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A few years ago Sternberg and Muki [I] considered the effect of 
couple stresses on the stress concentration at the tip of a crack. 
They treated the problem of a finite crack in an infinite medium under 
conditions of plane strain with a uniform tension acting at infinity. 
The main conclusions were that at the crack tip the stress and couple 
stress fields had singularities of the same order, the order of the 
stress singularities being the same as those of the classical elastic 
problem. It was found that the limit of the stress intensity factor 
as 1 (the couple stress parameter) tended to zero was different to the 
usual elastic result (1 identically equal to zero). However, their 
approach which involved the numerical solution of integral equations 
did not give a precise evaluation of the coefficients involved in the 
stress and couple stress intensity factors. The couple stress theory 
has been criticised by Eringen [2] who replaces it by the micropolar 
theory of elasticity (see [2] for a review). In this note we consider 
the problem of a semi-infinite crack in a strip using both theories. 
These solutions which are accomplished by the use of a path indepen- 
dent integral demonstrate that G, the energy release rate, does tend 
to the elastic result as 1 + 0 even though the stress intensity factor 
may not. 

For both the couple stress and micropolar theories the equations 
of equilibrium can be written [2] 

t / k  ,1 = 0 
( i )  

ta l k ,1  + ¢kmn trim : 0 

where ty I (the first suffix denoting the direction of the outward nor- 
tK 

mal) are the stress components, m#. are the couple stress components, 
and e. is the permutation tenso} K. We are to consider plane strain 
situa~im~ns so that in a cartesian co-ordinate system (Xl, xg, x z ) 
derivatives with respect to x% are zero and in the second oT (17 only 
the equation with k = 3 will 5e relevant since t. = t . = 0, ~ = 1,2; 
m33 = 0; and m8 = 0, ~ = B (~, 8 = 1,2) for pla~% str~fn. 

For the couple stress theory in addition to (i) we have the con- 
stitutive relations (see [I]) 

m3 = 4~/2w 

2~e S = t(~) w8 S tTy (2) 

w h e r e  

2 t ( ~ 6 )  = ( t  6 + t B a ) ;  2e  8 = u ,~ + ug • 2w = u 2 - u 1 , ~ '  ,1  ,2 
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(e,B,Y tak ing  the values 1 and 2) ,  u. and u^ are the  components o f  t h e  
L . 

displacement vector in the 1 and 2 dzrectzons, ~ is the shear modulus, 
is Poisson's ratio, and Z is the couple stress parameter. The strain 

energy f~ction W 1 for the plane problem is given by 

1 
4uW 1 : t(~g)t(a8) - ut etfg + 2,£---- ~ ma3ma3 (m,fl=l,2) (3) 

In the micropolar theory the main difference to the above is the 
introduction of an independent microrotation vector; for the  plane 
case this is 85 the component in the 3 direction replacing w above 
(note that by zts definition w was constrained to be the same as the 
local rotation of the medium). The relevant constitutive relations 
become 

tk£ : Xerr ak£ + (v + ~) eke + ~eik 

ell = Ul,l; e22 = u2, 2 

el2 = u2,1 - 03; e21 = Ul, 2 + 03 (4) 

m13 : 703,1; m23 = YO3, 2 

with strain energy function W 2 where 

2 2 (s)  
2W 2 = kekke ~ + (la + <)ek~ekl + ~ek~e~k + 7(03,1 + 03, 2 ) 

where k, £ take the values 1 and ~; l,~, and K are material constants; 
and y plays a similar role to 4~£ in the couple stress theory. Note 
the difference between the definitions of the strains el2 and e21 in 
the two theories. 

A great deal of attention has been given recently to finding 
path independent integrals for elastic media, see Eshelby [3] for a 
collection of results. Here we generalise these results to the couple- 
stress and micropolar materials considered above. We merely state the 
results, as use of the above field equations and an application of the 
divergence theorem is sufficient to prove path independence. The in- 
tegrals are defined as 

G : f S  (W~£1 - t f 'kUk' l  - mf'303'1) dS£ (6) 

where the integral over S is to be taken over some surface enclosing 
the crack tip in the usual manner, dS£ denoting the surface element 
with normal xp. The above integrals are applicable to the plane strain 
problem fo~, eTther the micropolar or couple-stress theory, 8z being 
replaced by w in the latter theory, and £ and k taking the v~lues 1 
and 2 in each case. G can be shown to be the enersy release by de- 
ducing it via the balance of energy in a cylinder enclosing the crack 
tip. It should be noted however that in the couple stress case when 
the material can be considered to be an elastic material of grade 2 
the above result for G does not appear to be the same as that deduced 
from a formal application of the results of [3] for grade 2 materials. 
This may be due to the constrained rotation in the couple stress 
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theory and that the strain energy depends only on t¢~) eqn (3). The 
result (6) for G in the couple-stress case agrees wli~i the formula 
given by Sih and Liebowitz [4] when the contour S reduces to a small 
rectangle enclosing the crack tip. 

It was shown by Rice [5] that for the case of a semi-infinite 
crack in an elastic strip with suitable displacement boundary condi- 
tions an application of the J integral (equivalent to G above with 
m -= 0) would give the energy release directly without the need to 
s~ve a complicated boundary value problem. Here we consider a strip 
Of thickness 2h, with a crack which is stress free lying on x 2 = 0; 
x < 0. The boundary conditions on the sides of the strip x 2 = +h are 
taken to be 

u 2 : 0, u I = -+Ul0, 8 3 = 0 for all x I when x 2 = +h (7) 

Ul0 is a constant and for the couple-stress case 0 3 : 0 becomes w = 0. 

Taking the integral G of (6) around a large contour which con- 
sists of vertical strips at x I = +=, the sides of the strip and the 
crack faces, it is possible to relate the value of G at the crack tip 
to its value around the rest of the contour. By virtue of the bound- 
ary conditions (7) the integral is zero when taken along the sides of 
the strip, and by the stress-free crack conditions (tg~ = 0, mgx = 0 

< 0, x 2 = 0) the integral is zero when taken along'~he crac~Vfaces. 
I~ remains to evaluate the integral along the vertical strips and this 
is done on the assumption that at x. = += there will be no variations 
in the x. direction so that derlvatzves wlth respect to x I can be dzs- 
regarded in the fleld equations when the energy stored in the vertzcal 
strips at x. = +~ is calculated. After some calculation the following 

I 
results are obtaxned 

(i) For micropolar media 
2 

(2~ + <) Ul0 

G = yT tanh (Th) (8) 
2h - (2V ~ <) 

~ h e r e  T 2 <(2~ + <) = Y(V + K) , and this relation can be used to rewrite the 

< t anh (Th) denominator of (8) as 2h (v + <)T 

F2) For Couple-stress elasticity 
2 

~ulO 
G = h - £ tanh(h/£) (9) 

Clearly when ~ ÷ 0 in (9) this reduces to the result for an elastic 
medium G = ~Ul0/h , and similarly in (8) when y ÷ O, G tends to the 
corresponding elastic result. Note that in (4), (2u + <) plays the 
role of 2u in the usual elastic stress-strain relations. Note further 
that the denominator of (9) can never be zero since h is always great- 
er than I tanh(h/f) and £ > 0. To show that the denominator of (8) 
can never be zero we need £he restriction on the micropolar elastic 
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moduli which are necessary to ensure a positive internal energy These 
are given in [2] as 

3~, + 2U + K: > 0 21~ + < > 0 K: > 0 ( I 0 )  

The second of these inequalities shows that 2(u + K) > K which with 
(i0) ensures that T is real and that the denominator 6f (8) is always 
positive. This can be seen by considering the alternative form of the 
denominator given beneath (8). 
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