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Abstract. Comparisons are made of experimental studies on the drag, at high Reynolds number,
due to regular arrays of roughness elements of various shapes immersed in a turbulent boundary
layer. Using a variant of Millikan's dimensional analysis, the form of the velocity profile is deduced
in terms of the dimensions and concentration of the roughness elements. A drag formula results
which is shown to be in good agreement with data. Available measurements of the partition of drag
between the elements and the intervening surface indicates that equipartition occurs at quite low
concentrations. The interaction between elements is then small, so that the drag coefficient of a typical
roughness element is nearly constant.

A re-examination of some of O'Loughlin's velocity-profile data, obtained below the tops of the
roughness elements, suggests the existence of a nearly constant-stress layer scaled to the shear stress
of the intervening surface. Above the roughness elements, the mean-velocity profile undergoes a
transition to the form appropriate to the total shear stress exerted by the roughened surface. A for-
mula is given which describes the one-dimensional velocity profile over the entire range, excluding the
viscous sublayer on the intervening surface. The viscous sublayer appears to correspond quite closely
to that on a smooth plate.

Notation

ROUGHNESS GEOMETRY AND DISTRIBUTION

A, frontal area of roughness element
D distance between rows of roughness elements and transverse distance between

individual elements
L length scale depending on k, d, s and D (Equation (4))
S specific area or average area of flat surface per roughness element
S' that part of S not covered by the roughness element
d horizontal dimension of roughness element transverse to flow
k roughness height
k' length scale of Clauser (1956) in Equation (13)
ks equivalent sand-grain roughness height of Nikuradse (1933)
m coalescing factor of Koloseus and Davidian (1966)
s horizontal dimension of roughness element parallel to flow
z vertical distance above test plate or intervening surface between roughness

elements
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AIRFLOW

A reciprocal von Karman's 'constant' = I/K (Table I)
A' constant in Equation (19)
C constant in Equations (8), (10), (11), (12), (17)
C' constant in Equation (19)
Cf roughness element drag coefficient (Equation (16))
F, G notation indicating functional dependence
Km momentum diffusion coefficient
M limiting Reynolds number = u,,6,lv
U velocity at z = 6
b length adjustment of lower and upper velocity profiles through the transition

region
u mean horizontal velocity
uk mean horizontal velocity at height k
us, velocity at upper edge of viscous sublayer
u, total shear velocity = (T/O) / 2

i,* upstream wall shear velocity
u, mean shear velocity for uncovered surface
w, mean drag per element

fB constant introduced in Equation (9)
6 turbulent shear layer or boundary-layer thickness
6, smooth wall sublayer thickness
c von Karman's 'constant'

A roughness concentration =A,IS
v fluid kinematic viscosity
e fluid density
T total shearing stress
4) notation indicating functional dependence which, given certain assumptions,

(kls)f
X, ¢ notation transcribed from Sayre and Albertson (1961)

1. Introduction

Studies of flow over roughened surfaces have developed in two principal directions.
An extensive literature exists for the first of these, which concerns the transition of
a laminar boundary layer to turbulence and the influence of roughness in inducing
transition. Reviews by Dryden (1953) and Tani (1961) may be mentioned in particular.
The second direction of study, which is the topic of this paper, concerns the drag of
roughened surfaces in a fully-developed turbulent shear flow, as in rough pipes or
in the atmospheric boundary layer. In the case of total drag, a wide range of mea-
surements exists, the most complete early work being Nikuradse's (1933) studies using
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sand-roughened pipes. From this work has stemmed the concept of an 'equivalent
sand-grain roughness height' k, which is the basis of the Von Karman-Prandtl resis-
tance law valid at large Reynolds numbers. In any given situation, ks is determined
experimentally in terms of a measurable roughness dimension, usually the roughness
height k, and the ratio ks/k is then invariant for geometrically-similar roughness ar-
rays. An early rough-wall boundary-layer description, not including k, was made by
Corrsin and Kistler (1955).

Many drag problems involve surfaces quite unlike Nikuradse's sand-roughness. The
drag on rivetted ship hulls led Schlichting (1936) to consider regular arrays of rough-
ness elements of simple geometry, and in recent years this work has been extended
considerably (e.g., Roberson, 1961, 1968; Roberson and Chen, 1970). For the par-
allel problem which exists in the lower atmosphere, Lettau (1967, 1969) has proposed
a relationship between the aerodynamic roughness parameter zo and the geometry of
the rough ground cover. Less attention has been given to the question of drag partition
between the roughness elements and the intervening surface, which is an important
factor in studies of soil erosion and of plant growth in partly vegetated areas (Marshall,
1970, 1971). It seems that this stress partition should also be dependent upon geometry.

2. Review of Experimental Studies

Table I summarizes roughness-element configurations used in a wide range of ex-
periments.

Schlichting (1936) used a water tunnel, the working section consisting of two ducts,
each of 4- by 17-cm cross-section and 320-cm length, joined end-to-end with the
roughened test plate forming one of the wider walls in the downstream section. Thus
the velocity profile at the entrance to the second section was already a partially-
developed turbulent shear flow, characteristic of a two-dimensional smooth pipe.

The principal roughness arrays considered by Schlichting comprised transverse rows
of elements distance D apart, with a distance D between rows. Successive rows were
displaced laterally by D to give a 'diagonal' configuration. The main element shapes
were spheres, spherical segments, truncated cones and short right-angled strips made
from metal sheet of thickness 0.03 cm mounted transverse to the flow. He also made
measurements with long strips extending across the test plate. For each configuration
5 or 6 measurements of total drag were made, varying the roughness Reynolds number
over a range of at least 2: 1.

Measurements with regular arrays of cubes have been reported by O'Loughlin and
MacDonald (1964), and O'Loughlin (1965), who used both 'diagonal' and 'parallel'
configurations. In the earlier study, the array covered an area 0.6 x 7.7 m on the floor
of a tilting flume. The later study was performed in an air conduit of section 1.5 x 45.5
cm and 7.4 m long.

Moore (1951) carried out wind-tunnel studies using three arrays, 95 cm by 255 cm,
composed of square bars mounted transversely to the flow, and spaced about 4 times
the bar width. Moore gives the variation of total stress with distance downstream, so
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that the effect of varying boundary-layer thickness 6 can be observed. Recent drag
studies, again using square bars, are reported by Antonia and Luxton (1971).

Bradley (1965, 1968) made surface drag and wind-profile measurements using an
array of short vertical wires, the ratio kid being very large, arranged in a square
pattern on an airfield tarmac. The principal array dimensions were length 26 m and
width 20 m. Bradley's results provide total-stress data with varying 6, as in Moore's
experiments.

Kutzbach (1961) reported wind-profile experiments using arrays of bushel baskets
arranged at various regular spacings in a 60 ° sector on lake ice, the maximum radius
being 55 m. Values of the total shear velocity u, were obtained from profile analysis.

None of this work was particularly concerned with the measurement of stress parti-
tion, although Schlichting made a few studies with a smooth test plate and Bradley
(1965), by removing the roughness elements from the surface of the drag plate, showed
that the surface stress within the array was close to 25% of the local value of total
stress. O'Loughlin (1965) measured shear-stress ratios for several arrays of cubic
elements. Einstein and Banks (1950) measured the change of drag in a flume caused
by the addition of arrays of pegs, small transverse steps, or both together.

Marshall (1971) carried out wind-tunnel experiments to investigate the effect of
changing roughness element shape and concentration (density), both on total stress
and on partition of stress. The test plate, measuring 183 cm by 124 cm, was mounted
in quite a short working section, 69 cm high, with the inlet end coupled to a 4: 1 con-
traction. The roughness elements were vertical cylinders 2.54 cm high with kid ratios
of 2, 1, , 3 and , and 2.54-cm diameter hemispherical elements. The spacing-height
(D/k) ratios were varied from 2 to 50. The drag on individual roughness elements was
measured directly as a function of downstream distance. Total drag measurements
were made over the area of the test plate, using momentum budget and drag balance
methods.

3. Total Drag - Theoretical

3.1. DIMENSIONAL CONSIDERATIONS

In the geometrical description of a roughness array, the number of parameters which
can be considered will not be adequate to specify the element shape and distribution
completely. However, it is assumed here that the drag properties of an array are
basically determined by a limited number of measurable parameters, for which a
single approximate similarity relation to include different arrays may be applicable. Such
a hypothesis is particularly plausible if the boundary-layer profiles are nearly similar for
differing roughness geometries. In this paper, the approach is developed for regular
arrays of roughness elements with finite horizontal dimensions ('three-dimensional'
elements). The 'two-dimensional' case, e.g., that of long strips mounted transversely
to the flow, has been discussed by Liu et al. (1966).

Classical dimensional analysis can be applied to the turbulent wall layer to take
into account the role of relevant length and area scales associated with a roughness
array. Let the z-axis be directed upwards. When the total wall stress is expressed in
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terms of the shear velocity u,, the law of the wall gives, for the profile of mean velocity u,

F zu* z z (1)

u* v 'k'd's'D

which is valid sufficiently close to the wall. Here F signifies an unknown function, v is
the kinematic viscosity, k is the roughness height, d and s are typical horizontal di-
mensions of the roughness elements with d transverse to, and s parallel to, the flow,
while D is the mean element spacing (see Notation). In terms of the specific area S,
or average area of horizontal surface per element, D=S 1/ 2 for 'three-dimensional'
roughness elements. In the cases of most practical interest, when the roughness
Reynolds number ku*/v is large, the argument zu./v may be dropped from (1) for
z = O (k) or greater.

In the outer region of the shear layer where z = 0 (6) ( being the layer thickness),
the velocity-defect law is

=c G .' (2)

in which G is a second unknown function, and U is the velocity at z = 6. For a growing
boundary layer, 6 is a function of x, the distance downstream from the beginning of
the roughness array, and G may be a function of z/x also. This x-dependence is
neglected for 6/x 4 1.

Strictly, F and G are representations of the same function, but are valid in different
regions, subject to restrictions on the relative magnitudes of the parameters. Thus,
F is independent of 6 for 6/k > 1. Again, G does not involve k, d, s and D provided
that these quantities are small relative to 6. Care must be exercised in cases where
D > k. As Schlichting (1936) showed using spherical roughness elements, the secondary-
flow disturbances to the mean-velocity profile extend to a depth of order D in the
shear flow. Hence it is necessary to assume that 6 > D, although not all of the experi-
mental data satisfy that criterion.

Although F and G remain unknown functions, the possibility that there exists a
region of overlap, in which both (1) and (2) are valid simultaneously, can be utilized
to obtain asymptotic representations for that restricted range. This is a standard ap-
proach (Millikan, 1938; Coles, 1956), which is discussed in a modified form in the
following paragraphs. The approach here is that of Landweber (Rouse, 1959), appli-
cable to the case of a growing turbulent boundary layer, where the flow near z = 6
depends upon upstream conditions for which the wall shear velocity, a*, say, may
differ from the local value u,. It is necessary to eliminate a, so that only local 'in-
dependent' quantities occur. If there exists a region of overlap in the range k<z<6
where both (1) and (2) are valid, these equations can be added to give

U aU
-= F (zik, z/d, zis, z/D) + - G (z/6), (3)
u* u*
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where both U/u, and i,/u, are functions of k, d, s, D and 6. Following Landweber,
differentiation of (3) twice with respect to z and elimination of i,*/u, gives

z d2 F / dF d2G /dG

d (z/L)2/ d(zL) l - d12 / dr (4)

where = z/6 and L is a length scale which depends upon k, d, s and D. Then, from
the classical argument, each side of the equation must be a constant, which it will be
convenient to denote by a- 1.

When a=O, two integrations of either side of (4) lead to the logarithmic law. For
a 0, integration of the right-hand side gives the power law

G c r//a + constant. (5)

A similar expression can be obtained for F.
The constant a is also arbitrary. However, in the limiting case where i,=u,, the

above classical argument can be applied after only one differentiation of (3), which
then leads to the logarithmic law, i.e., a=O. It appears that a will be small for *l,lu,
nearly equal to unity. An application of the well-known limit for natural logarithms

- a- (-` - 1) < lnr/< C-t (' - 1)

shows that the difference between (5) and the logarithmic law is also small, for

(r )-1 (/- - 1)= -(}/e l)
2

= O {a(I-- 1)2}, (6)

and -1 is small in the range of validity of G. It seems unlikely that the power law
with a small parameter can be distinguished experimentally from a logarithmic law;
the latter will be assumed to hold for i, , u,.

With this assumption, substitution for G in Equation (2) gives

U-u 1 6
= - In -, (7)

U, K Z

where by convention, K is von Karman's 'constant'.
A similar argument leads to a logarithmic form for the law of the wall involving the

function F. It is then apparent from (1) and (7) that

=F[ zu, z z 1 In (8)u,* v d s D K L (8)

where C tends to a constant limit as ku,lv -+ co, the case assumed in this paper. It is
apparent that the shear velocity u, will depend upon the manner in which k, d, s and
D are involved in the drag per unit area of the rough surface, and this same dependence
must appear in L. If the element form drag is assumed dominant, the stress per unit
area will be proportional to the concentration ;= A,/S, i.e., to the ratio kd/D2 when
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the roughness-element shape is fixed qualitatively, e.g., cube, sphere, cone, etc. This
simple picture is complicated by the fact that near the roughness elements, changes
occur in the near-wake geometry with changes of element dimension in the flow
direction. The data of Wieghardt (1953) and Tillmann (1953) indicate that the drag
decreases with increasing s for s/k=O(1), due to the reduction in volume of the
separation bubble, where considerable dissipation occurs. Evidently an aspect-ratio
factor p (k/s, kid) should be included, and experiments are necessary to determine
its form. Unfortunately, except for the above two references, most experiments appear
to have been made with symmetrical roughness elements for which s=d. Here a very
simple assumption will be made that the dependence of 0 upon kid is small, and that
the dependence upon k/s can be represented approximately, over a limited range, by
the power law 4) (k/s)P, where fi is a universal constant to be determined.

Then if the roughness height k is taken to determine the overall scale of the system,

kd /k\
L=k i:ck k2 ys) ' (9)

The law of the wall (8) then becomes

u 1 z
= - In - + C, (10)

u k 

and the drag law (3) reduces to

U 1 6
-- = In -- + C. (11)
U*. K kib

A drag law closely resembling (11) has been developed empirically for cubic rough-
ness elements by Koloseus and Davidian (1966) and compared with data by Schlichting
and other authors. In their formula, L is replaced by kA7, where the exponent y varies
from 0.9 (cubes) through 0.97 (spheres) to unity for several other forms of roughness
element. Sayre and Albertson (1961) also developed a drag law in which L and C were
combined in a roughness parameter with the dimension of length, =k (), where
¢ is determined empirically for each species of roughness.

3.2. OTHER REPRESENTATIONS FOR THE TOTAL DRAG

Von Karman's (1934) formula

U 1 6
-= - In- + constant

u* K k5

2.5(1n - +2.5
k,

for the drag of a rough plate makes use of the Nikuradse 'equivalent sand roughness,
k , as an empirical length to accommodate changes both in roughness scale and shape.
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From (11), Kc 0.4 and

ks kil exp (2.5 - 0.4C),

this result being valid in the range of validity of (11). Also, since the aerodynamic
roughness parameter zcks, a comparison can be made with Lettau's (1967, 1969)
empirical formula zo 0.5 kU.

Koloseus and Davidian (1966) have collected extensive data describing the variation
of k5 with concentration A; some of the data are summarized in Figure 1, definitions
of terms being included in the caption. A 'coalescing factor' m, constant for a given

k

mk

A
Fig. 1. Variation of equivalent roughness height with concentration of roughness elements (quoted
from Koloseus and Davidian, 1966), indicating the approximate ranges of various 'roughness re-
gimes'. Here roughness concentration = (frontal area per element)/(specific area), k is the equiva-
lent sand-grain roughness height of Nikuradse (1933), and k is roughness height. The 'coalescing
factor' m, introduced by Koloseus and Davidian, has been adjusted empirically to give unit slope

in the straight-line range of the data.

shape of roughness element, has been introduced to bring the data for the low-concen-
tration range on to a single straight line, of slope unity in agreement with (12).

The breakdown of (12), and therefore of (11) occurs when k/mk falls below this
line with the onset of mutual sheltering at the higher values of (the initiation of
'skimming flow') (Morris, 1955). Perry et al. (1969) describe these -dependent regimes
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as 'k'-roughness, and 'D'-roughness. Here, D stands for a pipe diameter. The analogous
scale in our case is the boundary-layer thickness 6, and an appropriate designation
would be '6'-roughness. In '6'-roughness, the space between adjacent roughness ele-
ments contains a stable eddy which aids in the establishment of 'skimming flow'.
The shear layer above the elements is only slightly dependent on k, and is characterized
by u, and the thickness 6; for flat-topped roughness elements, the drag tends to the
smooth-wall value as A - 1. For 'k'-roughness, the eddy between elements is unstable
and is shed into the shear flow to give a turbulent structure scaled to the roughness
height. Perry et al. (1969) envisage reverse flow at the smooth wall between elements
in 'k'-roughness, which can hold only if the near-wake eddy of each element is large
enough to fill the space, i.e., for D = O(k). At small A, re-attachment occurs between
elements and the smooth wall makes a positive contribution to the total drag. This
might be described as 'k, D'-roughness, when D> k, and the flow contains features
depending upon both scales. Figure 1 indicates very approximately the range of each
regime.

The rough-wall friction law proposed by Clauser (1956) envisages a vertical dis-
placement of the smooth-wall profile by the presence of roughness:

U 1 6u, Au
= - In - + constant, (13)

U, K V U,

where
Au I k'u*
-= - In + constant
U, K V

is a measure of the shift. The form of (13) is determined by the fact that the inner law
is independent of viscosity. According to Perry et al. (1969), the length k' is nearly
proportional to k for 'k'-type roughness, and may be proportional to 6 in the ''-type.
For 'k, D'-type roughness, reference to (11) indicates that

k' = kiA (14)

so that, for very small , u/u* is also small.
Antonia and Luxton (1971) have observed developing boundary-layer velocity pro-

files of the form

- ocz2 + constant. (15)
U*

4. Total Drag - Experimental

In relating the total-drag (11) to the experiments reviewed briefly in Section 2, it is
necessary to test whether the plot of U/u, versus In (6/kAG) can be represented ade-
quately by a straight line, and to estimate a best value for the exponent P in (9).

Unavoidable differences occur in the experimental definitions of the quantities U
and 6. Schlichting's experiments involved almost fully-developed, asymmetric duct
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flows, U being taken as the maximum of the velocity profile. This occurs at a distance
6 from the wall, where the mean shear stress changes sign. A corresponding point
would be the free surface in the flume experiments of O'Loughlin and Macdonald.
For the growing boundary layer in a wind tunnel (Moore, Marshall), 6 represents the
nominal boundary-layer thickness and U is the velocity of the uniform free stream.
In the field experiments of Kutzbach and Bradley, however, the boundary layer due
to the artificial roughness array grows in an already-established shear flow, so that
the shear stress is finite at the top of the layer (Elliott, 1958; Panofsky and Townsend,
1964). It is usual to measure U and 6 at the discontinuity on the mean-velocity profile
where the slope changes from that of the growing shear layer to that of the established
flow.

Initial attempts at fitting (11) were made using Marshall's data for cylinders, since
this covered the widest range of parameter values. The mean boundary-layer thickness
6 was not measured in all experiments, but was represented approximately by an
empirical formula, based upon 7 experimental values,

6 3.3+ 15.0(Oq) 0.4 3 [cm].

The dependence upon Ai arises because the roughness array modifies the thickness
of its own boundary layer. The effect on 6 of the coefficient in (9), not determined at
this stage, was found to be small.

A preliminary plot of Marshall's data for U/u, versus logA indicated a dependence
analogous to that shown by ln(k/k) in Figure 1. With increasing InA, U/u, decreased
steadily and linearly until partial sheltering of roughness elements occurred; the drag
'efficiency' then dropped, and U/u, appeared to become stationary. At higher con-
centrations, U/u* should obviously increase.

Attention is directed in Figure 3b, to Marshall's 22 data points (for k/s = kid lying
between 3 and 2) in the range 70 < 6/kO < 2000 where the conditions of the dimensional
analysis appear to be applicable. (The elements of k/s= are excluded from this
analysis for reasons given in Section 5). It had been found that for given P, the trend
of U/u, versus InL for particular k/s was linear, but displaced from the line for any
other value of k/s. However, fitting a least-square straight line to all 22 points indi-
cated a well-defined minimum in the residual sum of squares at ,30.38 (Figure 2).
With this value of /l, which is adopted hereafter, the fit of a second-degree polynomial
produces no significant reduction of the residual variance.

In Figure 3a, the straight line fitted to Marshall's data has the formula given in
Table I (cf. Equation (11)), giving Kct0.25. This unusually low value of K may have
something to do with the restricted size of the duct (cf. Section 2), relative to the
element spacing D. Effects due to the proximity of the 4: 1 tunnel contraction are not
known. Nevertheless, the self-consistency of the data makes it useful for comparative
studies with varying array geometry.

Some of Schlichting's (1936) results are also given in Figure 3a, with the results of
least-square fitting in Table I. The most extensive data involve spheres of two sizes,
for which K 0.42, close to the 'classical' value. For spherical segments, truncated
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TOTAL
DRAG
DATA

/II,
I

N

Fig. 2. Variation with respect to exponent 8 of the ratio - of residual variance to minimum vari-
ance in the least-square fit of straight lines to Marshall's (1970) data. Although a strict statistical

'.F-test' cannot be applied, the figure shows that fi is almost certainly positive.

cones and short transverse strips, the velocity profiles were steeper, with Kc ranging
from 0.33 to 0.37.

O'Loughlin and Macdonald (1964) obtained values of about 0.33 for K from similar
analyses using cube roughness elements in a wide range of concentrations. The data
shown in Figure 3a and Table I are from O'Loughlin (1965). A considerable body of
data for cubes was obtained by Koloseus and Davidian (1966) and is shown in Fig-
ure 3b.

The close grouping of the data for Schlichting's various shapes and for O'Loughlin's
cubes, indicates that the shape description is adequate. A single straight line fitted
to these 116 points has the coefficient values Cw -2.05, A&2.865 so that Kc;0.35.
Recent very careful measurements of wind drag on a natural surface, wheat-crop
stubble (Businger et al., 1971), using both velocity-profile and drag-plate data, lead
to the mean value K:0.3 5.

For measurements made in the atmosphere, the data in Figure 3a incorporate a
- 10% correction for the overspeeding of cup anemometers (Izumi and Barad, 1970).
Kutzbach's data on arrays of bushel baskets exhibit a greater scatter than the laboratory
results, but also fall in the same region of Figure 3a. The agreement between the
different types of roughness element illustrated in Figure 3a is also remarkable because
in several cases, values of k/s are involved which exceed 0(1). For the transverse
strips used by Schlichting, k/st 10. Bradley's (1965) values obtained with vertical
round wires, for varying 6/k, are in good general agreement with the other results,
although k/s=k/dz 23 - an extremely high value.

Several workers have investigated the flow over '2-dimensional' roughness elements
consisting of transverse square bars with various spacing-to-chord ratios. Liu et al.
(1966) varied this ratio over the range 1 to 24 and report a 'maximum roughness' in
the region of 12. Koloseus and Davidian (1966) have collated other square-bar results
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Fig. 3a. Measurements of total shear-stress plotted as U/u, versus ln(6/kAl) for the roughness
configurations summarized in Table I.
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Fig. 3b. Data of Koloseus and Davidian (1966) for cubes in stable flow.

by Powell and by Chu and Streeter. Although Powell's data (included in Figure 3a)
is of the 'k, D'-type, they fall separately from the discrete element data, indicating
that (11) does not take complete account of the geometrical differences. The same is
true of the single point from Chu and Streeter, which is probably close to the ''-type
roughness range.

Square-bar measurements in the 'k'-type roughness range are those of Moore (1951)
and Antonia and Luxton (1971) in which the varying parameter is 6/k. Dependence
on this parameter still appears to be logarithmic although the influence of roughness
geometry is quite different, as noted above. Numerical constants for the square-bar
data are included for completeness in Table I.

5. Drag Partition
5.1. THEORY

Schlichting (1936) defined a roughness-element drag coefficient which will be re-
written here as

w, w,S
C W,= ip, (16)

f ~qu,2A,~ jeu2Ao'
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where w, is the mean drag per element, A, is its frontal area and Uk is the velocity at
the roughness height k above the plane supporting surface; i.e., from (10),

Uk 1 1
. = In - + C. (17)
U* K AO

In general, Cf is not constant, being an unknown function of the roughness geometry.
For an estimate of w,/S, Schlichting applied the formula for drag partition

Wr/S = Qu* - QUgS'/S, (18)

in which S' is that part of the specific area S which is not covered by the roughness
element and u, is a mean shear velocity for the uncovered surface, dependent to
some extent on the (finite) Reynolds number. However, Schlichting assumed that the
second term on the right-hand side of (18) is frequently small compared with the first,
and replaced u,g by an average value (=0.0461a) obtained from measurements using
a smooth plate. The quantity is the mean velocity in the shear layer, equal to
U- U*/K by integration of (7). In this way, values were obtained for C. which tended
to an upper limit as A -*0.

A weakness of Schlichting's approximation is the apparent dependence of u,,Iu,
upon U/u,, implying that Cf is influenced by the outer region of the shear layer. More
recently, O'Loughlin (1965) and O'Loughlin and Annambhotla (1969) have shown
that for low roughness concentrations, the flow below the tops of the roughness
elements is independent of the relative roughness g/k, and so is governed by an 'inner
law' (cf. Section 6). The simplest model based upon these experimental data, and
valid as A -* 0, is to assume that Cf is constant. Then the dependence of (w,lIS)l/ 2 lu*
upon the roughness geometry follows from (16) and (17).

Einstein and Banks (1950) considered the partition of drag due to three sources on
the bed of a flume: the bed itself, small transverse steps in the bed, and arrays of
cylindrical pegs set into it. They arrived at an expression for the total drag by linear
addition of the separate resistances from these three sources which were assumed to
be mutually independent. Measurements over a range of fairly low concentration
(A 10 - 2 to 10- 3) enabled them to insert empirical constants in this expression.

5.2. EXPERIMENTAL OBSERVATIONS

Marshall (1971) made direct measurements of drag on individual roughness ele-
ments within the array configurations described in Section 2. For the plot of the ratio
(wrleS)l/2lu* versus In (l/4), a straight line fitted to the 22 selected points again gives
minimum residual variance for fi=0.38 (Figure 2). As before, a second-order poly-
nomial reduces the residual variance by a negligible amount. The equation of the line
has the form

(W,/QS) 1 /2/u, = A' In - + C' (19)

with A'= -0.179 and C'= 1.63.
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From O'Loughlin's (1965) data, the corresponding values are A'=-0.093 and
C'= 1.16 for cube roughness elements.

Figure 4 illustrates these direct measurements, together with the fitted line (Equa-
tion (19)). However, an equally satisfactory fit to Marshall's data is afforded by
Equations (16) and (17), assuming that Cf = constant = 0.70. As a comparison, Cf Z 1.2
for O'Loughlin's cube data (cf. Roberson (1961)).

The graph indicates that the array k/s= 5, does not group with the other data. A
possible explanation is the breakdown of the 'aspect-ratio' relation = (k/s)", since
4 tends to a constant at small k/s (Tillmann, 1953, Figure 3; Marshall, 1971, Figure 5).
The considerable surface area of the elements may also have produced skimming flow,
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Fig. 4. Measurements of drag partition plotted as (W,/QS)/2/1U, versus n(l/A ) for cylinders, hemi-
spheres, cubes and vertical wires. (See Table I.)
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a possibility supported by the slightly lower total drag observed (cf. Figure 3). An
alternative possibility, the onset of a Reynolds-number transition arising from the
large element diameter, must be ruled out since this would decrease rather than increase
the ratio (w,/QS)t/2/u*.

6. Flow in the 'Wake Region'

O'Loughlin (1965) and O'Loughlin and Annambhotla (1969) refer to the region
z/k=0(), extending below the tops of the roughness elements, as the 'wake layer'.
In this region, the time-averaged flow tends to be three-dimensional in character, and
a one-dimensional model can be only partially adequate. Oil-carbon streak photo-
graphs (cf. O'Loughlin, 1965) illustrate clearly the existence of a 'horse-shoe' vortex,
with horizontal diameter of about 3k, surrounding and streaming from each side of
the roughness element. The formation of this vortex is partly an inviscid-flow phenom-
enon, and arises from the transfer of vorticity in the mean shear flow to vorticity in
the streamwise direction (Squire and Winter, 1951; Hawthorne, 1951; Hawthorne
and Martin, 1955).

For an isothermal incompressible inviscid fluid, one form of the Eulerian equations
of motion is

av 1
-+ grad v2 + - grad p = v x o, (20)
at e

where v is the velocity vector, o (=curly), is the vorticity, t is time, p is pressure and
Q is the fluid density. The vector o can be decomposed into components parallel and
normal to the flow. Taking the divergence of o, using the conditions divo= divv= 0,
gives

v sgrad (co/v) v,- grad + v, t' radad (21)

after elimination of v x o, where each pair of square brackets signifies the scalar triple
product of the enclosed vectors. This gives the spatial rate of increase of vorticity in
the flow direction. In a 'steady' turbulent boundary layer, it is appropriate to take
Reynolds variables v = V +v', etc., where the bar signifies a time average and the prime
a fluctuation from the average. Then, from the time average of (21)

Vgrad (co/v) = V,- gradp, grad (/v)] + cross-correlation terms. (22)

In an unobstructed part of a 'two-dimensional' turbulent boundary layer over a flat
plate, gradf is either zero or may have a component in the direction of V. Thus, the
first term on the right-hand side of (22) is zero. The net effect of the cross-correlation
terms is relatively small, being associated with a gradual increase in the thickness of
the layer. However, the influence of an obstacle, such as a roughness element, is to
introduce a spanwise component in gradf which is not coplanar with and
grad (-2)= - (1/4 ) grad(v-2). Vorticity is then transferred from the mean shear
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flow (where it is directed spanwise) to the direction of the flow. Viewed in the down-

stream direction, the rotation is anti-clockwise for flow passing to the right of a three-

dimensional obstacle and clockwise for flow passing to the left. The directions of

rotation are such as to transport high flow velocities downwards into the space behind

the obstacle, which may create a slight velocity excess there (cf. Schlichting, 1936;

Mons and Sforza, 1968).
Downstream of each roughness element, the break-up of the near-wake vortex con-

tributes energy to the turbulent wake. This turbulence will be scaled to the dimensions

of the roughness element, but will be modified at greater distances downstream to the

scale of height above the intervening wall.

6.1. MEAN-VELOCITY MEASUREMENTS IN AND ABOVE THE 'WAKE' REGION

Velocity-profile measurements for regular arrays of cube roughness elements, with

roughness concentrations i of 1, ' and have been made by O'Loughlin (1965)
and O'Loughlin and Annambhotla (1969). The most detailed results were obtained

in a tilted flume with 0.95-cm elements at A = 4, the mean roughness Reynolds number

being approximately 1100. These measurements which extended down to a dimension-

less height of z/k ; 0.06, were taken at a site from which a roughness element had been

removed. To verify that such a procedure yielded profiles representative of the mean

horizontal flow, O'Loughlin (1965) made supplementary measurements at several

different sites. These indicated little change in profile except in the separation (near-

wake) region close to each roughness element.

O'Loughlin and Annambhotla showed that the velocity profile was not dependent

upon the ratio 6/k when the latter was reasonably large; i.e., the flow in the wake

layer was determined by some kind of 'inner' law dictated by conditions near the

boundary.
A replot of the flume data with A= 4 is given in Figure 5. This shows that the

profile for 0.06 < zlk < 1, can be represented empirically by the relation

u z+b
- z 1.55 In + 10.80, (23)
U* k

where b/k;: 0.15. By contrast, the profile for z/k>2 gives

ulu* 2.50 In (z/k) + 10.80. (24)

Evidently V is very close to 0.4 in this particular case.
Equation (23) is merely a convenient fit to experimental data, but it does suggest

that the shear velocity does not vary greatly with height in a significant part of the

range 0<Oz/k< 1. This is not unreasonable since, for A= , the roughness-element

spacing is at least 8 times the roughness height k, and in the above height range, the

distance to the intervening surface is usually much less than to neighbouring roughness

elements. If the form of (23) is assumed to be the same as that of (24), with the same

value of Ic, a comparison of the two equations gives u,,/u,* 1.55/2.500. 62, where
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Fig. 5. Velocity-profile measurements (O'Loughlin and Annambhotla, 1969) u/u, versus distances
proportional to In(z/k + 0.15) for a cube array with concentration A = 1/64.

u, is the shear velocity at the intervening surface. Thus about 60% of the total stress
arises from drag upon the roughness elements.

From (23) and the definition of u,,, it is possible to write an empirical expression
for the momentum-diffusion coefficient KM:
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The presence of the height z indicates the importance of the distance from the inter-
vening smooth wall. However, turbulent mixing is enhanced by the wakes of the
roughness elements which contribute a positive term Ku*gb to the momentum-diffusion
coefficient, where b is scaled to the roughness geometry for which k is an appropriate
reference length. The observed small value of the ratio b/k (in spite of the high rough-
ness-element drag) may be due to a reduction in eddy scale as the near-wake vortex is
extended in the downstream direction.

6.2. UNIFORMLY VALID REPRESENTATION

Any number of empirical formulae might be found which represent the data of Figure 5
adequately over the experimental range. If (23) and (24) are regarded as asymptotic
expressions, valid for zlk - 0 (excluding the viscous sublayer) and zk - 0o, respec-
tively, a representation which holds in the same manner at both ends of the range
might be termed uniformly valid. The expression

* + (1 - e- k n Zb +C (26)
u, K *,u\ u / k

is a simple and effective choice, involving no additional parameters. For K0.4,
b/kz0.15, C 10.8 and u,,*u,* 0.62, (26) follows very closely the curve of best fit
shown in Figure 5.

Presumably b is a function of the spacing D of the roughness elements, but there
are no data available to establish the dependence with any certainty. From dimensional
considerations, the relation b/k; 1.2k/D appears reasonable for cube roughness ele-
ments, where the coefficient may be related to the drag coefficient Cf (see Section 5).

6.3. Viscous SUBLAYER

The representations (23) and (26) are not valid close to the intervening surface as
the viscous region is approached. Following O'Loughlin and Annambhotla (1969), let
the smooth-wall sublayer thickness 5, be scaled by a limiting Reynolds number
M=u,gs/v and, within the viscous sublayer, put ug =vu/b approximately, where
Us is the velocity at the outer edge of the sublayer. From these relations., uu =

= Mu,*gu,, while, by extrapolation of (23) down to the wall,

u/u, 1.55 ln(0.15) + 10.80 ; 7.86.

With u,/u*, 0.62, these give M& 12.7, which is not significantly different from the
average value of 12.2 found by O'Loughlin using a different profile assumption. These
results are in good agreement with the measurements of other workers in the viscous
sublayer over a smooth plate. See, for example, the data collated by Thwaites (1960,
p. 58).

7. Conclusions

It has been demonstrated that the aerodynamic resistance of a surface covered with
discrete roughness elements in a regular pattern may be described by universal laws
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involving the geometry of the rough surface, and the nature of the boundary layer
associated with it.

The dimensionless groupings which characterize the roughness are the 'concentra-
tion' ratio, element frontal area/surface area per element (A,/S), and an element 'shape
factor', height/thickness (k/s). These are found to combine as

S Vsa]

The scaling parameters for the boundary layer are its thickness 6 (where velocity
= U) and the shear velocity u,. The resulting drag law

U 6
= 2.87 In - 2.05 (27) (from 11)

u, ki2

is valid over a range 30<6/k.q <2000 in which the total resistance is partitioned
between bluff body drag on the obstacles, and shear on the intervening floor, i.e.,
it is influenced by both the obstacle height and spacing, and has thus been designated
the 'k, D'-roughness regime (Figure 1). Within this regime, Equation (27) is supported
by experimental data from a variety of obstacle shapes and flow conditions. Data
which do not conform to the universal function (27) are those for long bars laid across
the width of the flow section. This form of roughness, used by many workers, may
possibly be regarded as a one-dimensional horizontal pattern in contrast with the
two-dimensional pattern which the geometrical ratios A,/S and k/s characterize suc-
cessfully. Furthermore, bar data from several sources encompassing the three pro-
posed concentration regimes 'k, D', 'k' and '6', demonstrate in Figure 3a that the
resistance law is strongly 'regime-dependent'.

The constant 2.87 in (27) is identified with the reciprocal of the von Karman
constant K, implying therefore a value of Kc close to 0.35. It should be pointed out,
however, that the data have been adopted uncritically for the purpose of the least-
square fit and serve primarily to caution that the magnitude and the constancy of von
Karman's 'constant' has yet to be established.

The proportion of total drag dissipated as bluff body forces on the obstacles may
also be represented in terms of the geometrical group AO. If the force per element w,
is expressed as a proportion of the total shear stress, the limited amount of relevant
data supports an empirical drag partition equation of the form

(W,/QS)/ 2 /u, = A' In + C',

valid as before, over the regime of 'k, D'-roughness.
An alternative approach specifies the force on an element in terms of a drag coeffi-

cient referred to the wind speed at the top of the elements

Cf = (w,l/S)/QUk.

Use can be made of this definition with the aid of two assumptions; that Cf is roughly
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constant for a given species of element over a significant range as -+0 and that
Equation (10) is valid at z=k. Figure 4 demonstrates good agreement between the
drag partition calculated in this way for arrays of cylinders and cubes. For practical
purposes this procedure may provide a reasonable estimate of the drag on individuals
in an obstacle array, provided that their shapes and appropriate Cf' s can be specified.

The mechanism through which the wakes from individual elements interact with
the flow around and between them can be analysed in terms of a transformation of
shear-induced vorticity in what has been termed the 'wake layer'. The concept, for
'k, D'-distributions, of positive and essentially uniform drag over the majority of the
intervening surface, leads to a coherent description of flow in the wake layer. Data
for an array of cubes yield a logarithmic velocity profile when the height scale is
augmented by a small factor b/k, where b is presumed to be a function of the array
geometry. From this profile may be deduced the shearing stress ug appropriate to
the intervening surface and a turbulent momentum diffusion coefficient which includes
a small quantity Kcu*,b which, it is proposed, is the contribution from element wakes.
A single expression has also been found, to represent this velocity data continuously
through both the wake and boundary layers.

When the surface stress is combined, through the wake-layer profile, with an as-
sumed linear velocity gradient u,/6s across the viscous sublayer, the quantity u*,6lv =
= 12.7. This is very close to values reported for the viscous sublayer over an unob-
structed smooth plate.

The above analysis arose from such environmental problems as soil erosion and
wind sheltering where the drag forces on shrubs and the bare ground between them
is an important factor. In fact, the configurations which have been considered here
occur rather frequently on the earth's surface, in forest plantations, orchards, young
crops and the arrays of cubes in suburbia.

Apart from the variability of natural wind, and the added complication on most
occasions caused by a convective component of turbulence, the most notable differ-
ence between these examples and the data considered in this paper is that of length
scale. The most careful and detailed measurements available are obviously those made
with laboratory techniques and to obtain results of comparable accuracy in the atmo-
sphere is extremely difficult. However, successful accommodation into the framework
outlined here of the few atmospheric results, should encourage micrometeorologists to
attempt further measurements of drag partition and velocity distribution in the vicinity
of objects on the earth's surface.
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