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Abstract. The type-I radio continuum may arise from the combination of two electrostatic waves, both 
directed nearly normal to the magnetic field. One wave, near the upper-hybrid frequency, is generated by 
gyroresonance with superthermal electrons and comes into equilibrium with these electrons. The other 
wave, at the lower-hybrid frequency, is generated by the loss-cone instability of trapped superthermal 
protons in those wave directions for which the lower-hybrid frequency is an exact multiple of the proton 
gyrofrequency. The brightness temperature of the continuum indicates both the energy of the superthermal 
electrons and the existance of at least a small number of superthermal protons. 

1. Introduction 

The solar type-I radio continuum occurs roughly in the range 100 to 300 MHz. Its high 
polarization in the o-mode suggests emission at the plasma frequency. The brightness 
temperature, of order 108 ranging up to 10 l~ K (Kerdraon and Mercier, 1983) suggests 
a relation to superthermal electrons trapped in magnetic fields of the upper corona. The 
observed location somewhat away from the associated optically active region implies 
that these fields are of very large scale (Elgaroy, 1977; Mercier et al. ,  1984). 

Radio emission at the plasma frequency is usually expected to arise from the 
combination of Langrnuir waves and some low-frequency waves. No obvious low- 
frequency wave has been identified. This led Melrose (1983) to consider the merging of 
Langmuir waves with two low-frequency waves. 

The Langmuir waves have usually been assumed roughly parallel to the ambient 
magnetic field. When Langrnuir waves travel nearly normal to the magnetic field, they 
are essentially upper-hybrid waves, or 'generalized Langmuir waves' in the usage of 
Melrose (1980). Such waves can combine with lower-hybrid waves to yield the observed 
radio emission. I discuss the appropriate wave parameters in Section 2. I show in 
Section 3 that the appropriate upper-hybrid waves can be emitted spontaneously by 
trapped superthermal electrons and come into equilibrium with them. Thus the bright- 
ness-temperature of the waves, Tu, will equal the temperature, Th, of the hot trapped 
electrons, which are taken to be Maxwellian for computational purposes. In Section 4 
I evaluate the minimum brightness temperature of the lower-hybrid waves, Tt, needed 
for the radio emission to reach optical depth at least unity. The result is Tz > 10 l~ K. 
If this very modest condition is satisfied, then the brightness-temperature of the 
radiation, Tr, is simply Tr = T u = T h . The observed range in T r (Kerdraon and Mercier, 
1983) corresponds to electrons of 10 keV to a rare maximum of about 1 MeV. 

The uniformity of the continuum requires T z > 101~ K over a large volume in the upper 
corona. This implies generation of the lower-hybrid waves by an instability that occurs 
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in the same volume where the fast electrons are trapped. I propose in Section 5 that the 
instability is due to trapped superthermal protons with a loss-cone. The instability 
occurs when the lower-hybrid frequency is an exact multiple of the proton gyrofrequency. 
Mathematically, this is closely analogous to the generation of upper-hybrid waves by 
trapped electrons with a loss-cone when the plasma frequency is a multiple of the 
electron gyrofrequency (Berney and Benz, 1978). Physically, it is quite different because 
the lower-hybrid resonance is possible everywhere, while that of the upper-hybrid waves 
can occur only on thin sheets. In Section 6 I discuss the relation of this theory to the 
polarization of the continuum, the scattering of type-I and type-III bursts, and the 
generation of type-I bursts. A summary appears in Section 7. 

There are two qualitatively important features of this theory: (i) the highest observed 
continuum brightness temperatures Tr-~ 10 l~ K require trapped electrons that are 
mildly relativistic; and (ii) the radio continuum is to be considered a signature of trapped 
superthermal protons as well as electrons. 

2. W a v e  P a r a m e t e r s  

An essential parameter is the ratic of electron gyrofrequency to plasma frequency, f2/co e . 
This ratio is proportional to the Alfvrn speed, which has been estimated in the upper 
corona in terms of observed velocities of type-II radio bursts and coronal transients 
(Dulk and McLean, 1978). I adopt in the following 0 / %  = 0.1, corresponding to an 
Alfvrn speed of 800 km s - 1 .  At the 100 MHz level (n e = 10 s cm - 3), the magnetic field 

i s 3 G .  
The dispersion relation for the lower-hybrid waves is 

co 2 = 0 2 ( m / M  + cos20), (1) 

where m and M are the electron and proton masses, respectively, and 0 = 0 in the 
magnetic direction. We are interested in cos 2 0 < m / M .  The generation of these waves 
is possible because even this very small range in cos 0 includes over a dozen values of 
cos 0 at which @ is an exact multiple of the proton gyrofrequency, namely @/12; = 43 

to about 60. 
A convenient measure for the several wavenumbers that we shall encounter is the 

electron gyroradius Oe = re~ f2. With a temperature T e = 2 x 106 K and B =  3 G at the 

100 MHz level, Pe = 10 cm. 
Landau damping by thermal electrons is strong unless the phase velocity, c@/k l cos 0t, 

of the lower-hybrid waves along the magnetic field exceeds 4re, or 

ktp  e cos 0 l < � 88  1/2 . (2) 

We shall be interested in a range of approximately 0.2 <k tp  e < 0.5. 
The upper hybrid or generalized Langmuir waves in a cold plasma have the dispersion 

relation (Melrose, 1980) 

k2c 2 02 sin 2 0 
- (3) 

co2 co2 + 02 sin 2 0 - co2" 
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A thermal correction is important for our purposes. Then the dispersion relation 

becomes 
%2 = co ff + 02 sin 2 0 + 3k2v ff - O 2 sin 2 0 oJff /(k2c2),  (4) 

which merges smoothly into ordinary Langmuir waves when the last term is negligible 

(Melrose, 1980). Since Equation (7) will yield a small value for cos 0, I set sin 0 = 1 in 
Equation (4). The ratio of the last two terms in Equation (4) is about 102(kpe) 4. Thus 

the thermal term dominates for kpe > 0.3, a limit that is within the range of interest. 

(When kpe < 0.3, the wave is no longer really electrostatic. The changes due to 

electromagnetic corrections will be ignored since they would alter only amply satisfied 

requirements.) 
The electromagnetic waves created by the merging of the upper- and lower-hybrid 

waves must satisfy the conditions on conservation of energy and momentum, 

% =  co.+ cot, k r = k u + k  l. (5) 

Close to the plasma frequency, where only o-mode is possible, this radiation satisfies 

kr = (coe0)1/2/r krPe ~- 0.06. (6) 

I assume at least roughly isotropic emission, since the continuum is observed with rather 

little diminution well past the solar limb (Elgaroy, 1977). With cos 0,. of order unity, 

Equation (5) for the wave vectors is easily satisfied in the direction normal to the 

magnetic field, k, - k t with roughly oppositely directed k, and k t. The direction along 
the field demands a finite value for cos Ou, 

cos 0, = k~ cos O~/k u = 0.06 c o s  Or/(kuPe). (7) 

We are interested in the range 0.2 < kuPe < 0.5, cos 0, - 0.2. The finite value of cos 0, 
will be important in Section 3 for the generation of the upper-hybrid waves. 

3. Generation of Upper-Hybrid Waves 

We are interested in upper-hybrid waves generated by gyroresonance with superthermal 
electrons, satisfying 

co = s O  + kl lvt l .  (8) 

Let these electrons have a density n, n ~ n e , and a normalized Maxwellian distribution 
function f(v) with rms velocity vh, Th = mY 2 �9 These electrons emit upper-hybrid waves 

spontaneously at a rate P(k) (energy per unit volume per unit wavenumber per s) and 

re-absorb them at the rate 7(k), where T h = P(k)/~(k). The upper-hybrid waves come 
into equilibrium with the electrons, T. = Th, unless they interact more rapidly with the 
thermal electrons. Therefore, one must evaluate the absorption coefficient 7(k) and 
compare it with the collisional dissipation rate. The absorption coefficient for elec- 
trostatic waves is 

7(k) = - 167;3e2R n ~ m a dr•  - -  ./2 , (9) 
kll 0 V •  
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where vii in the integral is selected by the resonance condition (8) and R is the ratio of 
electric to total energy of the wave. For the emission P(k), ~f/Ov• in Equation (9) is 
replaced by m v •  A small loss-cone in the trapped electrons makes no difference 
because the resonance condition selects values of vii away from the loss-cone (Wentzel, 
1985). Equation (9) can be integrated in terms of 1~, the modified Bessel function, 

2 2 
7 (2~)1/2 n R co co; 

= - -  - -  X 
2 3 ne krlk Vh 

x Z I ~ ( k Z ;  2) exp[ - ( k ~ p ~  + v~/2vg)].  (10) 
s 

We shall be interested in rather large s, namely s -~ COe/I2 = 10. The quantity I~ rises 
steeply until k< Ph ~- S. When only one value of s contributes and k• Ph > s, 

2 2 
/'/ CO COe 1 

7 R e x p  [ - 2 2 = - -  vll/2v h ]. (11) 
t'l e klrk2v 3 k •  Ph 

The resonance condition (8) together with kti = kr cos Or and Equation (6) for kr yields 

/31] COe--S~'~ C( •11 /2  
. . . . .  . ( 1 2 )  

v h s cos Or Vh \ % /  

For 20 keV electrons, c/v h = 3. It is clear from Equations (11) and (12) that the favoured 
s is the integer closest to coe/f2. No special values are required for COe/f2. Some suitable 
s always exists such that Equation (12) yields vii < Vh. 

Equation (11) can be reduced to a more convenient form upon taking R = �89 setting 
klf = kr, k• = k, using Equation (6), and setting vii < 0.5v h in Equation (12), 

7= 2 rte OOe~ee) CVh \kvh/CO e . (13) 

The last factor must be less than unity because kph > coe/f2. But it cannot be very small 
because this same condition demands 

Vh/V e ~ (coe/f2)/(kpe) . ( 1 4 )  

For example, vh/v e = 20 corresponds to 60 keV electrons. 
I adopt n/n e = 10 -5. Such a value was also adopted by Benz (1980). Then 

Equation (13) yields 7 ~ 104 s - 1. Collisional damping rates are at least two orders of 
magnitude less rapid (see Equation (21)). The waves have slow group velocities. It 
follows that they saturate and come into equilibrium with the hot electrons. The 
brightness temperatures equalize, T, = T h . Since 7 is far above the rate of collisional 
dissipation, the condition kph > s can be relaxed. A useful condition for the onset of the 
continuum is that the hot electrons satisfy 

1)h/1) e ~ 3/(kpe ) . (15) 

With kPe ~- 0.3 as adopted below, the continuum requires electrons of at least 15 keV. 
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4. Brightness Temperatures 

I wish to estimate the minimum brightness-temperature in the lower-hybrid waves that 

is needed to convert upper-hybrid waves into radiation with T~ = T,. 
The radiation is due to the nonlinear current created by the two interacting waves. 

The lower-hybrid wave provides the density fluctuations, the upper-hybrid wave the 

electron velocity. Following standard procedures (Melrose, 1980), one finds that the 
power radiated per s per cm 3 and per unit radiation wavenumber space is 

P = 47r2e z J 16ntl 2 Iv~l 2 [~'@ul 2 x 

x 6(co~ - % - cot) 5(kr - k u - k,) dk~ dkz/(2~z) 3 . (16) 

The wave amplitudes are expressed most conveniently in terms of brightness tempera- 

tures 

toO2 I~nzl 2 1 + cos20t (17) 
T~ = nero Iv~l 2, T, = k2n~ e 

where the Boltzmann constant is suppressed here and through Equation (19). 1 shall 

take these two temperatures as uniform within the angular ranges specified above and 

ignore the term involving cos 0t. Integration of the directional factor in Equation (16) 

over the azimuth angles yields rc cos 2 0~. The delta function of the wave vectors is 

conveniently used to eliminate k~L~ and kz• The power P is proportional to the temporal 
change of the radiation brightness temperature, T~, along a ray: 

2 f 3  (2rc)3 P _ dTr _ 7c2c0s20 ~ coe Tz ku c2dkllt 
at ~ T, - -  m c  2 fl e &ou/Oku 

(18) 

The growth of T r ceases when Tr approaches T u . Thus the physically important quantity 

is 7r = T ~  ~ dTr/dt .  With the thermal term in the dispersion relation (4) determining the 

group velocity in Equation (18), we have 

lr 2 o92 c a T l [ ' k  2 dkli l 
= - -  COS2 Or (De 2 

7r 3 ~'~2 i) e m c  2 J n e k .  
(19) 

Here, k, is a function of kttt through Equation (5): the frequencies of the two electrostatic 
waves, which are functions of k u and ktl z, must add to the fixed radio frequency implicit 

on the left side of Equations (18) and (19). Since we wish to establish mainly that 7r is 
adequate, I replace dkl l l /k  ~ by cos 0~, use its limit given by relation (2), and introduce 
the Debye length 2 D = VJCOe, with the final result 

7r = ~ COS20r • TI (kuDe)2 - 10--3 Tl s -1 (20)  

re ne'er, re 
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where the numerical estimate is appropriate to the 100 MHz level, with n e = 108 cm - 3, 

T e = 2 • 10 6 K ,  [Cup e = 0.3,  and cos 0 r = 1. 

There are two conditions to be met. First, 7r should exceed the rate of collisional 

damping of the radiation, which is half the electron-ion collision rate, 

7a = 30 T e 3/2///e ~ 1 s - 1 (21) 

It follows that Yr > 7a requires 

T I / T  e ~ 10 3 . (22) 

A more substantial requirement is that the radiation grows before the group velocity 

c(O/O)e) 1/2 carries the radiation to a height where it can no longer interact with the 
upper-hybrid waves. If  the thermal term in the dispersion relation (4) determines the 

bandwidth, the radiation must grow significantly over a fraction k~v~/o)~ = 10 - 2(kuPe)2 
of the density scale height measured along the ray. If c~ is the angle between the ray and 

the local density gradient, of scale height L, then saturation of the radiation requires 

~) r (~ '2 )  3/2 L 
- -  - -  ( k . p e )  2 - -  > 1 .  ( 2 3 )  
C \ 0 ) e /  COS 

I adopt L = 105 km for the extended coronal regions where type-I continuum is 

observed. Then with k ,  pe = 0.3 and Equation (20), we require 

7r > 103 cos ~ s 1, TI/T e > 106 cos ~. (24) 

At first sight, the requirement T t > 1012 K seems quite large. But the energy density 

involved, 

W = J KT,  d 3 k/8 ~3, (25) 

is really quite small. Let the solid angle in d3k be 2~z(m/M) 1/2 and assume T~ is 

uniform in k up to a value k t. Then adequate opacity requires 

W = 2 x 10 - 4 k?  K T  l > 10 - 2 COS O~ K T  e erg cm -  3, (26) 

with k t = 0.3/pe = 0.03 and T~ given by condition (24). In comparison, the thermal 
energy density n,KT~ is some ten orders of magnitude larger. In the following, I shall 
argue that the lower-hybrid waves are generated by a loss-cone instability among 
superthermal protons, in analogy to the generation of upper-hybrid waves treated by 
Berney and Benz (1978). Benz (1980) estimated the saturation of the latter at an energy 
density 10- 2n/n~ ~- 10- 7 of the thermal energy density, and commented that even that 
value was an unusually low value for saturation. Spicer et al. (1981) estimate a ratio of 
10- 6 for the rather weak shocks they propose as the source for type-I bursts. Thus it 
appears that an instability which generates lower-hybrid waves is likely to grow to at 
least the minimum (24). 

The condition (24) implies that T r = T~, no matter how much energy resides in the 
lower-hybrid waves. Therefore, the uniform nature of the observed radio continuum 
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implies uniformly distributed superthermal electrons, but the lower-hybrid waves might 

be quite inhomogeneous. 
When condition (24) is satisfied, it is also possible to obtain stimulated decay of the 

upper-hybrid wave, satisfying (or = % -  coz. This is an instability that can drive 
T r >> T u . However, the radiation must later pass through a region where cot = co~ + @- 
There it is probably reabsorbed until Tr = T,. Conceivably, conditions leading to type-I 
bursts may allow escape of this radiation. 

5. Generation of Lower-Hybrid Waves 

Superthermal electrons with a loss-cone become unstable to upper-hybrid waves if the 
plasma frequency is nearly an integer multiple of the gyrofrequency (Berney and Benz, 
1978; and references therein). The behaviour of the observed continuum suggests that 
it is caused by trapped electrons. I postulate that superthermal protons exist together 
with superthermal electrons and that their loss-cone yields the lower hybrid waves. 

The electrons acquire a loss-cone when their mean free path becomes comparable to 
the length of the magnetic trap. The mean-free path depends on T e and v/ve. Protons 
have a mean free path comparable to that of the electrons when T i = T~ and when v/v i 
for the protons is the same as v/v e for the electrons. Therefore, one expects the protons 
to acquire a loss-cone similar to that of the electrons if the distributions in v/v i and v/v e 
are similar. 

The dispersion relation appropriate to the proton loss-cone instability is a sum of the 
dispersion relation for the lower-hybrid waves, derived in the limit of cold electrons and 
protons and assuming kll = 0 (hydrodynamic approximation), plus one term for the 
protons involving both a loss-cone and a harmonic of the proton gyrofrequency which 
makes co - sO,. small or zero, 

2 2 60? (D e 
0 = 1 + % + cos 2 0 - - +  

0 2 -- (.0 2 0 i  2 -- Oy 2 0) 2 

+(D,.2 [ 'd3vj2[ 'kvm'  ~ 1, c~f co 
(27) 

k 2 J I o i ,i ir177 ~v• (D-  sO i 

The closely equivalent problem for upper-hybrid waves and a hot super-thermal 
Maxwellian electron distribution has been worked out in much detail (Berney and Benz, 
1978). For the moment, let us isolate the poorly known parameters for the protons in 
the integral 

I =  f d3v,]2 ( k v •  co2 1 O f .  (28) 
\ 0 ;  J k 2 v •  0 v •  

Since the Bessel function contributes mainly when kv•  --- sf2, ~_ co, the magnitude of I 
is roughly J ) ( s )  ~ 0.02 times n/n~, the ratio of superthermal to thermal protons. Of main 
interest will be the sign o f / ,  which is positive if the loss-cone dominates, negative if 
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(~f/(~V 2 is sufficiently negative. In particular, in the case of a hot Maxwellian, the loss-cone 
dominates if Js emphasizes v < Vh ; thus instability is restricted to k V h / ~  > s. This is 
evident in the equivalent results of Berney and Benz (1978; especially their Figure 7). 

To determine conditions for instability, define 

o~ = (s + ~t)O;, ~o = cot + eOi (29) 

and assume et and e are small. Then the dispersion relation (27) reduces to Equation (1) 
in lowest order and also to 

0 = 2e(1 + c o s 2 O M / m )  + Is; /(e + et). (30) 

The term involving COS 2 0is very important in Equation (1) in allowing e# to be an exact 
integer multiple of 12;, but it is rather unimportant in Equation (30) and will be omitted 
there. Equation (30) is a quadratic in e yielding instability if 

I >  ezZ/2s 2 , s 2 ~ - M / m ,  (31) 

with a growth rate of the order co~ 11/2. The growth rate exceeds collisional damping if 
i 1 / 2 >  10 -6 

Equation (31) guarantees instability if I is positive, since ~ = 0 at several very small 
values of cos 0. I f / >  6 x 10-5, then instability occurs even for e~ -- 0.5, that is, for all 
values of cos 0, but there is no expectation that I is this large. 

This discussion must now be related to that of the previous sections by asking: for 
what k t is I > 0, and do these values ofkt match those ofku derived earlier, in particular 
condition (15)? Let us start with a hot Maxwellian distribution of protons. Define tc 
through kvh/~ .  = s ~c. In terms of the gyroradius of thermal electrons, used earlier, 

k P e  = Kv i / v  h . (32)  

We have already seen that tc > I for instability. For the parameter s = 30 used by Berney 
and Benz (1978), instability occurs for 2 < ~ < 4.5 (their Figure 7). A similar range is 
expected for s ~ (M/ m)  1/2. A secondary condition on instability is that the thermal 
protons provide negligible damping. Table IV in Berney and Benz (1978), extrapolated 
to s = 43, suggests vh/vi > 12 guarantees the dominance of the superthermal protons, 
almost whatever their density. It appears, therefore, that the combination ~ = 4, 
Vh/V ~ -- 12, kpe = 0.3 is indeed unstable. Conditions (15) and (32) look remarkably 
similar, but they are physically unrelated. 

The superthermal electrons and protons need not be Maxwellians. If the protons 
constitute a power-law tail, instability extends to higher velocities. In general, instability 
occurs for smaller k than for the Maxwellian protons. If the protons have a distribution 
with Of/Or a > 0 in some range of v, that is, a 'ring' distribution, then the loss-cone 
instability is certain to occur for those velocities. In the extreme of a delta-function 
ring-distribution at v = v h , kPe = Vi/Vh. Although the instability is then not restricted 
significantly by the thermal distribution, one would expect v h >_ 4v~ , thus kpe < 0.25. 
Therefore, Maxwellian hot protons are preferable. 
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6. Relation to Other Observations 

Benz and Zolliker (1985) analyzed observations of a highly polarized continuum with 
T r -~ 108 K. They determined that the ratio of harmonic (unpolarized) to fundamental 
(fully polarized) emission is 0.019 + 0.012, consistent with zero. What harmonic 
emission does one expect if Tr = Tu for upper-hybrid waves with cos 0u ~ 0.2? If the 
upper-hybrid waves are just a part of an essentially isotropic distribution of waves, all 
satisfying Tu = Th = 108 K, then the predicted harmonic emission is far less than the 
observed upper limit (Wentzel, 1985; Equation (13)). Possibly, the hot electrons have 
a gap-distribution. In that case, the waves with cos 0u < 0.7 still have Tr ~- l0 s K, but 
waves with cos 0u > 0.7 may achieve T, - 6 x 109 K and yield a harmonic radiation 
with T b ~ 106 K (Wentzel, 1985; Equation (14)). This is comparable to the obser- 
vational upper limit. (Benz and Zolliker, 1985, also derive a harmonic flux comparable 
to the upper limit, using somewhat different assumptions about the plasma waves.) 

One attractive feature of lower-hybrid waves is their ability to scatter radio waves by 
large angles when the wavelengths of the lower-hybrid and radio waves are comparable. 
Momentum conservation for scattering of the radio wave by an angle ~ requires 

kt = 2kr sin , / 2 ,  (33) 

where kr = ~Or/C since the scattering occurs far above the plasma level. If kt is known, 
the scattering height of a given radio wave is a function of the scattering angle. The height 
is most usefully expressed in terms of c~ e . In terms of the known parameters ve/c and 

f21o9 e , 

( d ) r ~ ' - ~ r  2 
k,p e - ~ 7klPe, (34) 

(D e (D e D e sm ~/2 

where ~ = 90 ~ is used for the numerical estimate. The estimate k[p e = 0.3 of Section 5 
places the scattering somewhat outside the level of the plasma harmonic. This result is 
attractive for explaining the apparent heights of fundamental type-III bursts (Wentzel, 
1982) and for the decrease in the polarization of type-I bursts toward the solar limb 
(Wentzel et al., 1986). Observations indicate scattering at least out to the 50 MHz level. 
However, closed magnetic fields, trapped protons and their associated lower-hybrid 
waves extend only to about the 100 MHz level, where the type I continuum tends to be 
replaced by storm-type III bursts. Other sources of lower-hybrid waves may exist at 
greater heights. 

The upper-hybrid waves invoked in Section 2.5 are in equilibrium with superthermal 
electrons. An additional source of upper-hybrid waves occurs where ~e is close to an 
integer multiple of f2. There, the loss-cone of the superthermal electrons yields an 
instability of upper-hybrid waves directed normal to the magnetic field with a bandwidth 
of the order of (De(n/he) 1/2 (Berney and Benz, 1978). If the Alfv6n speed and coSf2 are 
strictly uniform in the upper corona, then the instability occurs either everywhere or, 
most probably, nowhere. More realistically, if the Alfv6n speed varies by 10 to 50~o 
across the region, then the instability occurs in 1 to 5 thin sheets, whose shape may be 



150 DONAT G. WENTZEL 

quite unrelated to the shapes of the magnetic fields or equal-density contours. Why do 
we not see radiation, generated by these upper-hybrid and the proton-generated lower 
hybrid waves, emitted steadily from these sheets? If the waves saturate at an energy 
10 -7 neKTe (Benz, 1980), an argument equivalent to Equations (25) and (26) yields 
T, ~ 1015 K. Even a very small opacity would yield observable radio emission. Possibly, 
the wavevectors of the upper- and lower-hybrid waves do not match. More probably, 
the radiation actually exists, but only within the sheets. Its bandwidth is so narrow that 
is is reabsorbed once it leaves these sheets, just like the stimulated emission mentioned 
at the end of Section 4. Conceivably, type-I bursts occur when this radiation is permitted 
to escape temporarily, for instance when shocks alter the local density distribution. 

7. Summary 

I showed in Section 2 that upper- and lower-hybrid waves satisfying kpe ~ 0.3 can 
combine to yield electromagnetic radiation if the upper-hybrid waves are nearly but not 
quite normal to the magnetic field, cos 0 u ~ 0.2. In Section 3 I demonstrated that such 
upper-hybrid waves are easily generated by gyroresonance, s -~ me/O, with superthermal 
electrons, and that the waves comes into equilibrium with the electrons so that Tu = Th. 

The minimum energy of electrons needed to generate k ,  p e = 0 . 3  is about 
15 keV (T h -~ 2 x 10 s K). Radio emission from the two electrostatic waves requires a 
sufficient intensity of lower-hybrid waves. I showed in Section 4 that T l > 1012 K is 
adequate for the growth of the radio waves to saturate, i.e., T r = Tu = Th. This minimal 
value of T t is quite small compared to estimates of energies at which instabilities 
generating lower-hybrid waves would saturate. A specific instability is discussed in 
Section 5, namely the loss-cone instability due to superthermal protons. The instability 
is efficient because the lower-hybrid frequency can be an exact multiple of the proton 
gyrofrequency. Only very few superthermal protons are needed. The minimum energy 
of protons needed to generate kip e ~ 0.3 is about 20 keV (T  h - 3 x 108 K). 

A possible new interpretation oftype-I bursts emerges: stimulated emission can occur 
very near the plasma level, causing locally very high T r. Normally the radiation is 
reabsorbed on traveling outwards. A type-I burst may represent a condition when this 
radiation can escape. A similar situation may occur within the sheet-like regions of the 
corona where C0e/f2 ----- integer. There the electron loss-cone instability causes a very high 
7", and thus probably high Tr. Again the radiation is local and normally reabsorbed, but 
might sometimes be allowed to escape. 

The type-I radio continuum may be taken as a signature of super-thermal electrons 
and protons. Normally T h > 2 x 108 K, but the most intense observed continuum 
requires mildly relativistic electrons. 
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