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Abstract. An analytic treatment of drag and drag partition on rough surfaces is given. The aims are 
to provide simple predictive expressions for practical applications, and to rationalize existing laboratory 
and atmospheric data into a single framework. Using dimensional analysis and two physical hypotheses, 
theoretical predictions are developed for total stress (described by the square root of the canopy drag 
coefficient), stress partition (described by the ratio TS/T of the stress rs on the underlying ground 
surface to total stress T), zero-plane displacement and roughness length. The stress partition prediction 
is the simple equation TJT = l/(1 + PA), where p = C&I& is the ratio of element and surface drag 
coefficients. This prediction agrees very well with data and is free of adjustable constants. Other 
predictions also agree well with a range of laboratory and atmospheric data. 

1. Introduction 

When one considers the drag exerted on a rough surface by deep, fully developed, 
turbulent boundary-layer flow, one immediately confronts two problems which are 
simple to state but, as yet, remain unsolved in general. Firstly, given a particular 
roughness geometry, what is the total surface drag or drag coefficient? Secondly, 
what is the partition of drag between the roughness elements and the underlying 
substrate surface? This paper attempts a fairly general, approximate treatment of 
both questions, independent of the numerous practical applications. The specific 
practical issue which motivated this work - how roughness elements ameliorate 
wind erosion - is treated in another paper (Raupach et al., 1992). 

The first question - that of total drag - has been the subject of extensive 
experimental studies in both laboratory and atmospheric layers: see, for example, 
reviews by Yaglom (1979) and Raupach et al. (1991). The drag (the total shear 
stress on the rough surface, or the downward flux density of streamwise momentum 
to the surface) may be specified with a drag coefficient 

C,(z) = dpu(zy = u’,lLqz>’ 7 (1) 

where U(z) is mean velocity at height z, T total surface shear stress, p air density 
and u;k the friction velocity, defined by 7 = pu$. (The coordinates x, y, z lie in the 
streamwise, lateral and vertical directions, respectively, with z = 0 the underlying 
substrate surface). An alternative specification of the drag is through the roughness 
length z. in the logarithmic law for the mean velocity profile in the inertial sublayer 
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or logarithmic layer, 
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(2) 

where K (- 0.4) is the von Karman constant and d is the zero-plane displacement 
or height of aerodynamic origin. Unlike C, (which is z-dependent), z. depends 
only on geometric properties of the surface, such as roughness element height h, 
breadth b and spacing D, provided the flow is dynamically fully rough. An approxi- 
mate condition for fully rough flow is hu*/ v > 5.5, where v is the kinematic viscosity 
(Bandyopadhyay, 1987); if this condition is not met, then z. also depends on Y. 
This work is restricted to the fully rough case. 

The extensive measurements available on rough-surface drag have been summa- 
rized in several surveys; see the reviews cited above. One way of summarizing the 
relationship between drag and surface structure is to plot the ratio zolh against 
the roughness density (or frontal area per unit ground area) 

h = bhlD2 = nbhlS , (3) 

where it roughness elements occupy ground area S. Data for both laboratory 
and atmospheric roughness show that zolh increases roughly linearly with A for 
0 < A < A,,,, where A,,, is of order 0.1 to 0.3, and decreases with further increase 
in A. The maximum zolh value (of order 0.1 to 0.15) and the precise form of the 
function [zolh]( A) both depend on the geometry of the roughness elements. 

In contrast with measurements, there have been few attempts to formulate 
general theories for rough-surface drag. Lettau (1969) proposed, and Wooding et 
al. (1973) formally justified, a linear relationship between zolh and A at low 
roughness densities (A G A,,,). Shaw and Pereira (1982) used a one-dimensional 
(vertical) second-order closure model of transfer in a vegetation canopy to investi- 
gate the variation of zolh and d/h with A, finding behaviour approximately in 
agreement with the rather scattered available data for vegetation (Raupach et 
al., 1991). However, it is unlikely that a one-dimensional model can describe 
satisfactorily the highly three-dimensional flow among sparse roughness elements 
(A < hnax). 

The second question posed at the outset, that of drag partition, has been far 
less intensively studied than that of total drag. The total stress r can be split into 
a stress TR on the roughness elements and a stress rs on the underlying surface: 

‘?- = @& = TR + 7s. (4) 

The partition problem is to determine the ratio T.S/T (or rR/r = 1 - rs/r) and its 
variation with A. Note that in this paper, TV is defined as the area-averaged force 
on the substrate surface per unit ground area S. The area-averaged force per unit 
exposed ground area is oh = (S/S ‘) rs = ~~/(l - p), where S’ is the exposed 
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ground area and p = 1 - (S’/S) is the basal area index (basal element area per 
unit ground area), analogous to the frontal area index h defined by (3). 

The most complete data on drag partition come from the wind tunnel experi- 
ments of Marshall (1971), who measured 7 and 7R separately for a variety of 
cylindrical and hemispheric roughness elements for A between about 0.0002 and 
0.2, thence determining TV by difference. The measurements of T came both from 
drag plates and from momentum integral balance considerations (which agreed), 
while rR was measured by mounting individual elements on a drag balance. 
Theoretical approaches to the problem began with Schlichting (1936), who first 
wrote the partition equation (4). Wooding et al. (1973) suggested that m 
varies linearly with ln(l/ A) = -ln( A), while Arya (1975) produced a drag partition 
theory for two-dimensional obstacles transverse to the wind direction, with some 
points of similarity with the present work. A detailed comparison of these theories 
with the present work is given in Section 5. 

This paper outlines a simple analytic treatment of drag and drag partition on 
rough surfaces. Without attempting to offer a complete solution to either of the 
problems posed at the outset, the aims are to rationalize the existing observations 
into a single framework, and to provide simple predictive expressions for practical 
applications, especially for drag partition. The approach is based on scaling and 
dimensional analysis. A detailed dynamical treatment of the turbulence within the 
roughness canopy is replaced by two heuristic assumptions, one about the scales 
controlling an element wake in a turbulent boundary layer, and a second about 
how element wakes interact. 

The present paper is essentially a companion to Raupach et al. (1992), which 
considers how the threshold for wind erosion is increased by placing nonerodible 
roughness elements on an erodible surface. Predictions are derived from the 
present theory for drag partition and shown to agree well with several sets of 
measurements. 

2. Definitions and Hypotheses 

An individual roughness element (one of a population of elements on a rough 
surface) has a turbulent wake which exists within a deep turbulent boundary layer. 
Taylor (1988) pointed out that the presence of the substrate surface and the 
ambient boundary-layer turbulence both make the roughness-element wake more 
complicated than the well-known wake of an obstacle is a non-turbulent free 
stream. For instance, the drag on a surface-mounted roughness element does not 
satisfy a simple momentum integral constraint equivalent to the relationship F = 
pUJ for a wake of an obstacle in a free stream (e.g., Batchelor, 1967; Lighthill, 
1986) (here F is the drag force on the obstacle, U the free stream velocity and J 
the volume flux deficit in the wake, equal to the velocity deficit integrated over 
the wake cross-section). Also, a turbulent wake in a free stream is self-similar in 
the far field, with a cross-stream length scale proportional to x*‘~ or xl’3 (for two- 
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and three-dimensional wakes, respectively), but no such simple results can be 
obtained unequivocally for surface-mounted roughness elements. Hence, experi- 
ence with free-stream wakes is not a good guide to the wake and shelter properties 
of surface-mounted obstacles in turbulent boundary layers. 

The starting point of the present approach is to characterize the wake of an 
isolated roughness element placed on the surface in terms of an effective shelter 
urea A and an effective shelter volume V which are amenable to scale analysis. 
The area A, which describes the reduction of ground (substrate surface) shear 
stress TV in the element wake, is defined as the area integral of the normalized 
ground stress deficit: 

(5) 

where r&r, y) is the actual ground stress at the point (x, y) and 7So the unsheltered 
ground stress in the same wind conditions, equal to T&X, y) far from the isolated 
element. Conceptually, A is the area within which the stress on the ground must 
be set to zero, to produce the same integrated stress deficit as that induced by the 
sheltering element. Figure 1 illustrates this definition, idealizing the effective 
shelter area as a wedge-shaped shadow in the lee of the element. Note that the 
shelter area A includes the basal area of the element itself. 

The effective shelter volume V describes the effect of a given roughness element 
upon the drag forces on other elements in its vicinity. To obtain a formal definition 
analogous to that for A, we consider the local force per unit volume, $, on a 
sparse array of test obstacles: 4 = P(YC& U)U2, with CE( U) the drag coefficient 
of a test obstacle and (Y the frontal area density (frontal area per unit volume) of 
the test array. (In this paper, drag coefficients are defined without a factor l/2, 
in accordance with meteorological rather than aerodynamic convention). The test 
array must be sparse ((Y +O) so that it senses, but does not modify, the drag 
properties of the flow. Then V can be defined as the volume integral of the 
normalized deficit in 4 which is induced by placing a “sheltering” roughness 
element into the test array: 

(6) 

where the subscript 0 denotes the undisturbed conditions far from the sheltering 
element. This volume is that within which the drag force on the array of test 
obstacles must be set to zero, to produce the same integrated force deficit as that 
induced by the sheltering element. This definition is also illustrated in Figure 1, 
again idealizing the effective shelter volume as a wedge-shaped region. As in the 
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Fig. 1. Definition sketches for effective shelter area and effective shelter volume. 

case of shelter area, the shelter volume V includes the volume occupied by the 
sheltering element itself. 

Two hypotheses are now introduced, one to specify the external scales con- 
trolling the shelter area A and volume V for a single roughness element, and the 
second to describe interactions between roughness elements. 

Hypothesis Z 

For an isolated roughness element of breadth b and height h in a deep turbulent 
boundary layer with friction velocity U* and mean velocity U,, at height h, the 
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effective shelter area A and volume V scale as 

A - b2 U/,lu~ , 

V - b2h UJu* , 

in the case where h is significantly greater than b, and as 

A - bh U/,/u*, 

V - bh2 U,,lug , 

(74 

P’b) 

in the case where h is significantly less than b. 
A physical basis for this scaling is as follows: in the near-wake region, the wake 

of an isolated roughness element is bounded by strong shear layers in which the 
vorticity is locally high, with the vorticity vector lying approximately in the plane 
of the local shear layer and normal to the local mean flow direction. This vorticity 
advects in the streamwise direction at a velocity of order Uk, and spreads by 
turbulent diffusion in the cross-stream direction with a velocity of order u*, 
determined by the ambient turbulence in which the shear layer exists (a different 
situation from a wake in a uniform free stream, which is controlled by the wake 
turbulence itself). Hence, the shear layers bounding the wake spread at an angle 
of order UhIu* to the streamwise direction. Finnigan et al. (1990) used similar 
arguments successfully to infer the depth of the inner layer (the region of strongly 
modified turbulence) for wind flow over a hill. It follows that the strongly sheltered 
region behind the element is roughly the shape of a tapered wedge with semi- 
angle of order Uh/u*, as in Figure 1. The ground area and volume of this wedge 
scale according to (7a) or (7b), depending on whether the area and volume are 
limited by lateral growth of the shear layers (when h % b, giving (7a)) or vertical 
growth (when h 4 b, giving (7b)). 

Based on (7a) and (7b), A and V can be expressed in general as 

A = c;(blh)P bh iJJu* , 

V = c;(blh)P bh2 UJu* , 
(7c) 

where c; and c; are O(1) constants of proportionality, and the power p depends 
on blh: p = 1 when blh + 0, and p = 0 when blh + ~0. It is convenient to write 
cr = c;(blh)P and c2 = cJ(blh)P, so that (7~) takes the simpler form 

A = cl bh iJhlu~ , 

V = c2 bh2 U/,/u* . 
(74 

Hypothesis ZZ 

When roughness elements are distributed uniformly or randomly across a surface, 
the combined effective shelter area or volume can be calculated by randomly 
superimposing individual shelter areas or volumes. 
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The rationale for this hypothesis is that actual velocity and ground stress deficits 
in the wake of an element are spread over a large region (in comparison with the 
area A and volume V) by the randomizing effect of the ambient turbulence in the 
flow. This is a plausible picture because the velocity and length scales for the 
ambient turbulence over a typical rough surface are both substantially larger than 
the corresponding scales for the wake turbulence (Raupach et al., 1991). 

Two further comments need to be made about Hypothesis II. First, the hypo- 
thesis not only specifies the degree of interaction between element wakes, but also 
asserts that the interaction is dependent only on the roughness density h and not 
on the arrangement of roughness elements on the surface. Empirically, this is a 
reasonable approximation (Marshall, 1971). Second, there is a small contradiction 
in assuming that random superposition of shelter areas (or volumes) can apply to 
that part of the shelter area (or volume) corresponding to the basal area (or 
occupied volume) of a roughness element. Since two solid elements cannot occupy 
the same space, basal areas and occupied volumes cannot be randomly superim- 
posed in the way that Hypothesis II suggests. Rather, the basal areas and occupied 
volumes should obey mutually exclusive superposition. At the cost of extra com- 
plexity, a theory could be developed to account for this. However, the complica- 
tions would not be worthwhile because (a) the basal area and occupied volume 
are fairly small fractions of the shelter area and volume, respectively, so the error 
incurred by assuming random superposition is also fairly small; (b) the error is 
insignificant in any case at low roughness density (more exactly, when the basal 
area index p is less then about O.l), because the difference between random and 
mutually exclusive superposition is then negligible. 

It is clear that neither of Hypotheses I and II is an exact statement; rather, both 
are physically based approximations to permit a straightforward analysis. The 
main limitation on both is likely to occur at high roughness densities A, where 
element wake interactions become so strong that there is no possibility of regarding 
individual wakes as separately identifiable. 

3. Stress on the Ground and on the Elements 

STRESS ONTHE GROUND 

Using the above hypotheses, we consider the attenuation of ground (substrate 
surface) stress as roughness density increases. Suppose that IZ roughness elements, 
each with effective shelter area A, are successively placed on a large area S of the 
substrate surface, with the velocity U, held constant as elements are added. When 
n = 1, (5) implies that 

T&z = 1) 
T&z = 0) 

&, 

where TV is now an average value over the large area S. (Henceforth, all stresses 
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are large-area averages). As more elements are added, Hypothesis II (random 
superposition) implies 

Ts@) _ 

n 

7s (0) ( > 

l-$ 

which, on introduction of the roughness density h with (3), becomes 

7s(13)= 

n 

7s (0) ( > 

1-z . 

Taking the limit it + m with h held constant (which means S + w), using the well- 
known result (1 + x/n)” + e” as IZ + ~0, and substituting for A with (7d), it follows 
that 

TS(4 -=exp(-E)=exp[-c,(z)*], 
rs@) 

(11) 

which shows how the stress on the ground is reduced as h increases while Uh is 
held constant. A more useful expression is obtained by introducing an unob- 
structed drag coefficient Cs for the substrate surface, such that 

Ts( A = 0) = PC.& (12) 

so that (11) becomes 

T~( A) = pC,UZ exp -cl [ (31 
indicating how rs is determined both by Uz and the effect of shelter, which is 
described by the exponential factor. 

STRESS ON THE ROUGHNESS ELEMENTS 

The drag force @ on an isolated roughness element may be written as 

@ = pC,bhU2, , (14) 

where C, is the drag coefficient for an isolated, surface-mounted roughness ele- 
ment, referred to Uh as a reference wind speed. Measured values of C, for several 
kinds of roughness element were collected by Taylor (1988) (who defined C, with 
a factor l/2 in (14)). These data suggest C, = 0.25 for vertical-axis cylinders in 
the range of Reynolds numbers huh/v between about lo3 and 105, over which C, 
is expected to be roughly constant by analogy with the drag coefficient for a 
cylinder in a free stream. For cubes, the data give C, = 0.4 with a slight depen- 
dence on cube orientation; little Reynolds number dependence is expected in this 
case because of the sharp-edged nature of the obstacle. 
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If n elements are placed on ground area S, the force per unit ground area acting 
on these elements is 

where Hypothesis II (random superposition of effective shelter volumes) has been 
invoked as in (9)) with the shelter effect of each element regarded as acting entirely 
within the total volume of the roughness canopy envelope, Sh. Applying (3) and 
(14), this becomes 

(16) 

so that, substituting for V using (7d) and allowing y1+ CO with A held constant as 
before, we obtain 

T~( A) = hpCRUZ exp - 5 
( > 

= hpCJJ2h exp -c2 [ (Z)“] . (17) 

This shows that TR increases linearly with A in the limit A + 0, but as A increases, 
mutual sheltering progressively attenuates TR. 

Both 7S and TR are now specified in terms of roughness geometry, by (13) and 
(17), respectively. Hence, both the total stress T = TR + TV and the stress partition 
ratio T~/T can be found. 

4. Total Stress 

From (13) and (17), the total stress is 

7 = 7s + T~=pui c eXp { s [-cl($)A]+ 

+ AC, exp -cZ 
[ (:)All* 

(18) 

A slight complication is introduced by the appearance of the factor 
u&l* = ((puh)2/T)1'2 in the exponents on the right-hand side, which account for 
sheltering of the surface and the roughness elements, respectively. Physically, this 
arises because roughness elements become less effective at shelter as the turbulent 
intensity increases, as indicated in (7). Mathematically, the consequence is that 
(18) is an implicit equation in T, or more conveniently in the variable UhIu* = y 
(the inverse of the square root of the bulk surface drag coefficient at the roughness 
canopy height, y -’ = u*l Uh). To solve (18), it is helpful (though not necessary) 
to assume that the O(1) coefficients cl and c2 are equal, say cl = c2 = c. Loosely 
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Fig. 2. The function Xexp( - X), illustrating the solution of (20). 

speaking, this is an assertion that elements shelter the ground and each other with 
the same efficiency. In fact, the solution has negligible dependence upon the ratio 
clIcz, as discussed at the end of this section. 

Setting cl = c2 = c and y = UJu*, (18) becomes 

y = UhIuk = (Cs + ACR)-l12 exp(chyl2) , (19) 

which is an implicit equation specifying y as a function of A, of the form 

XeCx = a (20) 

in the y-like variable X, where 

X = chyl2, a = (Cs + ACR)-1’2~hy/2. (21) 

A sketch of the function XeCx (Figure 2) shows that (20) has the following 
properties: 

0 < a < e-l: two solutions, X1 < 1 and X, > 1; 

a = e-l: one solution, X = 1; 

a > e-l: no solutions. 

The correct solution from the pair X1 and X2 can be chosen by noting that X+ 0 
and a + 0 when h --i, 0, both from physical considerations and from (21). Since 
there can be only one physical solution to (20), the smaller solution Xi is the 
right choice and X, can be discarded. It is easy to calculate X1 iteratively; rapid 
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Fig. 3. Prediction of (19) (solid lines) and extrapolation (23) (dashed lines) for y-l = u*/Uhr with 

C, = 0.30, C, = 0.003 and c = 0.25, 0.5 and 1.0. Points: data sets RTE, OL and GJR. 

convergence is produced by writing (20) as Xi +1 = a exp(Xj) and taking X0 = a. 
From this solution of (20), the solution y of the implicit Equation (19) follows 
immediately. 

Figure 3 shows the solution of (19) as a plot of y-l = Z.&U, against A, with 
parameters CR = 0.30, C, = 0.0003 and c = 0.25, 0.5 and 1.0. The solution has 
several characteristic properties. First, u*/Uh increases with A to a maximum value 
(say at A = A,,,), decreasing thereafter. Second, u*IUh decreases as c increases, 
since c is like an extinction coefficient specifying the effectiveness of shelter in 
attenuating total stress. Third, the dependence of u+JU,, on c is negligible at small 
A because shelter is negligible; the corresponding solution of (19) in the limit 
A 40 is simply y-l = u*IUh --i, (Cs + ACJ”‘, independent of c. This limiting 
solution is a fair approximation in practice for A less than about 0.1. Fourth, a 
solution of (19) exists only when A is less than a critical value A,, usually slightly 
higher than A,,,. This happens because (20) has no solution when a > e-r; thus, 
from (21), 

A = CR + V/c: + 4Cs(ec/2)’ 
c 

2(ec/2)’ (22) 

which is the termination of each solution curve in Figure 3. A physical interpreta- 
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tion of the critical value A, does not seem possible. Instead, the nonexistence of 
solutions of (19) for A > A, is best interpreted as indicating the limitations of 
Hypotheses I and II at high A values. 

Also shown in Figure 3 are data on u*lU, from three sources: 

RTE: wind tunnel data on the variation of Z.&U, with A for five rough surfaces 
with 0.011 < A < 0.18 (Raupach et al., 1980). The roughness elements 
were vertical-axis cylinders with h = 6 mm and b/h = 1, placed on a 
smooth substrate. Values of U, ranged from 12.3 to 5.8 m s-l, from lowest 
to highest A, while U* ranged from 0.63 to 1.07 m s-l. The roughness 
Reynolds number Rh = hu*lv was about 400, ensuring fully rough flow 
(which requires Rh > 55). 

OL: wind tunnel data for three arrays of cubic elements (b/h = 1) on a smooth 
substrate (O’Loughlin, 1965). Values of A were l/256, l/128 and l/64. 

GJR: low-level (z = h) drag coefficient data from 14 vegetation canopies and 
wind tunnel models of canopies, from data summaries by Garratt (1977), 
Jarvis et al. (1976) and Raupach et al. (1991). For these vegetated surfaces, 
b/h is typically less than 1, though it is difficult to specify precise values 
in most cases. 

For the wind tunnel data sets RTE and OL, independent values of the drag 
coefficients C, and CS can be obtained. Values of C, are about 0.25 for cylinders 
and 0.40 for cubes in the relevant range of hlJ,,lv (Taylor 1988); the theoretical 
curves in Figure 3 are calculated using the single value C, = 0.3. To evaluate C, = 
(z.+IUh)* (where Key = (rSIp) “* is the friction velocity for the smooth substrate), 
one may use the law of the wall for a smooth surface, U (z)lues = 
K-l hl(Zu*s/v) + B with K = 0.4 and B = 5. The result for C, is weakly dependent 
on Reynolds number and must be calculated recursively at the experimentally 
given value of Uh, but calculated values for both the RTE and OL data sets fall 
within about 20% of C, = 0.003, which is the value used in Figure 3. 

The solution of (19) succeeds in predicting the general behaviour of the wind 
tunnel data sets, RTE and OL, with c = 0.5 and thence c; = c; = 0.5 in (7c), since 
b/h = 1 for both data sets. Also, the single value 0.3 for C, fits both wind tunnel 
data sets equally well; in fact, both sets appear to lie on the same experimental 
curve. There is some uncertainty about the experimental CR values of 0.25 and 
0.4 for cylinders and cubes, respectively (Taylor, 1988), and it is possible that a 
common value closer to 0.3 is more representative in this situation, a suggestion 
consistent with the near-coincidence of experimental curves of zolh against A for 
both types of roughness elements (Koloseus and Davidian, 1966; Wooding et al., 
1973). 

The canopy data in GJR encompass high A values at which Hypotheses I and 
II are almost certainly untenable. At these roughness densities, the surface be- 
comes “over-sheltered”, so that the addition of more roughness has no further 
effect on u*IUh; instead, a progressively larger volume fraction in the lower 
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part of the roughness canopy is effectively stagnated, thereby removing it from 
interaction with the flow from the drag point of view. This implies that u*lU, 
approaches a constant value at large A, a suggestion confirmed by the GJR data 
in Figure 3. It follows that a sensible extrapolation of u*IUh to high A is 

(23) 

where y is the solution of (19). The extrapolation (23) is shown by the dashed 
lines in Figure 3. As shown later, (23) fits the GJR canopy data well when c = 0.37. 

The final point concerning total stress is the validity of the assumption cl = cz 
made after (18). An iterative solution of (18) is also possible when cl # c2. This 
solution has been computed with cl/c2 varying over the wide range 0.1 to 10; it 
differs negligibly from the solution (19), that is, from the case cl = c2. The physical 
reason for this result is that the contribution of TV to the total stress T is significant 
only when A + 0.1; in this A range, the effect of shelter on TV (which is described 
by cl) is insignificant. Thus, the value of cl is immaterial in practice for the total 
stress. 

5. Stress Partition 

The ratio of stress on the surface to total stress is given by (13) and (17): 

7s CS exp[--c,(UtJu&l 
T= Csexp[-cl(Uhlu*)A] + ACR exp[-c,(U&*)A] * 

(24) 

With the assumption cl = c2 = c made before (19), this becomes simply 

7.S 1 7R PA -=- -- 

7 l+pA’ T- l+pA’ 

where p = CR/C, is the ratio of element to surface drag coefficients. The stress 
partition is controlled entirely by p. 

The stress partition data of Marshall (1971) ( see Introduction) are compared 
with (25) in Figure 4, using Marshall’s partition parameter (~~/r)l’~ as the ordin- 
ate. The prediction uses the independent drag coefficient values CR = 0.3 (as in 
Figure 3) and Cs = 0.0018 (calculated for the conditions of Marshall’s experiment 
from the law of the wall, as for Figure 3). Taking the data set as a whole, the 
agreement of theory with experiment is very close and is probably within the 
experimental scatter. Some indication of that scatter is given by the few points at 
high A for which the measured value of rR/r slightly exceeds 1, which is physically 
implausible and reflects small measurement errors. Both theory and data agree 
that stress partition is insignificant (in the sense that rR/r is close to 1 and TS/~ 
is very small) when A exceeds a value in the range 0.03 to 0.1. The data also show 
a small systematic trend with aspect ratio b/h: at given A, T~/T first decreases and 
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Fig. 4. Prediction (25) for stress partition, with CR = 0.3 and C, = 0.0018, compared with data of 
Marshall (1971). Ordinate is Marshall’s stress partition parameter, (~~17)“‘. Data are for cylinders 
with b/h = 0.5, 1, 2, 3 and 5, and hemispheres (b/h = 2). Also shown are predictions (25’) (Wooding 

et al., 1973) and (25”) (Arya, 1975). 

then increases again as b/h increases. This trend may reflect a dependence of the 
element drag coefficient CR, and thence /3 = CR/C,, on b/h. 

As in the case of total stress, one can check the sensitivity of the stress partition 
prediction to the assumption cl = c2. Allowing cl/c2 to vary about 1 reveals a very 
slight, practically insignificant sensitivity of the prediction of (24) to c1/c2. Increas- 
ing cl/cz from 1 to 3 changes rR/r by only 5% at most. Decreasing cl/cz from 1 
to l/3 has a negligible effect on rR/7 in the range 0 < h < 1, but causes difficulties 
when A + 1 because (24) implies rR/r + 0 as A + ~0 if cl < cz; this contradicts 
the physical requirement that TJT -i, 1 as A + ~0. Thus, (24) yields the physical 
constraint c I 3 c2 on cl and c2, though this condition is unimportant in practice 
because the assumption cl = c2 is adequate. 

The stress partition prediction (25) is directly comparable with two other predic- 
tions in the literature. Wooding et al. (1973) suggested that 

112 

TR ( > - = al ln(llh) + a2 
7 (25’) 

with al and a2 treated as empirical constants. This prediction is shown in Figure 
4, with al = -0.18 and a2 = 1.60. It appears as a straight line which matches the 
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data well over a wide but limited range of A. The limitation arises because (25’) 
cannot be valid in either the low-h or the high-A limit, since it does not satisfy the 
physical requirements Q-~/T + 0 as A + 0 and ~~/r + 1 as A + ~0. 

Arya (1975) developed a stress partition theory* for two-dimensional obstacles 
transverse to the mean wind, using physical hypotheses somewhat different to 
those made here. He obtained a prediction’ which can be written as 

1 -l, (25”) 

where a3 (- 20) is an empirical constant related to the streamwise distance required 
for surface stress recovery downwind of an obstacle, normalized by obstacle height. 
This prediction is also shown in Figure 4, using the same values for CR (0.3) and 
C, (0.0018) as above. It agrees nearly as well as the present prediction (25), 
differing only at high A where it predicts rR/7 > 1, which is physically implausible; 
Arya (1975) explicitly excluded this A range from his discussion. 

The main difference between the present theory and that of Arya (1975) is that 
(25) is free of adjustable constants, whereas (25”) is not. This occurs because the 
present theory assumes that obstacles shelter one another as well as the substrate 
surface, whereas Arya accounts for shelter of the substrate surface only. In the 
present theory, the effect of shelter appears through exponential drag attenuation 
factors with decay constants cl (for the substrate surface) and c2 (for the roughness 
elements); taking cl = c2 = c leads to cancellation of all the exponential factors in 
(24) and the absence of adjustable constants from (25). In contrast, Arya (1975) 
retains a single adjustable constant equivalent to cl. In practice, the role of the 
adjustable constant a3 in the Arya prediction (25”) is weak, which corresponds to 
the fact that the present prediction is practically independent of c1/c2. As indicated 
before, this happens because the surface stress is significant compared with r only 
at A values 6 0.1, at which sheltering is small. In other words, stress partition and 
inter-element sheltering are significant in different A ranges. 

6. Roughness Length 

The quantity usually used in meteorology3 to specify the drag on a rough surface 
is the roughness length zo. Since z. is an integration constant in the inertial- 
sublayer velocity profile law (2), its analysis involves not only the flow within the 
canopy but also the flow above (in contrast with u*lU, and rR/7, which can be 

’ The present work was carried out independently of that of Arya (1975), whose paper was pointed 
out to me by a referee, to whom I express my thanks. 
a Equation (25”) corresponds to Equation (10) from Arya (1975), with allowance for his inclusion of 
a factor l/2 in the definition C, and with the substrate roughness length expressed in terms of Cs. 
3 In engineering, the “roughness function” AU/u* (the increment between smooth-wall and rough- 
wail velocity profiles on a Clauser plot) is the more common measure. This is related to zO by AU/u* = 
K-I ln(zau&) + B, where K = 0.4 and B - 5. 
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analysed largely in terms of the flow within the roughness canopy). Hence, ad- 
ditional assumptions are needed to treat z 0. This final section is accordingly more 
speculative, but its inclusion is warranted because of the practical importance of 
zo. 

Two factors must be considered when relating z. to the result (23) for u*IUh. 
First, a rough surface has a finite zero-plane displacement d which must be ac- 
counted for in the profile law (2). Second, (2) is not applicable within a roughness 
sublayer extending above the roughness canopy to a height of order z,,,. In this 
layer, direct dynamical effects of the canopy upon the turbulence are apparent; 
the main effect in the present context is to make the eddy diffusivity for momentum 
greater than the inertial-sublayer diffusivity KU*(Z - d), by a factor of up to 2 at 
z = h (Garratt, 1980; Raupach et al., 1980; Raupach et al., 1991). 

Accounting for both complications, a profile law valid both above and within 
the roughness sublayer (h < z < z,) may be written as 

KU(Z) ,=ln(y)+lY(s), (264 

where q is a profile influence function accounting for the departure of the actual 
momentum diffusivity within the roughness sublayer from KU+(Z - d), equivalent 
to the well-known stability influence function which accounts for diabatic effects 
on the profile shape. In particular, 

where q,, is the value of 9 at z = h. Hence 

zo h-d -=- 
h h 

expWd exp(- KY) 

which is the basic relationship between zolh and y. It involves both Vh and d/h. 

THEPROFILEINFLUENCEFLJNCTION q 

An approximate form for q can be derived using the observation that velocity 
profiles within the roughness sublayer (after spatial averaging to account for 
element-scale heterogeneity) are quite well described by taking the eddy diffusivity 
to be COnStant at KU*(Z,,, - d). This gives a velocity profile for h < z < zw 

K(U(Z) - u(Zw)) _ Z - Zw -- 
-d 

(28) 
u* ZW 

which is experimentally verified by Raupach et al. (1980). Hence, by subtracting 
(2) from (28), a form is obtained for ‘I? 



DRAG AND DRAG PARTITION ON ROUGH SURFACES 391 

(29) 

It is now necessary to know z,,,. Two external governing length scales for z,,, have 
been suggested previously: the inter-element separation D (Garratt, 1980) and the 
element breadth b (Raupach et al., 1980). Both of these suggestions lead to 
complicated forms for V which, when used in (27), fail to describe the data set 
for zolh shown later in Figure 5c (it is not necessary to go through the analytical 
details). A more successful expression for q can be derived from the proposal 
that the distinctive dynamics of the flow near z = h arise from the intense shear 
layer centred near z = h and induced by the drag of the canopy on fluid below 
z = h (Raupach et al., 1989). This causes the turbulent flow near z = h to resemble 
the flow in a free shear layer rather than turbulent boundary layer, and therefore 
to have an eddy diffusivity for momentum which is determined by the vertical 
length scale of the layer of intense shear, h - d. It follows that 

zw - d = c,(h - d) , (30) 

where c, is a constant greater than 1 (to ensure zW > h). Substitution of (30) into 
(29) gives 

qh = ln(c,) + 1 - c,l (31) 

which is a simple result independent of all surface length scale ratios (in contrast 
with the result obtained by assuming that zW scales with D or b). From velocity 
profile data in the roughness sublayer (O’Loughlin, 1965; Raupach et al., 1980), 
c, can be estimated to be 1.4 to 1.8, implying qh = 0.62 to 1.03. The value 
adopted here is c, = 1.5, giving *h = 0.74. 

THE ZERO-PLANE DISPLACEMENT d 

Thorn (1971) proposed that d is the mean level of momentum absorption by a 
rough surface or the centroid of the drag force profile, a suggestion supported 
theoretically by Jackson (1981). Here, d is estimated from scaling arguments 
similar to those used to estimate the effective shelter area A and volume V. It is 
proposed that the centroid of the drag force profile is governed by the vertical 
spread of the strong shear layer formed behind a typical roughness element, and 
in particular by the vertical distance over which the shear layer can spread before 
it reaches the next element downwind. This implies that (h - d&D - L&U, = 

Y -I, where D is a typical streamwise inter-element distance and dR is the centroid 
of the drag force ?-R (per unit area) acting on the roughness elements only. Since 
A - bh/D’, it follows that 

(h - dR)/h = cd(bl(hh))“‘y -’ , (32) 

where cd is an O(1) constant. Accounting for the drag on the ground, the overall 
centroid of the drag force profile iS d = (TRdR + Tsds)/T = (TR/T)dR, because the 
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centroid ds of the drag on the substrate surface is zero. Hence, using (25), the 
result for d is 

(33) 

with the constraint d/h 2 0. Best agreement with data is obtained when cd = 0.6. 

COMPARISONS WITH OBSERVATIONS 

Figure 5 shows the predictions (23) for Q/U,,, (33) for d/h and (27), with (31) 
and (33), for .z,,lh. Available data from the sets RTE, OL and GJR are also 
shown. The drag coefficient values are the same as in Figure 3. The constant c in 
(19) has been set at 0.37, so that u&U, is correctly predicted for the canopy 
(GJR) data at A > A,,,, where u*IUh = 0.3. 

The other two constants which must be set are c, in (31) and cd in (33). The 
effect of varying c, is simply to multiply zolh by the factor 
exp(Th) = c, exp(1 - c;‘). This factor, and hence c,, are closely constrained by 
the zolh data at low A, where the prediction for zolh is nearly independent of 
both c and d/h. This constraint requires c, = 1.5 ? 0.1, which is consistent with 
independent evidence that c, is between 1.4 and 1.8 (see above). Finally, the 
value of cd is set at 0.6 to give best agreement with data. The predictions for cd = 

0.3, 0.6 and 1.2 are shown in Figure 5. 

7. Discussion and Conclusions 

For a surface covered in roughness elements, theoretical predictions have been 
developed to describe (a) the total stress (specifically the square root of the drag 
coefficient, y-l = u*IUh); (b) the stress partition (specifically the ratios rR/r and 
rS/r, where rR, TV and 7 = ?R + 7S are the stresses on the substrate, the roughness 
elements and the entire rough surface, respectively); (c) the zero-plane displace- 
ment d; and (d) the roughness length zo. 

The theory for y-l = u*IUh and rR/r is based on the idea that the wake and 
drag properties of an isolated roughness element can be characterized by an 
effective shelter area A and shelter volume V, which respectively describe the 
surface stress deficit behind the element and the attenuation of drag on other 
obstacles in the element wake. Two hypotheses (I and II) are introduced: I to 
scale A and V in terms of element dimensions and flow properties, and II to specify 
how the wakes of different elements interact. Both hypotheses are physically based 
at low roughness density A, but are unlikely to hold at high A. This is apparent in 
the solution for y-l = u*IUh, which exists only for A < A, where the critical value 
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A, is typically of order 1. To circumvent this, it is appropriate to replace the 
solution from Hypotheses I and II at high A with a constant y-l = u*IUh. 

The stress partition prediction is the very simple equation rR/r = PA/(1 + fib), 
where p = CR/C, is the ratio of element and surface drag coefficients. This predic- 
tion agrees very well with data (Figure 4) and is free of adjustable constants. It 
implies that, for typical rough surfaces, stress partition is insignificant (in the sense 
that r3/r is very small) when A exceeds a value in the range 0.03 to 0.1. 

The prediction for total stress is the solution of the implicit Equation (19), 
modified at high A to give constant u*lU, as in (23). The prediction includes a 
pair of constants cl and cz introduced by Hypothesis I, which determine the 
effectiveness with which the elements shelter the surface and one another, respec- 
tively. The value of cl and the ratio clIcz are immaterial in practice, because the 
substrate surface stress only contributes to the total stress in a A range (A 6 0.1) 
where the surface shelter described by cl is insignificant. Therefore, one can take 
cl = c2 = c, a single constant, to obtain mathematical simplification. The value of 
c is roughly 0.5 for roughness elements with aspect ratios b/h close to 1, but is 
not well determined by the available data. Aspect ratio influences c because c = 
cl,2 = &(blh)P, where ci and ci are O(1) constants, and the power p is 1 for 
h B b and 0 for b S h (see (7~) and (7d)). 

As A --i, 0, inter-element sheltering becomes negligible and the prediction for 
total stress becomes independent of c: u*lU, --f (CS + ACR)1’2. In practice this 
approximation is reasonable for A less than about 0.1, so for much of the A range 
of interest for sparse roughness (and most of the range over which Hypotheses I 
and II are applicable), uncertainty about c is not important. Inter-element shel- 
tering is important only when A exceeds 0.1, in contrast with stress partition which 
is important only when A is less than 0.1. 

For the total stress prediction to fit vegetation canopy data at high A, where 
u*lU,, = 0.3 and is approximately independent of A, it is necessary that c = 0.37. 
However, c can no longer be interpreted at high A in the same way as at low A, 
because of the inapplicability of Hypotheses I and II. 

The theory for d/h and zolh requires additional physical considerations and 
hypotheses, to describe d/h as the centre of action of the drag force within the 
roughness and to account for the roughness sublayer above the canopy. Two O(1) 
constants are thereby introduced in addition to c : c, in (31) and cd in (33). Both 
are tightly constrained. Data on d/h and zolh are predicted satisfactorily only if 
cW z 1.5 and cd = 0.6. 
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