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Abstract. A new version of the Quadratic Sieve algorithm, used for factoring large integers, has recently 
emerged. The new algorithm, called the Multiple Polynomial Quadratic Sieve, not only considerably 
improves the original Quadratic Sieve but also adds features that ideally suit a parallel implementation. 
The parallel implementation used for the new algorithm, a novel remote batching system, is also described. 

I. Introduction 

Although there has been much recent progress in the design and manufacture of new 
architectures for parallel processing, applications that can fully utilize all the 
available processing power are still rather rare. We present the design of a loosely 
coupled parallel processor constructed from a network of multiple SUN 
microcomputers using Ethernet protocols. This network has been used to implement 
a parallel version of a new algorithm for factoring large integers. Factoring, a 
problem that belongs to NP, has relevance to the RSA encryption system, so one 
would like to be able to carefully delineate current computing limits in factoring to 
determine how large an RSA key needs to be. The construction of our network and 
remote processing software enables us to use multiple SUN's as an asynchronous 
multiple-instruction, multiple data (MIMD) machine. The SUN operating system 
provides a centralized file system for all processors so that they can access data in a 
common file without explicitly passing data among processors. This feature is a great 
boon to application designers because they need not concern themselves with data 
passing mechanisms. 

The version of the Quadratic Sieve used in this implementation was fully described 
in Silverman [1987]. It differs from the original algorithm by using multiple polyno- 
mials rather than just a single polynomial. This feature makes it well suited for 
parallel implementation. The idea of using multiple polynomials was independently 
developed by Davis and Holdridge [1983]; Davis, Holdridge, and Simmons [1985]; 
and Montgomery [1985], although they suggested somewhat different approaches. 
The forms of the polynomials used here, due to Montgomery, are somewhat better 
and easier to implement. A contrast of the Davis and Montgomery ideas was 
presented in Pomerance [1985] and Silverman [1987]. It is first necessary to give a 
review of the salient features of the multiple polynomial version. 
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The algorithm depends upon finding two squares in the same equivalence class 
mod N where N is the number one wishes to factor: 

X 2 = y  2 m o d N .  (1.1) 

If XT~ Yand X ~ -  YmodN,  then (X + Y, N) and (X - Y, N) are proper factors of 
N. 

Rather than construct (1.1) directly, one instead produces a large number of 
congruences of the form 

X 2 -  Y mod N (1.2) 

and then combines these congruences into (1.1). Specifically, using a quadratic 
polynomial, usually designated Q(x), we first produce a very large number of these 
quadratic residues Y o f N .  Second, using a fixed set of primes, we attempt to factor Y, 
and then use the factorizations to find a set of congruences whose product is a 
square. Construction of Q(x) is described below. Since Q(x) is a polynomial, if a 
prime plQ(x), then p[Q(x+kp) fo r  all k e Z .  Thus, Q(x) can be factored with a sieve 
once Q(x) - 0 rood p has been solved. The potential divisors p of Q(x) are exactly 
those primes for which the Legendre symbol ( N ) = 1 and the unit - 1 to hold the 
sign. P 

Q(x) is chosen so that the produced residues are small relative to N. The smaller 
the residues, the faster the algorithm runs. So far the best that can be achieved is Q(x) 
= O(x/'N ). This leads to an algorithm whose heuristic run time is [Pomerance 1983]: 

L ( N )  =e(1 + o(1)) O , ( N ) l , l , ( N )  . (1.3) 

In practice, for numbers of  the size that can be factored today, adding three digits 
roughly doubles the run time. This factor of 2 drops very slowly to 1 as N ~ ~ .  To 
obtain even smaller residues, Coppersmith, Odlyzko, and Schroeppel [1986] recently 
suggested using a specialized cubic polynomial whose residues are O (,~-N-), which 
leads to an algorithm whose heuristic complexity is O(L (N),fiS); but it is not known 
whether this algorithm is practical. Constructing the cubic polynomical requires 
solving a very difficult cubic congruence. 

The Quadratic Sieve algorithm continues as follows: 

1. Select a factor base FB = { p i  l ( N . )  = l , p l  prime, i = l , . . . ,  F}  for some 
pt 

appropriate value o f F a n d  Po = - I  for the sign. 
2. Select a small integer k such that k N  = 1 mod 4. A method for evaluating k; 

orginally due to Knuth and Schroeppel (unpublished), was discussed in 
Silverman [1987]. 

3. Compute k , ~  modpl  and [log (pi)] for all pi ~ FB. 
4. ComputeQ(x) and solve the quadratic congruence Q(x) - 0 mod pi forall pi 
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FB. There will be two roots rl and r 2 for each pi unless pilk, in which case there 
will only be one root at 0. 

5. Initialize a sieve array to zero over the interval [ -  M, M ] for some appropriate 
M. 

6. For all p ~ E FB add the value of [log (Pi)] to the sieve array at locations: 

r l , r 2  + pi ,r l  =k 2pi . . . .  a n d  r2,  r z • pi ,r24-  2pi . . . . .  

. Since the value of Q(x) is approximately M x / N  over [ -  M, M], compare each 
sieve location with [log (N)/2 + log (M)], Fully factored residues have their 
corresponding sieve values close to this value. For these, construct the exact 
factorization via division. Since successes are rare, the time to do this division 
is negligible. 

I f  Q (x~), for some xj is factored as 

F 
Q(x j )=  I ~ p  ~. iv p i s F B  , (1.4) 

l 
i - o  

. 

thenlet vj be the corresponding vector of exponents ~jl, 0~j2, ~j3,..., ~jF, and le t / / j  
be the square root of  Q(xj) modN,  so t h a t H  } - Q(x~)modN. 
Collect F +  1 factorizations and form an F +  1 by F matrix from the vectors vj 
reduced mod 2. Then find a set of  residues whose product is a square via 
Gaussian elimination overGF(2). This creates a linear dependency mod 2 on 
the exponents and the product of  the vectors in that dependency forms a 
square. It  is then trivial to construct an instance of  congruence (1.1). This final 
stage of the algorithm typically takes only 1 or 2% of the total run time. For 
more details see Morrison and Brillhart [1975]. 

Remark. Achieving the asymptotic performance of (1.3) requires a better algorithm 
than Gaussian elimination. Such a method has been proposed by Wiedemann [1986], 
but it is not currently known whether it is faster in practice for values of  F discussed 
here. The reason for this is that Gaussian elimination over GF(2) on a binary 
computer  can be effected simply by packing 32 columns to a 32-bit word and using 
excl-usive or to add 32 columns at once. Implemented in this fashion, Gaussian 
elimination runs very quickly. 

The above approach has a serious limitation. We must collect approximately as 
many fully factored residues as there are primes in the factor base. To obtain enough 
factorizations, M must be very large, but the residues grow linearly in size with M. 
Thus, they become progressively more difficult to factor. The solution to this 
problem was presented in Silverman [1987]. Use many polynomials Q(x), change 
them frequently, and keep M small. This approach has the further advantage that its 
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parallel implementation is very efficient. L machines give an L-fold speedup, for the 
computation of Q(x) is driven by a sequence of prime numbers D (described below). 
Each selected value of D results in a different polynomial, and we can give separate 
sequences to each of  the Lmachines. 

2. Computation of the quadratic polynomials 

We select the following polynomial: 

Q(x) = A x  2 + Bx + C 

subject to B 2 - 4A C = k N  for some k e Z. 
(2.1) 

The condition on the discriminant is necessary for Q(x) to yield quadratic residues. 
Because of  the form of  the discriminant, another requirement is that k N -  1 or 0 mod 
4. To satisfy the constraint on the discriminant one must have 

B 2 =- k N  mod 4A. (2.2) 

Select integers D and A with the following properties: 

O 2 = A ,  D = 1, D = 3mod4,  and A ~ (2.3) 
M 

It is desirable that D be prime because if a prime in the factor base divides A, then 
2 i 

Q(x)=-O m o d p  has only one root and the probability that plQ(x) drops f r o m - - t o - - '  
P P 

For  practical purposes, it is sufficient that D be only a probable prime.The values 
given in (2.3) result in a choice of Q(x)whose  average value is minimized over I - M ,  
M], the sieve interval. The computation of  the polynomial coefficients, given below, is 
driven by the value olD.  One utilizes multiple values of D by starting with the values 
given in (2.3) and successively adding 4 to D, checking that it is both a probable 
prime and a quadratic residue of  kN. Many composite values of D can be avoided by 
constructing a "wheel" - -  a sequence of D's not divisible by a chosen set of small 
primes [Knuth 1981]. To find the coefficients of  Q(x) compute 

ho =- (kN) (D-3)/4 mod D (2.4a) 

and 

ha - k N h o  =- (kN ) w+ l) /'~ mod D . (2.4b) 
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Then, 

h 2 =_ kN(kN)(D- 1)/2 mod D 

- k N m o d D s i n c e  ( ~ - )  = 1. 

Let 

(2.5) 

h2-= (2hl ) -1  l k N -  h 2 ] modD.  (2.6) 

We now have 

B =- hi + h2D modA 

and 

B 2 =- h 2 + 2hlh2D + h2D 2 =- k N m o d A .  

(2.7) 

(2.8) 

Since B must be odd, subtract it from A if it is even. The value of (2hi) -1 is easily 
obtained since ho = h~ 1 rood D has already been computed. Finally, because of the 
way D was chosen we also have 

2Ax + B )2 
Q(x) =- H 2 =~ 2D mod kN.  (2.9) 

And the roots of Q(x) -= 0 mod pi ,p i~  FB are 

( - B  + kx/-k-N)(2A) -1 modpi (2.10) 

since B 2 - 4A C is invariant by (2.1). Note that ~ mod p i was precomputed in step 
3 above. 

Another approach to changing polynomials was also suggested by Montgomery 
and appears in Pomerance [1985]. In (2.3), rather than selecting D to be prime, 
instead select a large set of primes P~, i=  1, 2 .. . .  , R near , ~ - .  Then select primes, in 
pairs, from this set and letD be the product of this prime pair. kx/k-ffmod PiPj can be 
computed by computing x /kN rood Pi and k~N-mod Pj separately, and then apply- 
ing the Chinese Remainder theorem. Also, computing p~ 1 modpj for each pie FBcan 
then replace the modular inverse operation in (2.10) by two modular multiplications. 
The advantage of this approach is that once the precomputations are performed we 
essentially get (2 R) sets of different Dg and inverses at the cost of R sets of computa- 
tions. Additionally, the arithmetic in (2.3) through (2.10) is easier, since P~ is much 
smaller than D. This approach works well on a single-machine implementation, but is 
ineffective for multiple machines, for reasons discussed below. 
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3. Some practical coding considerations 

This algorithm was originally implemented on a single machine, a VAX 11/780. The 
program was written in C except for several very small assembler routines which did 
64-bit arithmetic. Although this arithmetic was rather small, a few comments are in 
order, for it does influence the choice of computer used. 

1. The sieving can be done using scaled integer approximations of the logs of 
primes in the factor base. Our experience showed that [log3(p i)] was sufficiently 
accurate. This also allowed the sieve array to be composed of cells that were 
each only a single byte. On some machines, however, the addition of two bytes 
is actually slower than adding together full words. On the other hand, using 
one byte for each cell cuts down on memory requirements. These 
considerations must be balanced against one another. Furthermore, it may be 
advantageous to partition the sieve array so that individual pieces fit within the 
machine's data cache, cutting down on memory fetches while sieving. 

2. A factor base of 10,000 primes typically has its largest prime between 170,000 
and 200,000. A factor base of 3000 primes, which is the size recommended for 
60-digit numbers, typically has its largest prime between 50,000 and 60,000. 
Thus, doing numbers in the 60+ digit range requires more than 16 bits to hold 
the primes in the factor base. Much multiprecise arithmetic can therefore be 
avoided only on machines with a word size large enough to hold the factor base 
in single precision. Most of the cost of changing polynomials occurs in the 
computation of (2.10). In particular, (2.10) must be computed F times each time 
Q(x) changes, Factorizations require anywhere from 103 polynomials for 40- 
digit numbers to 10 6 polynomials for 80-digit numbers. Keeping pi single 
precision improves speed significantly. Typically, one uses the extended 
Euclidean algorithm to find (1/2A) rood p i, which is expensive when p i is greater 
than single precision. 

3. Virtually all multiprecise arithmetic in the algorithm arises from the computa- 
tion of equations (2.4)-(2.10). The work needed to compute the coefficients A 
and B is actually quite small and in practice it is never necessary to compute C, 
except perhaps as a check on the other computations. All of this arithmetic 
runs in polynomial time. We give estimates here of the total work needed for 
equations (2.4)-(2.9), assuming that a binary powering algorithm is used: 

(2.4) 0 (3/2 lg3(D) -~- lg2(D)) 
(2.5) 0 (lgZ(D)) 
(2.6) 0 (2lg2(D) + lg(D)) 
(2.7) O (lgZ(A) + lg(A)) 
(2.8) O (&(A)) 
(2.9) 0 (2lg2(kN) + Ig(kN)). 

(3.1) 
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Most of  the arithmetic occurs in (2.4) and in the computations that determine 
whetherD is a probable prime. One can eliminate many of the probable prime 
tests by eliminating most composite values of  D via the use of  a sieve or wheel. 
All of  the other computations involve only simple arithmetic operations mod N. 

4. A sieve is a very efficient computational device; however, there are tricks we can 
use to speed it up as well. The first of these combines sieve initialization with 
the sieving of the smallest primes. For example, if kN - 1 mod 8, then 21Q(x) 
always: Therefore, rather than initialize the sieve array to 0, we can set each cell 
to [log (2)] and skip sieving with respect to 2. Similarly~ if 3 ~ FB, then we can 
predetermine the roots and include [log (3)] as well. Larger primes tend to have 
root patterns that are too complex to make this worthwhile. Furthermore, since 
the sieve is usually a byte array, time can be saved by equivalencing the array to 
a full word array and initializing the latter instead. Finally, since the smallest 
primes take the longest to sieve and contribute the least toward the 
accumulated log sum, one might skip them entirely, or sieve only with respect 
to their small powers. This variation, known as the small prime variation, is 
essentially due to Pomerance [1985]. It can improve speed 15 to 20% while 
sieving. 

5. Since D ~ ~,/-~x/M,, on a 32-bit machine D is single precision for N up to about 
45 digits and double precision for N u p  to about  75 digits. Clearly, it is advanta- 
geous to use machines that perform 32 • 32-bit multiplies and 64 x 32-bit divides 
in hardware or firmware. The algorithm slowed down on a machine restricted 
to 16 x 16-bit arithmetic by more than an order of magnitude. On a machine 
with 32 x32-bit multiplies, sieving takes about 80 to 85% of the run time. On 
machines with only 32-bit arithmetic, changing polynomials dominates the 
computations. 

6. Recommendations for the selection of M, F, and other parameters not discussed 
here may be found in Silverman [1987]. 

4. Network batching system 

We have constructed a software system that allows the execution of many programs 
at once, each running on an independent workstation, from a central processor. Our 
network batching system runs on a collection of U N I X  4.2BSD systems connected 
by an Ethernet. The machines are a mixture of VAX's and SUN's  of varying sizes. 
We summarize here those features that were relevant to our Quadratic Sieve 
implementation. 

The network batching system enables users to access wasted CPU time in two 
ways: through a set of  utility programs, accessible at the operating system level, and 
through a C language library, accessible by user programs. The library, which was 
used in our parallel implementation of the Quadratic Sieve, can start programs 
running in parallel on remote workstations, or satellites, and can communicate with 
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the satellite programs from a central controlling program on a single host machine. 
The batching daemon, which is within the operating system and therefore 

completely transparent to users, controls the network batching system. For example, 
the daemon maintains a job queue on each machine, and determines whether to 
awaken or put to sleep a batched job in a queue as its machine becomes idle or busy. 
It also supports an extensive set of  utilities that help users monitor  the status of batch 
jobs across the entire network. 

Although the criteria for determining a busy satellite are configured into the 
system on a per workstation basis, they are usually defined to be when no users are 
logged in and the average number  of  runnable jobs over the past minute is less than 
one. The suspension of execution is unfortunate, but unavoidable, to prevent 
interference with interactive users of a satellite. The daemon will automatically 
restart a suspended process should its corresponding satellite no longer be busy. 

Operations provided to the user can be classified as follows: 

1. start programs on satellites; 
2. communicate with programs on satellites; 
3. synchronize programs on satellites; 
4. monitor  programs on satellites; 
5. terminate programs on satellites. 

For example, one function starts a program on a satellite. Another function obtains 
the name of a free satellite with specific characteristics--the user's requirements--  
such as the type of machine, the minimum amount  of  memory,  and the specific 
operating system. Users can thus tailor their programs to machines that best suit 
their applications. 

A secondary goal while designing the system was to simplify communication 
between host and satellite as much as possible. Each satellite program communicates 
with the host through the satellite's normal input and output channels. The host and 
satellites can therefore communicate using standard C input/output functions. 

Because host program and satellite programs run independently, some form of 
synchronization is necessary. This is indirectly achieved through normal communica- 
tion channels, but there is also a synchronous selecting function. Basically, this 
allows the host to wait until one or more members of  a set of  satellite programs has 
pending output. The function will block execution in the host program until at least 
one satellite program does have pending output. At that moment,  the data associated 
with the first satellite with pending output are returned. An optional time limit can 
be specified as a parameter  to this function to prevent the possibility of  indefinite 
blocking of execution. Because input data are buffered, it is not necessary to select 
satellites that may be waiting for input. I f  a host program sends data to a satellite 
program before it is ready to receive them, the data will simply wait in a buffer until 
the buffer is exhausted by future input requests from the satellite program. 

Since a satellite program can be suspended by the batching daemon or terminated 
abnormally by a satellite crash, there is a library function that enables the host 
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program to monitor satellite programs. The host program periodically uses this 
function to take appropriate actions on satellite programs. 

The number of satellite programs a host program can activate at any given time is 
limited by the resource limits imposed on the host program by the local operating 
system. This mainly depends on the amount of memory available for storing the 
required data structures. Because of these and other constraints, the host has 
functions to terminate a satellite program and to deallocate its associated data 
structures in the host program. It is also limited by the available I/O bandwidth of 
the network. One does not wish to overload the network with too many messages 
passed between host and satellites. 

5. Description of parallel implementation 

The simplest way to parallelize is to implement stand-alone versions of the program 
on many machines and give each machine its own initial value of D. Initial multiple 
values of D should be spaced far enough apart so that duplicate polynomials do not 
occur. After a little experience, we found it easy to estimate how far apart they 

4 should be. The value of D is near ~/N', the average gap between primes near D is 
about log D, approximately half of which will be quadratic residues. Thus, we spaced 
the initial values of D by about 

log N 
2T L ' (5.1) 

where Tis the estimated total number of needed polynomials and L is the number of 
machines, leaving, of course, a margin for error. Estimates for the total number of 
required polynomials for numbers of differing sizes are given in Table 1. With this 
approach, each machine maintains its own separate data files for storing Q(x) 
factorizations, values of H, and necessary restart data. The only restart data needed 
are the most recent value of D and a count of the factorizations. We strongly 
recommend that the value of D be frequently written out to disk because frequent 
stops and starts are common, especially with computations that can run in 
background for a week or more. Once enough factorizations are produced, the data 
from all machines are collected and step 7 of the algorithm begins. A way of 
determining when enough factorizations have been collected is presented in 
Silverman [1987]. It is clear that using this approach results in L machines giving an 
L-fold speedup. There is no comunication overhead to consider since each machine 
runs independently of others. 

However, this implementation is difficult to control. Machines go down for a 
variety of reasons, and constantly monitoring them and restarting them when 
necessary is a nuisance. For this reason a star configuration is preferred. Figure 1 
shows the actual network configuration. The satellites communicate only with the 
host, not with each other. This implementation of the Multiple Polynomial 
Quadratic Sieve is, with our network batching system, quite simple: The host 
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computes and sends out values of  D when requested by the satellites and receives 
back factorizations. These are the only required communications. 

Figurel. Star configuration. 
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5.1. Host functions 

The host machine has three responsibilities: first, to compute the sequence of D's; 
second, to store incoming factorizations from the satellites; third, to monitor  the 
satellites and provide for satellite failures. This sequence of operations is detailed in 
Figure 2. 

1. Computation of D. We wanted to keep all satellite processors as busy as 
possible, so when a request arrived from a satellite for a new value of D, the 
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host had already computed it. The simplest way to do this was to maintain a 
stack of D's. The length of this stack will be implementation and machine 
dependent. We used a stack of D's equal to twice the number of machines. 
When a request arrived for a D, it was already available on the stack. When the 
host had no incoming messages, it spent its time computingD's and augmenting 
the stack if necessary. 

Figure 2. Host functions. 
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2. Storage of incoming factorizations. The second type of message received by the 
host was a factorization. Our implementation sent the factorization to the host 
as a formatted string already encoded for disk storage. All the host needed to 
do was read the message, determine that it was a factorization rather than a 
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. 

request for a D, and then store the string in a file. This operation takes virtually 
no time. 
Satellite monitoring. There are two types of  processor failure. The first, 
considered a critical failure because it halts all computation,  occurs when the 
host or the network crashes. The only cure for this is a complete restart. To 
safeguard against this possibility the host frequently checkpointed the current 
value of D so that a restart would not duplicate polynomials. The second type 
of  failure occurs when one of the satellites goes down. This is a noncritical 
failure because the satellite simply stops sending messages to the host--al l  other 
satellites continue running. To prevent gradual degradation of the system from 
satellite shutdowns, our host periodically checked whether all satellites were 
still running. When a satellite went down, the host attempted to restart the pro- 

gram on that machine or, if another satellite was available, on a previously 
unused machine. The automation of this process saved a great deal of  trouble. 

5.2 Satellite functions 

Satellites have functional duties. That  is, any computat ion on any satellite must have 
no side effects on the host or another satellite. A satellite's chores are to request and 

Figure 3. Satellite functions. 
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receive a value of D, construct Q(x), compute its roots, perform the sieving, and report 
back any factorizations. Figure 3 illustrates this sequence of operations. The advan- 
tage of treating each satellite as a functional unit is that should one fail, the others 
can keep running without adverse effects. 

6. Performance of the algorithm 

6.1. Run time 

We will first show the influence of using multiple processors for factoring a typical 
60-digit number (Fig. 4). The number chosen is a cofactor of 328o + 1, taken from the 
Cunningham Project [Brillhart and others 1983]. 

Figure 4. Algorithm performance. 
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Utilizing satellite processors is virtually 100% efficient. Of course, one could hook 
up enough satellites to overwhelm the host, but that can be obviated by 
implementing multiple stars using (5.1) and hooking the various hosts together. One 
could also lengthen the sieve interval, at the cost of some minor performance 
degradation. Increasing M would cause satellites to spend more time sieving; hence, 
the time interval between messages sent to the host would also increase. 

6.2. Communica t ion  requirements  

The total data storage requirement for an 80-digit number is about 20 Mbytes. This 
includes all of  the necessary values of  Hj and the vectors vj. A practical device, known 
as the large prime variation, has been described by several authors and was originally 
suggested by Morrison and Brillhart [1975]. Rather than require that Q(x) be factored 
completely over the factor base, we allow a partial factorization witfi one large prime 
factor lying outside the factor base. By collecting many of these large prime 
factorizations we can search for duplicates among the large prime factors and 
combine the respective factorizations to yield a power of  two for that large prime. In 
practice, most of  the data storage requirement arises from storing the large prime 
factorizations, since we typically find 30 large prime factorizations for each full 
factorization. The storage requirement can be modified by limiting the size of large 
prime factors we are willing to accept. 

The data are transmitted as a string from satellite to host. For an 80-digit number 
each string is approximately 160 bytes in the following form: 

LP C OUNT SIGN 11 e 1 12 (X 2 " ' "  Icouyv c~ couNv H. 

LP is the large prime and is arbitrarily set to 0 to indicate when the factorization was 
complete over the factor base. COUNT is the number of  nonzero exponents 
appearing in (1.4). SIGN is the sign of Q(x). I k 0: k is the value o f / a n d  corresponding 
value ofc~ iin (1.4), and His  the corresponding square root of  Q(x). Typical values of 
COUNT range from 9 to 15. For  an 80-digit number, using a factor base of 10,000 
primes, one would typically find about 4500 complete factorizations and about 
120,000 large prime factorizations. This latter figure depends, of course, on the size 
of the large primes one is willing to accept. We set a cutoff of 200 million. One can 
cut storage requirements, and hence host -sa te l l i te  messages, by reducing the 
maximal size of the large primes. A reduction to 20 million would cut storage 
requirements approximately in half at the cost of  a few percent in run time needed to 
generate more factorizations. 

An 80-digit number takes about one week to factor using ten satellite processors. 
If the total data size sent back to the host is 20 Mbytes, this averages about 33 bytes/ 
sec of  data transmission on the network. In Table 1 the optimal number of 
polynomials is about 1/2 million; hence, requests for D arrive at the host about once 
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every 1.2 sec. Each request for D requires 2 bytes and each value of D requires 2 bytes, 
so the total average data transmission rate is 37 bytes/sec. The bandwidth of our 
Ethernet is 128K bytes/sec so it is apparent that this type of implementation need not 
be concerned with data transmission capacity. 

Implementing Montgomery's idea of letting D be the product of two nearly equal 
primes would require that each time the host sent a value of D to a satellite it would 
also have to send the accompanying inverses for each prime in the factor base. Since 
there are two prime factors of  D and we need the inverse of each, a factor base of 
10,000 primes would require the transmission of 20,000 inverses each time we change 
polynomials. The host could premultiply the inverses of  the two primes, but even 
then we would have to send 10,000 inverses, and the host would have to do much 
more work. This would overwhelm either the host or the network bandwidth. It 
might be possible, however, to let each satellite generate its own supply of D's 
independently from its own set of Pi's by being very careful about selecting Pi on 
different machines so as not to create duplicate polynomials. There is only one 
foreseeable obstacle to this. Since Pi is half the size of D, there are fewer available 
values, and as P~ grows their product in pairs could wander from the optimal value 
of D quite quickly. We do anticipate, however, trying this approach. 

6.3. Algorithm parameters 

Table 1 gives optimal estimates for the total number of polynomials required for 
numbers of varying sizes. It is not uncommon to see variations in run time by a 
factor of two to three for numbers of a given size, primarily because some numbers 
are inherently richer in small quadratic residues. The number of polynomials given 
therefore represents an average value. Furthermore, the number of polynomials 
depends on M, since as M increases we need fewer polynomials. This table gives 
guidelines should one choose to implement independent stand-alone versions. 

Table l. Optimal algorithm parameters. 

Digits Polynomials M F 

60 8K 150K 3K 
63 15K 200K 3.5K 
66 25K 250K 4K 
69 45K 300K 5K 
72 85K 350K 6K 
75 150K 425K 7K 
78 280K 525K 8K 
81 450K 750K 10K 
84 750K IM 12K 
87 1.2M 1.3M 15K 
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We used SUN-3's for both host and satellites. These turned out to have greater 
individual performances than we expected. Although they only yield about 70% 
greater performance than a VAX/780 for most applications, they ran the Quadratic 
Sieve three times faster, for the SUN-3 CPU has a built-in instruction cache that is 
large enough to hold all the code for the sieving loops of the program. While the 
program was sieving, a machine did not have to go to memory to fetch instructions. 
Thus, sieving speeded up about 3.5 times and overall performance about 3 times. 

6.4. Comparison with other implementations 

A single SUN-3/75 takes approximately 100 hr to factor a single 7l-digit number. 
Davis, Holdridge, and Simmons [1985] reported the factorization of the 71-digit 
number (1071-1)/9 in 9.5 hr using a CRAY X-MP. A private communication with 
Davis indicates that they have since been able to cut that time in half. Thus, we 
would need approximately 20 SUN-3/75's, running in parallel, to achieve a similar 
result. The exact price of a CRAY X-MP varies widely but is at least $10,000,000. A 
single SUN-3/75 costs about $15,000. Twenty SUN-3/75's would therefore show a 
minimum 33:1 price/performance improvement over the CRAY X-MP in executing 
this algorithm. 

The Quadratic Sieve completely dominates the older, continued fraction algo- 
rithm even when the latter is run on special purpose hardware. For example, Wag- 
staff [1986] reports the factorization of a 62-digit number that took several weeks on 
the EPOC at the University of Georgia, a machine specially constructed to run the 
continued fraction algorithm. Wunderlich [1986] reports the factorization of a 64- 
digit number in about 9 hr using the massively parallel processor at NASA. A com- 
parison of a single machine VAX implementation of both algorithms shows that 
even for very small numbers the quadratic sieve is faster [Silverman 1987]. 

The implementation described here shows that special hardware is not necessary 
to achieve large factorizations. Networks of microcomputers are becoming quite 
common. Our results show that using them instead of supercomputers or special 
hardware is much more cost effective. 

7. Results 

Table 2 shows some of our achieved factorizations. All were computed using 8 to l0 
SUN-3's running in parallel. The CPU time, given in hours, is the total time summed 
over all satellites plus the time used by the host. Typically, the host was busy approx- 
imately 7% of the time in its computations and monitoring of the various satellites. 
Naive extrapolation therefore says one could hook about 150 satellite processors 
onto a single host before exceeding its capacity. However, as numbers grow larger, 
the time between host-satellite communications grows because the individual satel- 
lites take longer in their computations and report successful factorizations back less 
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frequently.  It is therefore  difficult to predic t  how m a n y  satellites could  be cont ro l led  

by a single host  because one would  not,  in fact, wan t  to use all the avai lable  satellites 

in fac tor ing  smal ler  numbers .  
The  fac tor iza t ions  in Table  2 are all of  compos i te  cofac tors  t aken  f rom the Cun-  

n ingham Project.  The  des igna t ion  base,  e x p +  or  base,  e x p -  indicates  a compos i te  
cofac tor  o f  base exp 4- 1, respectively,  while the des igna t ion  base,  exp M indicates a 
compos i t e  cofac tor  o f  a special a lgebraic  factor iz ion o f  base exp + 1, known  as an Au-  
refeuil l ian fac tor iza t ion  [Bril lhart  and  others  1983]. The  des ignat ion  P x x i n d i c a t e s  a 

pr ime number  o f  x x  digits. 

Table2. Quadratic sieve factorizations in parallel with multiple SUN/3's. 

N Digits Factors CPU Time (hr) 

6,166+ 69 437801891817492814657.P48 75 
10,270M 70 13029637224192121671301.P48 88 
3,197+ 71 49676157359100536013871955394289.P39 135 
3,193- 72 218246094772601642186973037.P44 195 
3,158+ 72 10393819190815276250780568850989337.P38 210 
2,562M 74 58381440973934522510444290213069.P43 345 
11,95 + 76 125391374277955216479795494641.P46 425 
7,109- 76 635057076990048880101785428103.P47 480 
6,106+ 77 175436926004647658810244613736479118917.P39 590 
11,83 + 77 47433880332031195178437273.P52 560 
2,277- 78 31133636305610209482201109050392404721.P40 650 
2,538M 78 I22575221550682354302309961053.P48 663 
11,79- 79 185277551100523662054683911.P53 1720 
2,269 + 81 424255915796187428893811.P57 1260 
6,12I + 83 15186641018595718629290023681.P55 2150 
3,178 + 84 1192464167514295068582330293.P57 1450 
5,128 + 87 23653200983830003298459393.P62 4950 
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