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Abstract. The hydrodynamic equations which describe the radial solar wind expansion are linearized 
and specialized to treat corotating perturbations. Approximate solutions are found which are time 
stationary in the corotating reference frame. The solutions predict the behavior of corotating structures 
for a given boundary condition close to the sun. In particular, the structure resulting from the inter- 
action of fast and slow streams is described. Comparison with sector structure data shows reasonable 
qualitative and quantitative agreement. 

I. Introduction 

This paper presents the initial results of a theoretical study of the role solar rotation 
plays in determining solar wind structure. The approach is to perturb the spherically 
symmetric hydrodynamic solution of the solar wind problem on a boundary fairly 
close to the sun. Corotating perturbations are used to represent the effects of stationary 
features on the solar surface such as hot regions and cool regions. Solutions of the 
perturbation equations are sought which are time stationary in the corotating frame 
of reference. Thus, the results describe time stationary corotating features in the solar 
wind produced by inhomogeneities in the solar atmosphere. 

For the purpose of exposing the method and gaining insight into the relevant 
physical processes, we limit the discussion to approximate solutions. This restricts 
the validity to the region of space between approximately 0.1 AU and 1 AU and to 
large scale features, namely, large enough to require at least 2.5 days to rotate passed 
a fixed point. The present solutions applied to the corotating sector structure observed 
by IMP-1 gives reasonable agreement between observed and predicted behavior. Sub- 
sequent articles will discuss numerical solutions of wider validity and the effects of 
a magnetic field. 

The solution treated in greatest detail describes the interaction between corotating 
fast and slow streams. This case is represented by the following inner boundary con- 
dition: zero density perturbation, zero azimuthal velocity perturbation, but non-zero 
radial velocity perturbation. The solutions describe the radial growth of the density 
and azimuthal velocity perturbations and the radial change in the radial velocity 
perturbation. Thus, we can predict the resulting structure in these parameters at the 
orbit of earth. The predictions agree with qualitative ideas previously expressed in 
the literature. The compression and rarefaction produced by corotating irregularities 
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have been described qualitatively by Parker (1965). The piling up of the density on 
the leading edge of a fast stream was suggested by Neugebauer and Snyder (1967) to 
explain observed features in the Mariner 2 plasma data. The decrease in density at 
the trailing edge of a fast stream was postulated by Sarabhai (1963). The azimuthal 
deflections resulting from a fast stream pushing against a slow stream along a spiral 
interface was suggested by Dessler (1967). The present solutions allow quantitative 
estimates of these effects. 

2. Mathemat ica l  Treatment  and Results  

We will use a heliocentric spherical polar coordinate system with the polar axis along 
the sun's axis of rotation. At the north pole 0 = 0, and the angle qo increases in the 
direction the sun rotates. 

LINEARIZED EQUATIONS 

The equations determining the flow are Euler's equation and the continuity equation: 

~V Vp 
0-; + ( v .  v )  v + - -  = - (1) 

~e 
- -  + V ' ( 0 V )  = 0 (2) 
8t 

where V is the velocity, p the thermal pressure, 0 the density, and ~b the gravitational 
potential. We assume the pressure and density are related by a polytropic law: 

p = ~ (3) 

where the proportionality constant ~ and the polytropic index Y will be held constant 
throughout the calculation. 

Each variable is split into a zero order part and a perturbation. The zero order term 
is the solution of the time independent, spherically symmetric problem familiar from 
the work of Parker (see, for example, Parker, 1963) 

Vp0 
(Vo'V) V o + - -  = - W (4) 

~Oo 

V-(~0Vo) = 0 (5) 

Po = ~e~. (6) 

By the assumption of spherical symmetry V 0 = Vo (r) ?, where f is a unit vector in the 
radial direction. 

We confine the treatment of the perturbations to the equatorial plane (0 = n/2), and 
we assume the perturbations to be north-south symmetric so that t3/~0 = 0 at 0 = n/2. 
We also ignore the divergence in the 0-direction for this first analysis. This can be 
taken either as an approximation or as a special latitudinal boundary condition. The 
linearized equations for the perturbations in the equatorial plane can then be written 
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in the form 

~r + ~o ~ (VoVlr) + ~r cs ~ ~ = 0  (7) 

1 ~ c~ = o (8) 
+ Voo ~ (~v.)  + Voo a~ \0o1 

~ + - - - -  + - -  + - - - - = 0  (9) 
o r k Vo ] r Vo &p 

where V~ and V~ are the r and ~o components of the perturbation velocity (V~o=O 
2 y - 1  by the assumption of north-south symmetry), and cs --~0o is the zero order sound 

speed. Equations (7) and (8) derive from the r and ~o components respectively of 
Euler's equation, and Eq. (9) derives from the continuity equation. 

CO-ROTATING PERTURBATIONS 

As explained earlier, we are interested in perturbations that co-rotate with the sun. 
Thus, in the frame of reference rotating with the sun (more precisely, rotating with 
the solar equator) the perturbations depend only on the spatial variables and not on 
time. Therefore, in an inertial frame of reference, the variables q~ and t are not in- 
dependent but must always occur in the form q~- ~2t, where ~2 is the angular velocity 
of the sun. Let 

t /=  9 - (2t. (10) 

Then in the equatorial plane, the perturbation variables are functions of r and q 
only. Eqs. (7), (8), and (9) now become 

Q ~ (VoV.)+ ~ = o  
Vo 

Vo ~ (rv.) + Voo a~ \~o/= o 
, 

(11) 

(12) 

(13) 

T W O  I N T E G R A L S  OF M O T I O N  

The three equations can be manipulated to yield two integrals of the motion analogous 
to the vorticity integral and the Bernoulli integral. For this purpose, notice that any 
function of the variable r defined by 

= ~ + ~ (14) 

is annihilated by the operator O/Or-(~2/Vo) O/~rl, which occurs in all three equations. 
That is, 

~-r V o F(r = 0, (15) 
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where Fis  an arbitrary function. Operating on Eq. (11) with 3/@ and on Eq. (12) with 
(aft?r) Vo, subtracting and using Eq. (15), we find 

OV~r OrVI~ _ G(~) (16) 
eq ~r Vo 

where G is an arbitrary function. Let co = (V x g)0 be the vorticity (note that V x V 
has only a 0-component in the equatorial plane). Then the left hand side of equation 
(16) is just rco. Eq. (16) states that rooVo is a constant on lines of constant {, which 
are co-rotating spirals as can be seen from equation (14). In the case Vo=constant, 
the spirals are the familiar Archimedes spirals. 

The second integral of motion is found by subtracting f2 times Eq. (12) from Eq. 
(11) and using Eq. (15): 

2 0 l  VoVlr -- O r V l ~  + Cs - -  = F ( ~ ) .  ( 1 7 )  
6o 

Here F is an arbitrary function. 

APPROXIMATE SOLUTIONS 

The general zero order solutions are algebraically complicated so that exact general 
solutions of the perturbation equations are difficult to find. However, the exact zero 
order solutions are well approximated by simple functions with which the perturba- 
tion equations can be solved. In effect, each zero order function can be split into a 
simple function plus a small correction term. Since the zero order terms multiply 
first order terms in the perturbation equations, the correction terms can be dropped 
without significant loss of accuracy. 

Approximate zero order solutions that apply to the region of space roughly between 
0.1 AU and l AU are 

Vo = constant (18) 
a 2 

~o = ~~ 7 (19) 

where 0a is the density at r = a. We set r = a at the inner boundary of the region where 
the approximation used here is valid. We assume a = 0.1 AU to be reasonable for the 
inner boundary. A second approximation taken to be valid in the range 0.1 AU < r < 

< l A U i s  2 (20) c s = constant. 

Eq. (20) holds exactly for the case 7 = 1 which corresponds to an isothermal ex- 
tended solar atmosphere. There is experimental evidence that in the region under 
discussion y might lie in the range 1.2 to 1.4 all of the time for the electron component 
and part of the time for the proton component (Strong et al., 1966; Montgomery et 
al., 1968). The isothermal approximation y =  1, therefore, seems reasonable in this 
single fluid treatment of the problem. For  comparison, the case ? = } is treated in 
Appendix A. 

With these approximations the perturbation equations are much simpler. To aid 
solving them, we introduce the dimensionless variables s, x(s), y(s), and z(s) defined 
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by 

where now 

with 

s = r/a (21) 

VI~ = x (s) e ikr (22) 
Vo 

s ~-o = y (s) e ik~ (23) 

~o~ = z (s) e ikr (24) 
0o 

= es + q (25) 

af2 
e - (26) 

Vo 

In these definitions, k is an integer in order that the q dependence of the perturba- 
tions be single valued. Since the equations are linear, the general solution is obtained 
by superposing solutions with different k. The variables x, y, and z give the relative 
amplitudes and phases as a function of radial distance of the perturbations Vat, V~,, 
and 02 on lines of constant 4, which in the present approximation are rotating Archi- 
medes spirals. 

Introducing the above definitions into the three independent Eqs. (12), (13), and 
(17) yidds, respectively 

ik  
Y' + M-9 z = 0 (27) 

ik  
x '  + ikex  + $2 Y + Z' = 0 (28) 

Z 
x - ey + ~ = f (29) 

where 

Vo 
Ms = - - .  (30) 

Cs 

The cons tant f i s  defined by 

F ( ~ )  = v Z f  e ik~ (31) 

and primes denote differentiation with respect to s. The three equations can be 
manipulated to give a single equation for y: 

k lL ) (M 2 - 1 )  y ' - 2 i k e y ' +  \ s  2 + e  2 y = - k 2 e f .  (32) 

The general solution of this equation is among the 'higher' functions and little is 
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learned by writing it down. Physical insight is gained from an approximate solution 
valid for the case of primary interest here. To arrive at the approximation, it is useful 
to note typical values of the terms entering the equation. Experimentally one finds 
M ) in the range 10 to 10 z, e is about 10 -1 for Vo=400 km/sec, and s varies from 1 
to 10. For these values, if we restrict our attention to the case k ~< M~ and the boundary 
condition 

y(1) = z( l )  -- 0, x(1) r 0 (33) 

a simple approximate solution to Eq. (32) can be obtained. 
The condition on k restricts the validity of the result to large scale features. For 

example, the case k = 4 corresponds to 4 velocity maxima and 4 minima in one solar 
rotation, and it, therefore, represents roughly the quadrupole sector structure ob- 
served during the last solar minimum (Wilcox and Ness, 1965). The result to be given 
here should be valid for k <  10. (The solutions valid for larger values of k grow very 
rapidly with s and the linear approximation is probably no good at s=  10(1 AU).) 

The boundary condition (33) corresponds to zero perturbation in the density and 
the azimuthal velocity at the inner boundary but a non-zero perturbation in the radial 
velocity. The solution will describe the growth of the density and azimuthal velocity 
perturbations which results when different velocity streams are caused to interact by 
the rotation of the sun. For completeness, approximate solutions valid for other 
boundary conditions are derived in Appendix B. The boundary condition (33) to- 
gether with Eqs. (27) and (29) implies 

y' (1) = 0 (34) 

x'(1) = f .  (35) 

It can now be seen that for the present case Eq. (32) is well approximated simply by 

M 2 y  " =  - k 2 8 f  . (36) 

Although the coefficient of y in Eq. (32) is possibly as large as that of y" for s=  1, 
both y and y'  are zero there; hence, y remains small until s is fairly large and then 
the y coefficient is small. The solution of Eq. (36) consistent with the boundary 
conditions is 

k2~ 
y = 2M2 ( s -  1)2x(1). (37) 

From Eqs. (27) and (29) we then find 

z = -  i k e ( s -  1)x(1) (38) 

x =  1 + ~ 2  2 M ~ ( S - 1 )  2 x(1). (39) 

To get a feeling for the error present in this solution, let Ms= 10 and k=4.  For 
these values, the maximum ratio of the terms dropped in Eq. (32) to those kept is 
less than 0.1. The error increases for smaller Ms and for larger k. 
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3. Interpretation of Results 

The solutions reveal that both Q1 and V1, grow from zero essentially linearly with 
distance away from the inner boundary (recall Vl,~:y/s). In a sense these quantities 
are unstable with respect to perturbations in the radial velocity. The 'instability' is 

driven by the rotation of the sun; however, it does not remove energy from the solar 
rotation. The energy is merely redistributed, which reduces the perturbation in the 
radial velocity as can be seen from Eq. (39). 

Consider the relative amplitudes and phases at s = 10. I f  we ignore the imaginary 
part  of  x which is smaller compared to the other terms in the range of interest, we 
find 

I 0.4k2/M2 
=, Vl~o (40) , _ _ [  

Iv1,1,=1o 1 - o.4k2m  

01 Vo 0-9k 

]~0~0 Vlr  s = 1 0  - -  1 - -  0"4k2/M~ 2" (41) 

These relative amplitude ratios are plotted in Figure t as a function of k for the case 
Ms = 10. For k > 1, the relative density perturbation exceeds that in the radial velocity; 

f6 F 

14[- E = . I ,  Ms=lO , S=IO I 

IO 

Fig. 1. 

n t / ~  I I I I 
~ 0 ~  4 6 8 I0 

k 

Relative size of pertm'bations •z and VI~ compared to V~r as a function ofk for 
3//, = 10, e =0.1, and s = 10. 
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however, VI~< 111, for all k. The relative size of qt and Vlo compared with V~, in- 
creases rapidly with k. If the mechanism under discussion produces a significant part  
of  the observed variations in Q and Ve, the k dependence should be revealed in power 
spectra of these quantities. The power density of the radial velocity, V,, should fall 
off more rapidly with frequency than that of the density, if, which in turn should fall 
off more rapidly than that of the azimuthal velocity, Vo. This result is derived here 

2 5 _ _  for the low frequency range, k <  10, or for periods greater than T-a-2.5 days, and it 
might not apply to shorter period variations. 

A physical interpretation of the result becomes clear when we look at the relative 
phases. Again ignoring the small imaginary part of x, if we choose the phase of x (1) 
to be zero, we find for all s, phase(x)=0,  phase(y)=~ ,  and phase(z)= - n / 2 .  With 
these we may consider the implied time sequence of measurements made at a fixed 
r and ~o. This may be found from 

Vlr = Vo Ixl e ik(~s+e) e -ik~t 

VI~ = V o [Y--['e ik(~s+~) e-i(kat-~) 
s 

•1 = ~o Izl eik(~s+~~ e-i(ket+'*/2)" 

(42) 

(43) 

(44) 

Thus, Vr and Vo are anticorrelated and Q leads V~ by n/2kt2.  The amplitude and phase 
relations for the case k = 4 are shown in Figure 2 as a function of time for one period 
of the perturbation. The density reaches a maximum on the rising slope of Vr and a 
minimum on the downward slope which can be understood from the 'snowplow' 

/ \ V~, 
' v , ,  

r 

Fig. 2. Relative phases and amplitudes of the three perturbations for the ease 
k =4, e =0.1, M~ = 10 and s = 10. 
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model of stream interactions. The solar rotation is responsible for the spiral config- 
uration of streams which causes fast streams to push against preceding slow ones. 
The pushing compresses the intervening gas causing a high density there. Similarly, 
the fast streams pull away from succeeding slow streams causing rarefaction of the 
intervening gas and a low density there. 

The behavior of VI~ can also be understood in terms of this model. The figure 
shows that VIe is maximum negative for V1, maximum positive and vice versa. Thus, 
in the conventional astronomical sense of east and west (see Figure 3), fast streams 
flow from the west and slow streams from the east. This effect results from azimuthal 
stresses developed in the spiral interfaces between fast and slow streams as is shown 
schematically in Figure 3. The high pressure and low pressure regions result from the 
compression and rarefaction along the leading and trailing sides respectively of fast 
streams. The pressure gradient stresses have azimuthal components which in all cases 
accelerate the fast stream plasma toward the east and the slow stream plasma toward 
the west. There results the east-west asymmetry predicted by the theory. 

In the above discussion the average of Vo is zero whereas in reality it may be non- 
zero because of azimuthal viscous and magnetic stresses ignored here or because of  
the density-velocity correlation effect discussed by Siscoe et aL (1969a). The present 
result is therefore better stated as fast streams flow from the west and slow ones from 
the east with respect to the average azimuthal velocity. 

4. Contact with Reality 

The present theory applies to large scale rotating structures such as were seen during 

.~Q:.~///~FA S; / "----'~AZIMUTHAL 

7 [ dt  o7" 
STRESS 

(a) Cb) 

Fig. 3. A schematic representation of the interaction between fast and slow solar wind streams. 
(a) Slow stream preceding. (b) Fast stream preceding. 
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the declining phase of the last solar cycle by instruments on board Mariner 2, Mariner 
4, and IMP1. We will consider the IMP1 observations first. 

The well-known interplanetary sector structure was revealed through study of the 
IMP1 data (Wilcox and Ness, 1965). The structure observed was approximately co- 
rotating variations corresponding to the case k = 4 in the solar wind speed and density 
and in the magnetic field. The average density and speed variations for one period 
(one sector) is shown schematically in Figure 4 which is taken from Wilcox and Ness 
(1967). The relationship between the two variables is similar to that in Figure 2, in 
that the density peaks on the rising slope of the speed and it reaches a minimum on 
the falling slope. Quantitatively the situation is represented approximately by V o = 310, 
Vrl =30, ~o = 10, and ~1 =4. Thus, (~1/~o) (Vo/V1)~4 which should be compared with 
the value 3.7 given by the theory. The agreement might appear fortuitous because 
we arbitrarily set the origin of the perturbation at a = 0. I AU. However, the theo- 
retical value of the above ratio depends on a only in the combination 8 ( s - 1 ) =  
=(f2/Vo)(r-a). The right hand side at 1 AU is very close to unity for any a small 
compared to 1 AU. Thus, the result is essentially independent of a. 

Fig. 4. 

' i I i i " I I I 

540 - 14 

g 

v 

t0 >_ 
r-~ i - -  

"' N 
t.O Z 
O_ I , I  
m 280 ,~ 

6 

I I I I I I I 

0 2 4 6 8 

DAYS 

A sketch of average behavior of the speed and density in a sector (k = 4). 
From Wilcox and Ness (1967). 

The behavior of Vo seen by IMP1 is presently under study and will be reported in 
a subsequent article. 

The density was observed to peak as the speed increased in both the Mariner 2 
data (Neugebauer and Snyder, 1966) and the Mariner 4 data (Lazarus et al., 1967). 
The magnetic field intensity was also observed to peak as the speed increased (Neu- 
gebauer and Snyder, 1967), and both effects were there interpreted as the results of 
compression. Although the magnetic field was omitted, its structure is easy to infer 
from the present calculation. The zero order field configuration consists of corotating 
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Archimedes' spirals. The effect of the radial velocity perturbation will be to compress 
the field at the leading edge of the fast stream and to rarefy it at the trailing edge as 
for the density. Thus, the expected density and magnetic profiles produced should 
be similar. 

The direction of flow was not measured by either Mariner experiment. The pre- 
dicted east-west asymmetry has been inferred from the observed asymmetry in the 
orientation of tangential discontinuities observed by Mariner 4 and Pioneer 6 (Siscoe 
et al., 1969b), and it is now being studied directly with Pioneer 6 and 7 data. Other 
observations have shown that the solar wind direction deviates from the sun-space- 
craft line frequently as much as 5 ~ and occasionally as much as 10 ~ (see, for example, 
Lyon et al., 1968). We can calculate the deviation expected from the fast stream- 
slow stream interaction mechanism for a reasonable situation. Take M~= 7, V o = 400 
km/sec, Vlr= 100 km/sec, k=4 ,  e=0.1, and s=  10. Then from equation (40), VI~,= 14 
km/sec. In Appendix A, we show that for y =-32 (probably more realistic) this value 
is larger by about 50%. Therefore, we estimate Vl~o ~ 20 km/sec in this case. The angle 
of deviation is then approximately ~ = 1  rad ~ 3 ~ It is possible that if the magnetic 
field were included, the effective Maeh number would be smaller by about a factor 
of 2, and the angle estimate would double. However the calculation must be done 
before the effect of the magnetic field can be fully known. 

A p p e n d i x  A 

T H E  CASE ~ = 

This case comes closer to describing free adiabatic expansion for which ~-~-s than 
the 7 = 1 case treated in the text and will indicate, thus, the sensitivity of the solutions 
to the choice of ~ in the range of interest. For 7--~, the exact zero order solutions 
describing the solar wind expansion beyond the critical point can be taken to be 

1% = constant (A1) 
a 2 

r = ~Oa r~ (A2) 

which were only approximate solutions in the previous case (Parker, 1963, p. 71). 
Since c2oc~ r - l ,  the zero order sound speed now depends on distance through the 
relation 

2 2 a c~ = Ca -- (A3) 
r 

and also the Mach number 

- 2 - M a  z - ( A 4 )  
C s a 

With the x, y, z, s variables used earlier the q~-momentum equation, the 'Bernoulli' 
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equation and the continuity equation become, respectively 

ik z 
Y' +MZ s - O  

Z 

x - eY + M~2s= f 

Y z' x' + ikex + ik ~ + = O. 

(A5) 

(A6) 

(A7) 

Eliminating x and z gives 

( s M 2 - 1 )  y" + ( M 2 - 2 i k ~ ) y '  + k 2 (  1 ) ~ + ~ 2  y = -  k%f (AS) 

which should be compared with Eq. (32) to notice the effect of changing ?- 
As in the previous case, Eq. (A8) can be solved approximately for the boundary 

conditions 
y(1) = z(1) = 0, x(1) ~ 0. (A9) 

If M 2 (s = 10) = 100, then M 2 = 10, also recall ks ~< 1 ; hence approximately 

k2ef 
~ y , , +  y,  = - ~ - .  (A10)  

The solution of (A10) satisfying (A9) is 

k2a 
y = - [ ( s  - 1) - l n~]  ~ . ~ x ( 1 ) .  ( A l l )  

Ma 
From (A5) and (A6) we find 

z = - ik~(s-  1)x(1) (A12) 
k 2 )  

i k e s - 1  [ ( s - 1 ) - l n s ] ~ 2 ~ x ( 1 ) .  (A13) 
x =  l + M a  2 s 

The phase relations revealed here are identical with those found in the previous case 
if we ignore the small imaginary part of x. The k dependence of the amplitudes is 
also very similar in the two cases. The radial dependence is essentially the same for 
the density but there is a difference in the azimuthal velocity growth. V1r is greater 

M, = 10, for the ?=3case.  Vl~/V~risplottedforthe two values o f?  with k=4 ,  e=0. l ,  2 
M 2 = i00 in Figure 5. At s=  10, VI~(? =3) is about 50~ larger than Va~(? = 1). 

Appendix B 
GENERAL B O U N D A R Y  C O N D I T I O N S  

We wish to find an approximate solution to 

k2{L ) 
( g ~  - 1)y" - ZiPpy' + \ s  ~ + d y = - ~ f  (B1) 
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.12 

.10 

.08 

>~l> .oG 

.04 

.02 

Fig. 5. 

Ik: 4, e:. l ,  M~o= Jo, M~: Joo I 

2 3 4 5 6 7 8 9 I0 

S 

The s dependence of VI~/Vlr for 7 = 1 and • = ~ in the case k =4,  
e =0.1, M~ z ~ 10, Ms 2 = 100. 

for arbitrary y (1) and y ' (1) ,  with 1 0 < M f  < 100, k~< 10, and e ~ 0 . l .  Hence, the second 

term of  the left hand  side can be neglected compared to the first. The third term is 

comparable  to the first near s = 1, but  gets smaller as s increases. Define the variable 

Yl by 

Yl 
y = A + Bs + ~ (~2) 

where 

B = y ' (1) ,  a = y(1)  - y ' (1 ) .  (B3) 

Then, the boundary  condit ion on y~ is 

y~(1) = y ] (1 )  = 0. (B4) 

Thus, the third term will always be small in the equation for y~, and we find that 

approximately 

y'; = 2ik  - k2[ 1 ) \ s  2 + e 2 (A + B s ) -  kZ~f . (B5) 

The solution o f  (B5) consistent with (B4) is 

y~ = �89 - k2e f  - k2aZA e) (s - 1) 2 - ~k2a2U(s  - 1) e (s + 2) (B6) 

- k Z U ( s  I n s -  s + 1) - k 2 A ( s -  1 - h a s ) .  

The restriction on the validity of  (B6) is the same as the special case treated earlier. 
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