ocos? .  (27) 

Note c~ = 0 corresponds y = re/2, and the twist angle is independent of z. The latter 
topological character is similar to those given by the simplest solutions in Papers I 
and II. 

In Figures 1 and 2, the magnetic field configurations given by such a single term 
solution are shown with He observations (courtesy of the Big Bear Solar Observatory) 
for topological comparison. The example considered in Figure 1 for a unipolar sunspot 
is given by P = c o s  x cos y (-n/2~< x <~7r/2; -~z/2<~y<~/2) with n / 2 - 7 =  15 ~ 30 ~ 
45 ~ 60 ~ and this illustration is comparable to Figure 1 of Paper 1. The example 
considered in Figure 2 is given by P = sin 2 x cos y ( -  re/2 ~< x < re/2; - 7z/2 ~< y(rc/2)) and 

a C 

d 

Fig. 2. The  topological  compar i son  of  H a  observat ion  (Big Bear Solar Observatory,  27 May  1970) 
and  the  lines of  force o f  force-free magnet ic  field for var ious  twist angle 7; a, y = 75 ~ b, y = 60 ~ 

c, y = 45 ~ and  d, y = 30 ~ 
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this example is comparable to Figure 6 of Paper II for a pair of bipolar sunspots of 
equal strength. Again n/2 - 7 = 15 ~ 30 ~ 45 ~ and 60 ~ are considered. In both figures, 
we find that a number of magnetic lines of force can be superposed exactly on the 
observed He features. These examples thus demonstrate clearly the applicability of 
the present representation. 

4. Discussions and Remarks 

In the practical application of the present formulation, perhaps the physically most 
significant quantity is the magnetic energy content M within the volume of analysis 
which is given by 

M = f [B[2 dr = A ~ BkB~---- (28) 
8re 6 4 ~  ( k  2 - e 2 )  1 / 2 '  

v k~O 

where A denotes the surface area of analysis and B* the complex conjugate of Bk. 
Since c~=0 for a potential field, it is clear from Equation (28) that the magnetic 
energy content increases with the value of e. Hence examining the variation of e, 
it is possible to learn the growth or decay of the magnetic field. In Paper I, it was 
shown that a slight change of ~ can provide the magnetic energy sufficient for a 
solar flare. Also in Paper II it was shown that the loop prominences formed after 
flares with small value of e. It should be noted that in Equation (28), the quantity 
1/(k2-ct2) 1/2 denotes the characteristic scale height for a specific wave number k. 
In other words, the increase of the magnetic energy content with increasing values 
of e is, in essence, due to the increase of the effective volume of integral for each 
specific wave number k. This last point may be significant as a larger volume is usually 

associated with a larger flare. 
The limitation of the present formulation can be examined in terms of the constancy 

of e over a domain as well as the presence of a non force-free field. Both of these 
can be checked through the following equality, 

3B~ 3By ctB~ 0B~ 3By 8B~ 

Oy ~z Oz ~x ~x ~y 
. . . .  ~, (29) 

B. By B~ 

which follows from Equation (2). Equation (29) indicates that the possible test of 
the presence of a non force-free magnetic field requires the measurements of all 
components of the magnetic field at two different levels in the solar atmosphere. 
The test of constant c~ can be achieved, from the last equality of Equation (29) if a 
vector magnetograph observation is available at a certain level of the atmosphere. 
However, for a non-constant ct, there is no general formulation, thus in such a case, 
the value of e for the domain should be chosen by averaging. 

Finally it must be stated that in the topological comparison of the magnetic field 
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and  the H e  observat ion,  the observed Hc~ features must  be in terpre ted  with careful 

considera t ions  o f  the radia t ive  transfer  which produces  the observed contrast .  

Nevertheless,  as discussed in the In t roduc t ion ,  the dominance  o f  the magnet ic  field 

in the solar  a tmosphere  s t rongly  suggests the presence of  a force-free magnet ic  

field in the ch romosphere  and  lower corona.  Thus the present  fo rmula t ion  could  be 

used for  a quant i ta t ive  analysis  of  the magne tog raph  and H e  observat ions,  including 

the potent ia l  magnet ic  field. 
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