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Abstract. There is increasing interest in the possible existence of large horizontally flowing eddies or 
'Rossby waves' in the sun's convection zone and photosphere. We present here and in Part II a 
mathematical model which shows that flows of this type, driven by an assumed latitudinal temperature 
gradient, can act as hydromagnetic dynamos to induce magnetic fields that periodically reverse. 

In this part, we discuss the assumptions for the model, review earlier linear analyses that demon- 
strate the ability of Rossby waves to induce solar-like magnetic fields, and finally derive the non- 
linear equations that govern the model. The analysis is simplified by confining the fluid and magnetic 
fields to a thin rotating annulus. The flow is taken to be nearly incompressible, heliostrophic and 
hydrostatic. Induced magnetic fields are allowed to react upon the inducing motions. Transports of 
momentum and magnetic flux by smaller scale convective motions, and the transport of heat by these 
motions and radiation, are parameterized by diffusion coefficients. The solar convection is also 
assumed to be responsible for the latitudinal temperature gradient. 

1. Introduction 

Recently several workers have suggested that there exist in the solar photosphere and 

convection zone motions of much larger size than supergranules or sunspots, say 

l0 s km or larger. For example, Ward (1964, 1965a, b) has postulated that these 

motions comprise in essence a 'Rossby type' general circulation in which nearly 

horizontally flowing waves or eddies carry angular momentum toward the equator 

from higher latitudes to maintain the equatorial acceleration. He supports this view 

with extensive statistical analysis of sunspot motions. There are some difficulties in 
interpretation of the sunspot statistics however (see Ward, 1965b), and it is desirable 

to have corroborative evidence, of which there is some. For example, Start and Gilman 
(1965) have pointed out that the size and shape of large scale bipolar magnetic regions 

on the sun are consistent with Ward's picture. Also, Plaskett (1966) has deduced the 

existence of Rossby waves from Doppler shift measurements, but, as Ward (1967) 
has pointed out, his data sample is too small for conclusive results. 

On the other hand, Bumba et al. (1964), Howard (1967) and Simon and Weiss 

(1968), citing the structure of bipolar magnetic regions, have suggested that the 
motions may instead be giant convective cells (super-supergranules). It is also possible 

that the motions are a combination of Rossby wave and convective cell. 

We present here and in Part II a mathematical model demonstrating the hydro- 
magnetic effects of Rossby type motions, which we assume to be driven by a latitudinal 

temperature gradient. We find that the model gives us many of the properties of a 
solar cycle, particularly magnetic field reversals. A short qualitative account of a 
model very similar to that described below has been given in Gilman (1968). 

* Part II will be published in Solar Phys. 9, No. 1. 

Solar Physics 8 (1969) 316-330; �9 D. Reidel Publishing Company, Dordreeht-Holland 
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In Part I, we discuss the numerous physical assumptions made for the model, 
qualitative results of earlier calculations, and derive the basic equations governing 
the model. In Part II, we simplify these equations to a more tractable form, present 
results of numerical integrations of the resulting system and compare these results 
to the solar cycle. 

2. Definition of a Rossby Wave 

For present purposes, we shall consider a Rossby wave to be a nearly, but not entirely, 
horizontal wavy or eddying flow pattern in a rotating fluid in which Coriolis forces 
nearly balance horizontal pressure forces (the so-called heliostophic balance). It is 
important that the motion not be entirely horizontal, for at least two reasons. First, 
the vertical motions, while small compared to the horizontal flow, will play an 
important role in generating kinetic energy to sustain the horizontal motion against 
frictional dissipation. Second, purely horizontal motions cannot give us the stretching 
and twisting of magnetic field lines we need to simulate a solar cycle. 

It is worth noting that our definition of a Rossby wave is more general than in 
C. G. Rossby's original work, which he applied to planetary-scale flow in the earth's 
atmosphere. Plaskett (1966) has discussed this early Rossby model in the context of 
the sun. It describes the propagation of small-amplitude vorticity conserving purely 
horizontal oscillations in a rotating spherical shell of homogeneous fluid. All of the 
waves would propagate in longitude toward the east limb on the sun relative to any 
basic zonal current, e.g., the differential rotation, at a rate dependent on their wave- 
length and on the variation with latitude of the vertical component of rotation. How- 
ever, the original Rossby model, while of fundamental importance, was only a be- 
ginning, in that it is basically only a kinematic model. That is, no means of excitation 
for the wave is included, nonlinear and dissipative effects are ignored as are important 
effects of vertical and horizontal variations in temperature and density, and vertical 
motions. When these effects are included, as has been done recently in more sophisti- 
cated models for describing planetary scale flow in the earth's atmosphere, the kine- 
matic properties found by Rossby tend to be overshadowed by the more important 
dynamical effects. Our model will contain these effects. 

3. Assumptions for the Model 

A. L A T I T U D I N A L  TEMPERATURE G R A D I E N T  

In the earth's atmosphere, Rossby waves as we have defined them above arise in 
response to latitudinally non-uniform solar heating. From initially small perturbations 
on the existing wind pattern, they grow to finite-amplitude disturbances which trans- 
port heat from warm to cold latitudes. At the same time, they transport angular 
momentum into middle latitudes to maintain the mean 'jet stream'. Ward (1964, 
1965a) supposed that the Rossby waves which he postulated for the transport of 
angular momentum into the equatorial acceleration (the sun's 'jet stream') are also 
thermally driven by an existing latitudinal temperature gradient. 
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Unfortunately, the observational evidence for a temperature difference in latitude 
on heliopotential surfaces is conflicting (see, e.g., Beckers, 1960). Perhaps stronger 
latitudinal gradients exist inside the convection zone where they can not be seen. We 
know such gradients must exist if local rotation significantly influences the outward 
heat transport by the solar convection, since the relative orientation of rotation and 
gravity varies with latitude. In this regard, Chandrasekhar (1953) has shown the 
inhibiting effect of rotation on the onset of convective instability; Weiss (1964) has 
estimated its inhibitive effect on the heat transport of fully developed cells, and 
Roxburgh (1967) has applied his results to the solar convection zone to estimate the 
latitude gradient. In addition, Durney (1968a, b) has demonstrated the inhibition of 
convective rolls preferentially near the equator of a convecting spherical shell. For 
the present paper, we shall a s s u m e  that a latitudinal gradient large enough to excite 
Rossby waves exists in the convection zone of the sun and examine the hydromagnetic 
effects of the waves that would arise. 

It should be pointed out here that Rossby waves are not the only possible response 
of the fluid to a latitudinal temperature gradient. We can also get a purely axisym- 
metric circulation in meridian planes, coupled with a zonal circulation. Generally 
speaking, for a given temperature difference, the faster the basic rotation, the more 
likely we are to get a Rossby wave rather than a symmetric meridian circulation, 
because the symmetric circulation becomes unstable to wave-like disturbances. How- 
ever, which circulation occurs depends also on the eddy viscosity and other param- 
eters which are not well known for the sun, so that it is not possible to predict in 
advance the type of motion to expect. From the point of view of dynamo action, 
however, the steady symmetric circulations are much less interesting, because by 
Cowling's theorem they cannot by themselves act as a dynamo. 

B. GEOMETRY, COMPRESSIBILITY AND BOUNDARY CONDITIONS 

Rather than attempt to construct a Rossby wave model that can be applied in detail 
to the sun, it seems wise at this early stage instead to make a hydromagnetic generali- 
zation of a model already well studied and understood in the geophysical context. For 
example, we shall deal with a perfect gas of uniform composition. The thermodynamic 
effects of partial ionization will be ignored. In addition, rather than deal with a 
rotating spherical shell of gas, we shall simplify the problem geometrically and con- 
sider instead a thin annulus rotating about its axis (see Figure 1). Gravity, g, (assumed 
constant) acts vertically downward on the fluid in the annulus. The annulus is thin 
in two respects. First, the spacing between inner and outer walls is assumed small 
compared to the mean radius. This allows us to use a local Cartesian coordinate 
system. Second, the depth of the fluid is assumed to be not large compared to a scale 
height, so that most effects of compressibility are excluded. This is not quite as strong 
an assumption as the so-called Boussinesq approximation, for which the depth is 
much smaller than a scale height.* On the sun, of course, it is quite possible that the 

* In geophysical fluid dynamics, our assumption is therefore called the 'quasi'-Boussinesq approxi- 
mation (see Charney and Stern, 1962). 
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Rossby waves extend many scale heights into the convection zone, perhaps even to 
the bottom. 

The inner and outer side walls of the annulus, then, correspond to two latitude 
circles within a single hemisphere on the sun. Laboratory models of the rotating 
annulus (filled with water with the temperature fixed at the side walls) have been 
extensively used to study thermally driven Rossby waves (see, e.g., Hide 1953, 1958; 
Fultz et  al., 1959). Many theoretical models with this geometry have also been 
devised. 

We must specify boundary conditions on the side walls, and the top and bottom 
of the annulus. For simplicity, we take all four boundaries to be solid and perfectly 
electrically conducting. This requires that the normal component of motion and 
magnetic field, and the tangential components of electric current, vanish on the walls. 
The motion and magnetic fields are then confined entirely to the annular region. 
We further assume that the top and bottom are 'free', in the sense that the viscous 
stress vanishes there. Finally, we assume the temperature perturbations vanish at top 
and bottom. 

C. FILTERING APPROXIMATIONS 

In addition to assumptions regarding geometry, compressibility and boundary con- 
ditions, given above, we also make several assumptions which restrict the kind of 
motion that can be described by the equations. To integrate the fluid equations in 
a form general enough to allow all the scales of motion to develop would require 
much larger computers than now in existence. The final equations will describe 
explicitly only Rossby wave type motion (and also low frequency Alfv6n waves); 
sound and gravity waves and convection are 'filtered out'. This technique has been 
an essential ingredient in modeling Rossby waves in the earth's atmosphere. 

We can not totally ignore the effects of these smaller-scale motions, however. The 
convection (granulation and supergranulation) in particular obviously is important 
in the transport of heat, momentum and magnetic flux. The most we can reasonably 
do with our model is to represent these processes parametrically with diffusion 
coefficients. 



320 PETER A. GILMAN 

The detailed assumptions made to screen out convection and gravity and sound 
waves are: 

(a) the horizontal motion is in a state of near heliostrophic balance. That is, the 
Coriolis force (which for the annulus is horizontal) is nearly balanced by the horizontal 
gas pressure gradient. 

(b) the flow is hydrostatic. That is, the vertical motions, while not zero, are small 
enough so that vertical accelerations are very small compared to the vertical gas 
pressure gradient and gravity. 

(c) the vertical temperature gradient is less than the adiabatic gradient. That is, the 
convection zone appears to Rossby wave disturbances to be gravitationally stable. 
This assumption helps to ensure that the motion will be hydrostatic. 

The implications of (a), (b), and (c) need to be spelled out in greater detail. If the 
horizontal motion is in near heliostrophic balance, then horizontal accelerations of 
fluid particles must be small compared to the Coriolis force. If U is a characteristic 
horizontal velocity, L a relevant horizontal length, and ~2 the angular velocity, an 
equivalent statement is that the Rossby number Ro-- U/2(JL is small compared to 
unity. This also says that the time scale L/U for variations in the motion is long 
compared to the rotational time 1/~2. For the sun, we can take U~100 m/sec, a 
typical shearing velocity in the differential rotation, and L ~  1.5 x 105 km, which is 
a reasonable scale for latitude variations in the differential rotation and for gross 
latitude and longitude changes in bipolar magnetic regions. To estimate Ro, we should 
use the component of rotation in the local vertical direction, so for middle latitudes 
2 0 ~ 3 x  10 -6 sec -1. For these values, Ro~lO -1, and L/U~I.5 x 106 sec, or two- 
thirds of a solar rotation. Present knowledge (Bumba and Howard, 1965) of bipolar 
regions indicates this time is reasonable for their gross evolution. 

Near heliostrophic balance also requires that electromagnetic forces, due to induced 
currents crossing induced magnetic fields, be small compared to the Coriolis force. 
Given that Ro ~ 1, this will be true if P-Mz/4~oU2<~ 1 where M is a characteristic 
horizontal field strength and ~ a typical gas density. Equivalently, Maxwell stresses 
are assumed to be no larger than Reynolds stresses. This assumption proves to be 
internally consistent in the model: it is not capable of inducing magnetic fields so 
large that P>> 1. For the sun, if the mean density of the layer we are considering is 

~ 10 .4  g cm-  3, magnetic field strengths M as large as about 300 G can be tolerated. 
Although there are no direct observations available, large scale subsurface toroidal 
fields on the sun are probably not much larger than this (Babcock, 1961). 

Finally, turbulent viscous forces must also be small compared to Coriolis forces. 
For eddy kinematic viscosity v, vertical disturbance scale D, and defining ~ ~D/L, 
this puts limits on two Reynolds numbers: RD-6UD/v>~ 1; RL----UL/v~ 1. Here Ro 
measures the effectiveness of vertical diffusion of horizontal momentum, and R L that 
of horizontal diffusion. 

For our choice of parameters for the sun, RL~ 1 will be satisfied if v < 1.5 x 1014 

cm2/sec. A much smaller limit for v is obtained from R D if D is comparable to a scale 
height. That is, for D =  2 x 10 3 km (middle of the convection zone), from RD > 1, we 
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get v ~< 1.5 x 101~ cm2/sec. This is smaller by at least an order of magnitude than most 
estimates of v from mixing length arguments. However, the actual disturbances on 
the sun would have D ~ L  if they extend through the entire depth of the convection 
zone, in which case the larger limit of v, which is more reasonable, would be allowed. 

As for hydrostatic balance [assumption (b) above], all other terms in the vertical 
equation of motion will be small compared to gravity and the vertical pressure 
gradient so long as P < 1, Ro ~ 1, which we have already assumed, and •2Ro2 ~ 1, 
together with an assumption about the magnitude of the subadiabatic temperature 
gradient, given below. 

Assumption (c) above, that the mean vertical temperature gradient is less than the 
adiabatic gradient, at first glance would seem inappropriate for the solar convection 
zone. However, there now is both theoretical and laboratory evidence for this oc- 
curring as a nonlinear effect in the interior of convecting fluids (Veronis, 1966; Gille, 
1967). If we assume that the solar convection is the principal determinant of the 
vertical temperature structure in the convection zone, then all larger, slower scales 
of motion would 'feel' this mean gradient. 

It is convenient to represent the difference between the actual vertical temperature 
gradient and the adiabatic gradient by a meteorological variable 0, known as the 
potential temperature. The log of 0 is proportional to the specific entropy s of the 
gas; that is, 

s = cplnO = cpln T - R l n p - -  cp ln~  + c v lnp  

where T is the ordinary temperature, p the gas pressure, 0~ the specific volume, cp and 
c v are the specific heats at constant pressure and volume, and R is the gas constant. 
For adiabatic flow, then, the potential temperature of a fluid parcel is conserved. If 
the vertical temperature gradient were exactly adiabatic, in 0 would be independent 
of height. For a subadiabatic gradient it increases with height. For our model we will 
assume that ~_--8 In 0/8z (z is the vertical coordinate made dimensionless with respect 
to D) is positive and sufficiently large that ~ ~F ,  where F - 4 0 2 L 2 / g D .  For the sun, 
with D>~2000 kin, F < 4 x  10 -s,  so we need ~<~4x 10 -5. On the other hand, if the 
appropriate D is comparable to the depth of the convection zone, F, and therefore 

~ 6 x 10-7. The laboratory and theoretical work cited above indicate ~ as large as 
10-z can be achieved. It is clear from the definition of potential temperature that, in 
general, a latitudinal gradient of temperature is accompanied by a similar gradient of 
potential temperature. 

Finally we put upper limits on the diffusion of heat and magnetic fields by the 
smaller scales of motion. That is, we require the Peclet numbers CL = _ U L / ~ > I ;  

CD = 6 UD/~c >~ 1, where ~: is the thermal diffusion coefficient (which includes effects of 
both convection and radiation). Similarly, we assume the magnetic Reynolds numbers 

GL =-- UL/2  >~ 1; G D - 6UD/2 > 1 

where 2 is the magnetic diffusion coefficient. Clearly the same limits discussed for the 
viscous diffusion coefficient v apply also to 1r and 2. 



322 PETER A. GILMAN 

4. Qualitative Hydromagnetic Effects of Rossby Waves 

Before deriving the detailed equations, it is useful to set the stage by describing 
qualitatively the hydromagnetic properties of Rossby waves found by the writer in 
an earlier study (Gilman, 1967a, b, c, d). This work is primarily a linear perturbation 
analysis of unstable (i.e., exponentially growing) Rossby waves, for which all of the 
assumptions listed in Sec. 3 are made. The analysis was done for the 'ideal' case 
of an inviscid, adiabatic, perfectly conducting fluid. Figure 2 schematically summarizes 
the results. In Figure 2 we are in effect looking down at a section of the annulus, with 
the lower edge of each sketch corresponding to the outer rim. We have taken the inner 
wall of the annulus to be colder than the outer, but the hydromagnetic effects follow 
equally well from the opposite arrangement. 

The basic state about which the system is perturbed (Gilman, 1967c) is one in 
which the flow and magnetic fields are purely zonal, i.e., parallel to the side walls, 
corresponding to a differential rotation and toroidal magnetic field. The vertical 
structure of the fluid is represented by two superimposed layers. The zonal flow is 
parabolic in the upper layer (Figure 2a) roughly like the observed solar differential 
rotation, while in the lower layer the flow is zero relative to the rotating coordinate 
system. The zonal (toroidal) magnetic field is uniform throughout. 

The unstable Rossby waves that grow on this basic state transport heat horizontally 
from the outer toward the inner rim (equator toward the pole), as seen in Figure 2a 

(a) 

(b) 

(c) 
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from the relative position of horizontal streamlines and isotherms. At the same time, 
the waves transport momentum toward the equator; this effect can be demonstrated 
from the upstream 'tilt' of the waves. This momentum flux is in the same direction 
as reported by Ward (1964, 1965), and could be responsible for the maintenance of 
the equatorial acceleration. 

The instability is sustained by the relatively small vertical motions, which lift up 
(Figure 2b; shaded area indicates upward motion) warm gas and bring down cold at 
different longitudes thereby lowering the center of gravity, releasing potential energy to 
the kinetic energy of motion. Note that the regions of vertical motion also tilt upstream. 

With the toroidal field present (Figure 2c), the vertical motions pick up toroidal 
flux lines at evenly spaced longitudes, depressing them in between. This gives rise to 
the vertical magnetic fields shown (shaded and clear areas of Figure 2c). The regions 
of upward and downward field also tilt upstream, qualitatively like observed bipolar 
magnetic regions. The horizontal motions of the wave, as indicated by the phase of 
the wavy stream lines relative to the shaded areas in Figure 2c, carry predominantly 
upward-directed vertical fields (shaded areas) toward the pole, and downward-directed 
fields toward the equator. This gives a residual positive vertical field near the poles, 
and negative near the equator, that is independent of longitude. This symmetric 
poloidal field should then be stretched out into a new toroidal field by the differential 
rotation to complete the dynamo cycle. However, the linear study precludes this 
feedback. We propose in subsequent sections and in Part II to construct a nonlinear 
model that includes this feedback, and demonstrates that the toroidal and poloidal 
fields can be maintained and periodically reversed by Rossby-type motions. 

With the feedback of poloidal into toroidal field, it is noteworthy that the evolution 
of magnetic fields in our model will be qualitatively similar in its major elements to 
that put forth for the sun by Babcock (1961) except, of course, that our model can 
not produce highly concentrated features like sunspots. 

5. Equations for the Model 
A. SCALED VARIABLES 

To approximate the basic equations of magnetohydrodynamics for our problem, we 
first introduce dimensionless variables using the parameters given in Sec. 3. Hence- 
forth denoting dimensional variables by asterisks, we define x=x*/L to be the 
dimensionless downstream coordinate (i.e., longitude), y=y*/L the cross-channel 
coordinate (i.e., latitude), z=z*/D the vertical coordinate, and t=(U/L)t* dimen- 
sionless time. The dimensionless pressurep, density Q, specific volume ~, and potential 
temperature 0 are defined as departures from a horizontally averaged state/~*, ~*, 
~*, 0* (all functions of z only), according to the equations 

p* = p* (1 + t~FRop) 
~* = ~* (1 + FRoQ) 
c~* = ~* (1 + FRock) 

In 0* = In 0" +FRoO, (1) 



324 PETER A. GILMAN 

In the above,/~ = D/S, where S=I?*~*/g, is the scale height. The horizontally aver- 
aged variables are in hydrostatic balance; that is, 

~*@*/&* + g = O. 

It is convenient to split the velocities and magnetic fields into their horizontal and 
vertical components, and, further, to represent the horizontal components as the sum 
of an irrotational and a nondivergent part. That is, if i, j, k are unit vectors in the 
x*, y*, z* directions, and V* = i 8/8x* +j  8/8y* is the dimensional horizontal gradient 
operator, we write the total velocity V* = V~ +V* + w ' k ,  where * V 0 = k x V*~*, 
V , =  V ' a*  makeup  the horizontal velocity, and w* is the vertical velocity (x  denotes 

�9 * V *  :t: , the vector product). Note that V .V o =0,  and x V, =0,  so that V ,  is the non- 
divergent horizontal velocity, and V, is the irrotational horizontal velocity. In terms 
of dimensionless variables V, = k x VO, V, = Vo-, and w, we assume a scaling that gives 

V* = UV o + RoUV~ + 3RoUwk. (2) 

This scaling is a natural consequence of the assumption that the motion is nearly 

heliostrophic (see Gilman, 1967a) 
The total magnetic field H* is written in scaled form as 

H* = M H  z + MHe + bMhk (3) 

in which the dimensionless horizontal field has two parts, given by H z = k x VZ and 
Hr  = Vy, and in which the dimensionless vertical field is h *. 

We note that the flow and fields associated with the 'stream functions' O and Z 
respectively are purely horizontal. The horizontal flow and fields specified by a and 
are, on the other hand, linked to the vertical flow w and field h [see continuity 
equations (6) and (9) below]. That part  of O that is independent of the longitudinal 
coordinate x may be thought of as specifying the axisymmetric 'differential rotation'  

in our annulus. Similarly, the part  of X independent of x gives an axisymmetric field 
in the x direction, which corresponds to the toroidal field of Babcock's (1961) and 
other solar models. The axisymmetric parts of o- and w represent what is usually called 
meridian circulation, being entirely in meridian planes. Similarly, the part  of Y and h 
independent of  x represents an axisymmetric magnetic field in meridian planes. This 
corresponds to the poloidal field of  Babcock's  model that is stretched out by the 
differential rotation into a toroidal field. The asymmetric part of  h corresponds 
perhaps to 'bipolar magnetic regions'. 

B. SCALED EQUATIONS 

The above scaling is chosen so that the largest terms in the equations of motion, 
which represent the heliostrophic and hydrostatic balances, are of order unity. Given 
this scaling, and noting that for the sun F<IO-g~(Ro) 4 we may write down the 

Given V and H, ~b, a, Z and 7 are determined to within arbitrary additive functions of z, t. Since 
in the dynamical equations given below ~b, a, X and Y always appear differentiated at least once with 
respect to a horizontal coordinate, these additive functions have no effect and may be set equal to zero. 
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governing equations correct to second order in Ro. In these equations, previously 
undefined terms are V 2 -  62/OxZ +02/Oy 2, the horizontal Laplacian, Q a dimensionless 
heating function (to force the latitudinal temperature gradient) assumed of order 
unity or less, P-= M2/4nfi* U 2, and e -  F~ ( ~ 1. The equations are, respectively, the 
horizontal and vertical equations of motion, the equation of continuity, the horizontal 
and vertical magnetic field induction equations, the magnetic field continuity equation, 
and, finally, the thermodynamic equation (written in terms of potential temperature). 

Ro + (V o + RoV~)'V + Row 3z 

= - k  • 0 + R o V o ) - V p + _ P R o l ( V  • •  z + H , )  
I._ 

OHz Ro V2 (V, + RoVe) + (V 0 + RoVe) + h ~ - z  -c~2V +RE ~ ~zza 

(4) 

62Ro2I~ot V ~ , ' V ] w = - - ~  * 0 p 
az 8" + ~ 

I 3 ' H z + H ~ [ 2 + 6 ( H z + H , ) . V h ]  + _PRo Oz a 

(~2Ro2 32Ro ~ 02W 
+ - -  V2w + (5) 

RL RD Oz 2 

o 
0*RoV'V~ + Ro Oz 0*w = 0 (6) 

Ro ~t (Hz + H,) = RoY • (re, .• Hz) + RoV x (V,~ • H,,) 

a 
+ Ro bz (hVo) + R~ • [u x (H z + U,)] 

Ro V2(H z H~) - R~ ozC~ [w(H z+H~)]+~ + 

Ro O 2 
+ + (7) 

Ro + Vo'V h = Ro2Hx" Vw + Ro V2 h + - - -  + Ro 2 (Hy- V) w 
GL Go Oz 2 

Oh 
-- Ro 2 (V~" V) h - Ro2w - RoZhV "V~ (8) 

Oz 

Ro + (V o + RoV~)'V + Row Oz 0 + 
Row 

(9) 

Ro Ro 020 
V20 + + RoQ 

CL CD~zz 2 " 
(10) 
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C. BOUNDARY CONDITIONS 

In terms of the dimensionless variables we have defined, the boundary conditions 
stated in Sec. 3 require 

0@ 0a 0X 0~ (?2 Z Oh 
- 0 ( 1 1 )  

Ox' Oy' Ox' Oy' Oy 2' Oy 

at the sides of the annulus, and 

00 0o- 02 0~ 
Oz' Oz' Oz' Oz' h, w,O = 0 (12) 

at the top and bottom. 

D. ROSSBY NUMBER EXPANSION: ZEROTH ORDER SYSTEM 

The next step is to expand all dependent variables in a power series in Ro, assumed 
small. If  K represents any of the variables, we write 

K = K (~ + R o K  (1) -I- R o 2 K  (2) --1- 0 ( R o  3) (13)  

and substitute into Eqs. (4)-(10). Eqs. (4) and (5) alone produce 'zeroth-order' re- 
lations, which are, respectively 

k x V~ ~ = - V@ (~ = - Vp (~ (14) 

The first of these, as expected, gives the heliostrophic balance (we may speak of V (~ 
as the heliostrophic wind), and the second, hydrostatic balance. It is clear from (14) 
that 0 (~176 (This can be taken as a definition of @(o).) From this fact, plus (15), 
(1) and the definition of potential temperature given in Sec. 3, we can also show that 

00(0) - 0 (~ (16) 
0z 

Taking the horizontal gradient of (16) gives 

0 0 
VO w) = - k x V~ ~ = V0 (~ 

0z 0z 
(17) 

This relates the vertical shears in the heliostrophic wind to the horizontal gradients 
in potential temperature, and is sometimes called the thermal wind relation. Related 
forms involving the ordinary temperature have been discussed for the sun by Plaskett 
(1959, 1962, 1966) and others. 

E. FIRST ORDER SYSTEM 

Collecting first order terms from Eqs. (4)-(10) [excepting (8) which requires special 
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discussion] and using (6), we get 

v:, ~ + V  (~ V = - k  x - k x  - 

+ p[(v x n 7  )) • (n7) + u?)) + 
8H(f ) h (o) 

8z 

1 8 z 1 v2v~o) + v~o) 

~Z _[a ,.?) + .7', ~ 
~, 0,p(1) _ g(1) + p 82 2 

~* --8 ~*w (~ = 0 
V- V (~ + 8z 

6(H(z ~ + U~~176 t 

(18) 

= 0  

(19) 

(20) 

~_ (3 h(o)V~O) ([q(o) + H~O))= V • (V~, ~ x Hi  ~ + V x (V~ ~ x HI, ~ + Oz 
8t ~ z  

1 82 
1 V2 (n~O) + n~O) ) + (n(z ~ + H~, ~ (21) 

8h (o) 
V" 14 (~ - -  = 0 (22) 

( ~  - (o) -'~ 86 (0) w(~ 1 V2 (~1//(0) 1 ~30(~ Q(O) (23) 
+ v ,  . v )  - ~ z  + - - -  + + " ? i  CL 8z CD 8Z 3 

We can eliminate p(1), V~l) and V (~ from (18) by first taking the vertical component  
of the curl of it, i.e., applying k. V x,  and then substituting from (20) for -v.-~,v(o), to 
get a prediction equation for the vorticity VZ~ ,(~ of the heliostrophic wind V~~ 

(V H (~ x (H (~ ..(o)'~ h(O) 8H(z ~ 
x x + n ~  i +  - 8 ~ z J  

1 1 8 z V20(0) (24) + ~* ~ O*w(O) + V4O (~ + 
~z R-; ~ ; ~  

Operating on (21) with k - V x  will give us a prediction equation for X: 

(~ h(o)V~O) 8 = _  V 2 -.(o, H(zO,) V2k.(V~ ~ x H~ ~ + k .V x - -  0t vZz(~ ( k . v  o x - 8z 

1 8 z 
+ V z (vZz (~ + ~ ~ z  z (V2•(~ (25) 

In order for the dynamo to work, the equations must contain sufficient provision 
for induction of toroidal field H(f ), from the poloidal field H~ ~ h (~ and vice versa. 
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We note that (25), which is our prediction equation for the toroidal field, does contain 
two terms on the right hand side representing the stretching of poloidal into toroidal 
fields. Our prediction equation for the poloidal field, which we find from (8), must 
contain the other links. 

Turning to (8), the first order terms collect to give 

( ~  ) 1 1 ~2h (~ 
~-t + V(~~ h(~ = - -  VZh(~ + - -  - (26) 

G L GD ~z  2 �9 

To this order, then, there is no term giving induction of poloidal fields from 
toroidal. From (26), it is clear that any initial h (~ and consequently H~ ~ can not 
be sustained and the dynamo would fail. To overcome this, it is necessary to violate 
the strict Rossby number ordering of the terms and include the first term on the right 
of (8), which represents the induction of poloidal field from the toroidal field (ac- 
complished by the vertical motion twisting toroidal field lines up into the vertical) 

giving us ( 0  )h(O ) RoH(zo).vw(O)+GLV2h(O)+G~oc~z 2 8t + V~~ = 1 1 02h (~ (27) 

In the present study, we do not include the other Ro 2 terms from (8) because none 
of them links toroidal with poloidal fields. Also, to include additional second order 
terms in this and the other equations would considerably increase the computational 
effort required to solve them. Our results in Part II indicate only the one term we 
have included is crucial to the success of the dynamo. 

Mathematically what we have done is not rigorous, and the effect of the terms left 
out should be assessed. We show in Part II that in the solution to the dynamo equations 
we find the 'source term' RoH(z ~ Vw (~ in (27) is no smaller, on the average, than the 
other terms. Furthermore, for the model in Part II, we can show that all of the R o  2 

terms neglected in (8) to get (27) actually vanish. 
The smallness of the source term for poloidal fields is a consequence of the nearly 

heliostrophic character of the flow, for which vertical motions are smaller than might 
be expected from continuity of mass alone. These smaller but nonzero vertical motions 
are therefore slower at producing vertical fields, but they still produce them. Since for 
the dynamo to work, RoH(z ~ (~ in (27) must overcome the diffusion terms, the 
dynamo requires somewhat higher magnetic Reynolds numbers GL and Go than 
otherwise. 

F. D I S C U S S I O N  

The five Eqs. (22)-(25) and (27), then, comprise the equations for our dynamo, from 
which we compute ~(o~, w(O), x(O), ~(o), hW). These equations, linearized about a 
differential rotation and toroidal magnetic field, yield the growing Rossby waves and 
their hydromagnetic effects described qualitatively in Sec. 4. The nonlinear system we 
have obtained will behave in much the same way, except that when the waves reach 
finite amplitude further growth will be checked by non-linear interactions and 
dissipation. 
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The original equations of motion, induction and thermodynamics conserve total 
energy in the absence of dissipation and thermal forcing. Our dynamo system should 
in some sense retain this property. Since we raised the order of the system by forming 
(24) and (25), we must strengthen the boundary conditions at the sides to retain an 
energy integral. If we require, in addition to the conditions (11) and (12) already 
imposed, that 

~b (~ Z (~ = 0 (28) 

at the sides, then in the absence of dissipation and thermal forcing, the energy 
integral 

f[~(~r176189176 + �89176 

(where the integral is over the entire volume of the annulus) is con served. The three 
energies involved are, respectively, the potential energy associated with the horizontal 
temperature gradient, the kinetic energy of v(~ the heliostrophic part of the motion, 
and finally, the magnetic energy of the toroidal field H z(~ We note that the energy 
of neither the divergent part of the motion V(~ ~ w (~ nor of the poloidal field H~ ~ 
h (~ are included, but from the governing equations it is reasonably clear that they 
will be bounded. If  the toroidal field can not be sustained, then from (27) neither can 
the poloidal fields. 

In the general context of dynamo theory, we note that our system of equations 
allows for two effects not usually included. First, the motion is not given a priori, 
but rather arises in response to specified thermal forcing, in this case latitudinally 
nonuniform heating. Second, the induced magnetic fields are allowed to react upon 
the inducing motions. We should therefore expect some kind of balance to be reached, 
in which, on the average, induction of new fields is balanced by dissipation. 

In principle, the most straightforward way to integrate our dynamo equations 
would be to set up a three-dimensional grid of points in the annulus, and replace 
our differential equations by difference equations.* This would give us, however, a 
formidable computing job, requiring many hours on the largest machines available. 
Instead, it seems wiser at the outset to conduct a pilot study with a still further 
simplified form of the equations, using techniques successful for the corresponding 
problem without magnetic fields which require much less computing effort. This 
study is the subject of Part II. 
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