
The Journal of Supercomputing, 1,273-290 (1988)
�9 1988 Kluwer Academic Publishers, Boston, Manufactured in the Netherlands

Parallel Implementation of the Quadratic Sieve
THOMAS R. CARON
ROBERT D. SILVERMAN
The MITRE Corporation,
Bedford, MA O1730

Abstract. A new version of the Quadratic Sieve algorithm, used for factoring large integers, has recently
emerged. The new algorithm, called the Multiple Polynomial Quadratic Sieve, not only considerably
improves the original Quadratic Sieve but also adds features that ideally suit a parallel implementation.
The parallel implementation used for the new algorithm, a novel remote batching system, is also described.

I. Introduction

Although there has been much recent progress in the design and manufacture of new
architectures for parallel processing, applications that can fully utilize all the
available processing power are still rather rare. We present the design of a loosely
coupled parallel processor constructed from a network of multiple SUN
microcomputers using Ethernet protocols. This network has been used to implement
a parallel version of a new algorithm for factoring large integers. Factoring, a
problem that belongs to NP, has relevance to the RSA encryption system, so one
would like to be able to carefully delineate current computing limits in factoring to
determine how large an RSA key needs to be. The construction of our network and
remote processing software enables us to use multiple SUN's as an asynchronous
multiple-instruction, multiple data (MIMD) machine. The SUN operating system
provides a centralized file system for all processors so that they can access data in a
common file without explicitly passing data among processors. This feature is a great
boon to application designers because they need not concern themselves with data
passing mechanisms.

The version of the Quadratic Sieve used in this implementation was fully described
in Silverman [1987]. It differs from the original algorithm by using multiple polyno-
mials rather than just a single polynomial. This feature makes it well suited for
parallel implementation. The idea of using multiple polynomials was independently
developed by Davis and Holdridge [1983]; Davis, Holdridge, and Simmons [1985];
and Montgomery [1985], although they suggested somewhat different approaches.
The forms of the polynomials used here, due to Montgomery, are somewhat better
and easier to implement. A contrast of the Davis and Montgomery ideas was
presented in Pomerance [1985] and Silverman [1987]. It is first necessary to give a
review of the salient features of the multiple polynomial version.

274 T.R. CARON AND R. D. S1LVERMAN

The algorithm depends upon finding two squares in the same equivalence class
mod N where N is the number one wishes to factor:

X 2 = y 2 m o d N . (1.1)

If XT~ Yand X ~ - YmodN, then (X + Y, N) and (X - Y, N) are proper factors of
N.

Rather than construct (1.1) directly, one instead produces a large number of
congruences of the form

X 2 - Y mod N (1.2)

and then combines these congruences into (1.1). Specifically, using a quadratic
polynomial, usually designated Q(x), we first produce a very large number of these
quadratic residues Y o f N . Second, using a fixed set of primes, we attempt to factor Y,
and then use the factorizations to find a set of congruences whose product is a
square. Construction of Q(x) is described below. Since Q(x) is a polynomial, if a
prime plQ(x), then p[Q(x+kp) fo r all k e Z . Thus, Q(x) can be factored with a sieve
once Q(x) - 0 rood p has been solved. The potential divisors p of Q(x) are exactly
those primes for which the Legendre symbol (N) = 1 and the unit - 1 to hold the
sign. P

Q(x) is chosen so that the produced residues are small relative to N. The smaller
the residues, the faster the algorithm runs. So far the best that can be achieved is Q(x)
= O(x/'N). This leads to an algorithm whose heuristic run time is [Pomerance 1983]:

L (N) =e(1 + o(1)) O , (N) l , l , (N) . (1.3)

In practice, for numbers of the size that can be factored today, adding three digits
roughly doubles the run time. This factor of 2 drops very slowly to 1 as N ~ ~ . To
obtain even smaller residues, Coppersmith, Odlyzko, and Schroeppel [1986] recently
suggested using a specialized cubic polynomial whose residues are O (,~-N-), which
leads to an algorithm whose heuristic complexity is O(L (N),fiS); but it is not known
whether this algorithm is practical. Constructing the cubic polynomical requires
solving a very difficult cubic congruence.

The Quadratic Sieve algorithm continues as follows:

1. Select a factor base FB = { p i l (N .) = l , p l prime, i = l , . . . , F} for some
pt

appropriate value o f F a n d Po = - I for the sign.
2. Select a small integer k such that k N = 1 mod 4. A method for evaluating k;

orginally due to Knuth and Schroeppel (unpublished), was discussed in
Silverman [1987].

3. Compute k , ~ modpl and [log (pi)] for all pi ~ FB.
4. ComputeQ(x) and solve the quadratic congruence Q(x) - 0 mod pi forall pi

P A R A L L E L I M P L E M E N T A T I O N O F T H E Q U A D R A T I C SIEVE 275

FB. There will be two roots rl and r 2 for each pi unless pilk, in which case there
will only be one root at 0.

5. Initialize a sieve array to zero over the interval [- M, M] for some appropriate
M.

6. For all p ~ E FB add the value of [log (Pi)] to the sieve array at locations:

r l , r 2 + pi ,r l =k 2pi a n d r2, r z • pi ,r24- 2pi

. Since the value of Q(x) is approximately M x / N over [- M, M], compare each
sieve location with [log (N)/2 + log (M)], Fully factored residues have their
corresponding sieve values close to this value. For these, construct the exact
factorization via division. Since successes are rare, the time to do this division
is negligible.

I f Q (x~), for some xj is factored as

F
Q(x j)= I ~ p ~. iv p i s F B , (1.4)

l
i - o

.

thenlet vj be the corresponding vector of exponents ~jl, 0~j2, ~j3,..., ~jF, and le t / / j
be the square root of Q(xj) modN, so t h a t H } - Q(x~)modN.
Collect F + 1 factorizations and form an F + 1 by F matrix from the vectors vj
reduced mod 2. Then find a set of residues whose product is a square via
Gaussian elimination overGF(2). This creates a linear dependency mod 2 on
the exponents and the product of the vectors in that dependency forms a
square. It is then trivial to construct an instance of congruence (1.1). This final
stage of the algorithm typically takes only 1 or 2% of the total run time. For
more details see Morrison and Brillhart [1975].

Remark. Achieving the asymptotic performance of (1.3) requires a better algorithm
than Gaussian elimination. Such a method has been proposed by Wiedemann [1986],
but it is not currently known whether it is faster in practice for values of F discussed
here. The reason for this is that Gaussian elimination over GF(2) on a binary
computer can be effected simply by packing 32 columns to a 32-bit word and using
excl-usive or to add 32 columns at once. Implemented in this fashion, Gaussian
elimination runs very quickly.

The above approach has a serious limitation. We must collect approximately as
many fully factored residues as there are primes in the factor base. To obtain enough
factorizations, M must be very large, but the residues grow linearly in size with M.
Thus, they become progressively more difficult to factor. The solution to this
problem was presented in Silverman [1987]. Use many polynomials Q(x), change
them frequently, and keep M small. This approach has the further advantage that its

276 Y.R. CARON AND R. D. SILVERMAN

parallel implementation is very efficient. L machines give an L-fold speedup, for the
computation of Q(x) is driven by a sequence of prime numbers D (described below).
Each selected value of D results in a different polynomial, and we can give separate
sequences to each of the Lmachines.

2. Computation of the quadratic polynomials

We select the following polynomial:

Q(x) = A x 2 + Bx + C

subject to B 2 - 4A C = k N for some k e Z.
(2.1)

The condition on the discriminant is necessary for Q(x) to yield quadratic residues.
Because of the form of the discriminant, another requirement is that k N - 1 or 0 mod
4. To satisfy the constraint on the discriminant one must have

B 2 =- k N mod 4A. (2.2)

Select integers D and A with the following properties:

O 2 = A , D = 1, D = 3mod4, and A ~ (2.3)
M

It is desirable that D be prime because if a prime in the factor base divides A, then
2 i

Q(x)=-O m o d p has only one root and the probability that plQ(x) drops f r o m - - t o - - '
P P

For practical purposes, it is sufficient that D be only a probable prime.The values
given in (2.3) result in a choice of Q(x)whose average value is minimized over I - M ,
M], the sieve interval. The computation of the polynomial coefficients, given below, is
driven by the value olD. One utilizes multiple values of D by starting with the values
given in (2.3) and successively adding 4 to D, checking that it is both a probable
prime and a quadratic residue of kN. Many composite values of D can be avoided by
constructing a "wheel" - - a sequence of D's not divisible by a chosen set of small
primes [Knuth 1981]. To find the coefficients of Q(x) compute

ho =- (kN) (D-3)/4 mod D (2.4a)

and

ha - k N h o =- (kN) w+ l) /'~ mod D . (2.4b)

PARALLEL IMPLEMENTATION OF THE QUADRATIC SIEVE 277

Then,

h 2 =_ kN(kN)(D- 1)/2 mod D

- k N m o d D s i n c e (~ -) = 1.

Let

(2.5)

h2-= (2hl) -1 l k N - h 2] modD. (2.6)

We now have

B =- hi + h2D modA

and

B 2 =- h 2 + 2hlh2D + h2D 2 =- k N m o d A .

(2.7)

(2.8)

Since B must be odd, subtract it from A if it is even. The value of (2hi) -1 is easily
obtained since ho = h~ 1 rood D has already been computed. Finally, because of the
way D was chosen we also have

2Ax + B)2
Q(x) =- H 2 =~ 2D mod kN. (2.9)

And the roots of Q(x) -= 0 mod pi ,p i~ FB are

(- B + kx/-k-N)(2A) -1 modpi (2.10)

since B 2 - 4A C is invariant by (2.1). Note that ~ mod p i was precomputed in step
3 above.

Another approach to changing polynomials was also suggested by Montgomery
and appears in Pomerance [1985]. In (2.3), rather than selecting D to be prime,
instead select a large set of primes P~, i= 1, 2 , R near , ~ - . Then select primes, in
pairs, from this set and letD be the product of this prime pair. kx/k-ffmod PiPj can be
computed by computing x /kN rood Pi and k~N-mod Pj separately, and then apply-
ing the Chinese Remainder theorem. Also, computing p~ 1 modpj for each pie FBcan
then replace the modular inverse operation in (2.10) by two modular multiplications.
The advantage of this approach is that once the precomputations are performed we
essentially get (2 R) sets of different Dg and inverses at the cost of R sets of computa-
tions. Additionally, the arithmetic in (2.3) through (2.10) is easier, since P~ is much
smaller than D. This approach works well on a single-machine implementation, but is
ineffective for multiple machines, for reasons discussed below.

278 T. R, CARON AND R. D. SILVERMAN

3. Some practical coding considerations

This algorithm was originally implemented on a single machine, a VAX 11/780. The
program was written in C except for several very small assembler routines which did
64-bit arithmetic. Although this arithmetic was rather small, a few comments are in
order, for it does influence the choice of computer used.

1. The sieving can be done using scaled integer approximations of the logs of
primes in the factor base. Our experience showed that [log3(p i)] was sufficiently
accurate. This also allowed the sieve array to be composed of cells that were
each only a single byte. On some machines, however, the addition of two bytes
is actually slower than adding together full words. On the other hand, using
one byte for each cell cuts down on memory requirements. These
considerations must be balanced against one another. Furthermore, it may be
advantageous to partition the sieve array so that individual pieces fit within the
machine's data cache, cutting down on memory fetches while sieving.

2. A factor base of 10,000 primes typically has its largest prime between 170,000
and 200,000. A factor base of 3000 primes, which is the size recommended for
60-digit numbers, typically has its largest prime between 50,000 and 60,000.
Thus, doing numbers in the 60+ digit range requires more than 16 bits to hold
the primes in the factor base. Much multiprecise arithmetic can therefore be
avoided only on machines with a word size large enough to hold the factor base
in single precision. Most of the cost of changing polynomials occurs in the
computation of (2.10). In particular, (2.10) must be computed F times each time
Q(x) changes, Factorizations require anywhere from 103 polynomials for 40-
digit numbers to 10 6 polynomials for 80-digit numbers. Keeping pi single
precision improves speed significantly. Typically, one uses the extended
Euclidean algorithm to find (1/2A) rood p i, which is expensive when p i is greater
than single precision.

3. Virtually all multiprecise arithmetic in the algorithm arises from the computa-
tion of equations (2.4)-(2.10). The work needed to compute the coefficients A
and B is actually quite small and in practice it is never necessary to compute C,
except perhaps as a check on the other computations. All of this arithmetic
runs in polynomial time. We give estimates here of the total work needed for
equations (2.4)-(2.9), assuming that a binary powering algorithm is used:

(2.4) 0 (3/2 lg3(D) -~- lg2(D))
(2.5) 0 (lgZ(D))
(2.6) 0 (2lg2(D) + lg(D))
(2.7) O (lgZ(A) + lg(A))
(2.8) O (&(A))
(2.9) 0 (2lg2(kN) + Ig(kN)).

(3.1)

PARALLEL IMPLEMENTATION OF THE QUADRATIC SIEVE 279

Most of the arithmetic occurs in (2.4) and in the computations that determine
whetherD is a probable prime. One can eliminate many of the probable prime
tests by eliminating most composite values of D via the use of a sieve or wheel.
All of the other computations involve only simple arithmetic operations mod N.

4. A sieve is a very efficient computational device; however, there are tricks we can
use to speed it up as well. The first of these combines sieve initialization with
the sieving of the smallest primes. For example, if kN - 1 mod 8, then 21Q(x)
always: Therefore, rather than initialize the sieve array to 0, we can set each cell
to [log (2)] and skip sieving with respect to 2. Similarly~ if 3 ~ FB, then we can
predetermine the roots and include [log (3)] as well. Larger primes tend to have
root patterns that are too complex to make this worthwhile. Furthermore, since
the sieve is usually a byte array, time can be saved by equivalencing the array to
a full word array and initializing the latter instead. Finally, since the smallest
primes take the longest to sieve and contribute the least toward the
accumulated log sum, one might skip them entirely, or sieve only with respect
to their small powers. This variation, known as the small prime variation, is
essentially due to Pomerance [1985]. It can improve speed 15 to 20% while
sieving.

5. Since D ~ ~,/-~x/M,, on a 32-bit machine D is single precision for N up to about
45 digits and double precision for N u p to about 75 digits. Clearly, it is advanta-
geous to use machines that perform 32 • 32-bit multiplies and 64 x 32-bit divides
in hardware or firmware. The algorithm slowed down on a machine restricted
to 16 x 16-bit arithmetic by more than an order of magnitude. On a machine
with 32 x32-bit multiplies, sieving takes about 80 to 85% of the run time. On
machines with only 32-bit arithmetic, changing polynomials dominates the
computations.

6. Recommendations for the selection of M, F, and other parameters not discussed
here may be found in Silverman [1987].

4. Network batching system

We have constructed a software system that allows the execution of many programs
at once, each running on an independent workstation, from a central processor. Our
network batching system runs on a collection of U N I X 4.2BSD systems connected
by an Ethernet. The machines are a mixture of VAX's and SUN's of varying sizes.
We summarize here those features that were relevant to our Quadratic Sieve
implementation.

The network batching system enables users to access wasted CPU time in two
ways: through a set of utility programs, accessible at the operating system level, and
through a C language library, accessible by user programs. The library, which was
used in our parallel implementation of the Quadratic Sieve, can start programs
running in parallel on remote workstations, or satellites, and can communicate with

280 T.R. CARON AND R. D. SILVERMAN

the satellite programs from a central controlling program on a single host machine.
The batching daemon, which is within the operating system and therefore

completely transparent to users, controls the network batching system. For example,
the daemon maintains a job queue on each machine, and determines whether to
awaken or put to sleep a batched job in a queue as its machine becomes idle or busy.
It also supports an extensive set of utilities that help users monitor the status of batch
jobs across the entire network.

Although the criteria for determining a busy satellite are configured into the
system on a per workstation basis, they are usually defined to be when no users are
logged in and the average number of runnable jobs over the past minute is less than
one. The suspension of execution is unfortunate, but unavoidable, to prevent
interference with interactive users of a satellite. The daemon will automatically
restart a suspended process should its corresponding satellite no longer be busy.

Operations provided to the user can be classified as follows:

1. start programs on satellites;
2. communicate with programs on satellites;
3. synchronize programs on satellites;
4. monitor programs on satellites;
5. terminate programs on satellites.

For example, one function starts a program on a satellite. Another function obtains
the name of a free satellite with specific characteristics--the user's requirements--
such as the type of machine, the minimum amount of memory, and the specific
operating system. Users can thus tailor their programs to machines that best suit
their applications.

A secondary goal while designing the system was to simplify communication
between host and satellite as much as possible. Each satellite program communicates
with the host through the satellite's normal input and output channels. The host and
satellites can therefore communicate using standard C input/output functions.

Because host program and satellite programs run independently, some form of
synchronization is necessary. This is indirectly achieved through normal communica-
tion channels, but there is also a synchronous selecting function. Basically, this
allows the host to wait until one or more members of a set of satellite programs has
pending output. The function will block execution in the host program until at least
one satellite program does have pending output. At that moment, the data associated
with the first satellite with pending output are returned. An optional time limit can
be specified as a parameter to this function to prevent the possibility of indefinite
blocking of execution. Because input data are buffered, it is not necessary to select
satellites that may be waiting for input. I f a host program sends data to a satellite
program before it is ready to receive them, the data will simply wait in a buffer until
the buffer is exhausted by future input requests from the satellite program.

Since a satellite program can be suspended by the batching daemon or terminated
abnormally by a satellite crash, there is a library function that enables the host

PARALLEL IMPLEMENTATION OF THE QUADRATIC SIEVE 281

program to monitor satellite programs. The host program periodically uses this
function to take appropriate actions on satellite programs.

The number of satellite programs a host program can activate at any given time is
limited by the resource limits imposed on the host program by the local operating
system. This mainly depends on the amount of memory available for storing the
required data structures. Because of these and other constraints, the host has
functions to terminate a satellite program and to deallocate its associated data
structures in the host program. It is also limited by the available I/O bandwidth of
the network. One does not wish to overload the network with too many messages
passed between host and satellites.

5. Description of parallel implementation

The simplest way to parallelize is to implement stand-alone versions of the program
on many machines and give each machine its own initial value of D. Initial multiple
values of D should be spaced far enough apart so that duplicate polynomials do not
occur. After a little experience, we found it easy to estimate how far apart they

4 should be. The value of D is near ~/N', the average gap between primes near D is
about log D, approximately half of which will be quadratic residues. Thus, we spaced
the initial values of D by about

log N
2T L ' (5.1)

where Tis the estimated total number of needed polynomials and L is the number of
machines, leaving, of course, a margin for error. Estimates for the total number of
required polynomials for numbers of differing sizes are given in Table 1. With this
approach, each machine maintains its own separate data files for storing Q(x)
factorizations, values of H, and necessary restart data. The only restart data needed
are the most recent value of D and a count of the factorizations. We strongly
recommend that the value of D be frequently written out to disk because frequent
stops and starts are common, especially with computations that can run in
background for a week or more. Once enough factorizations are produced, the data
from all machines are collected and step 7 of the algorithm begins. A way of
determining when enough factorizations have been collected is presented in
Silverman [1987]. It is clear that using this approach results in L machines giving an
L-fold speedup. There is no comunication overhead to consider since each machine
runs independently of others.

However, this implementation is difficult to control. Machines go down for a
variety of reasons, and constantly monitoring them and restarting them when
necessary is a nuisance. For this reason a star configuration is preferred. Figure 1
shows the actual network configuration. The satellites communicate only with the
host, not with each other. This implementation of the Multiple Polynomial
Quadratic Sieve is, with our network batching system, quite simple: The host

282 T.R. CARON AND R. D. SILVERMAN

computes and sends out values of D when requested by the satellites and receives
back factorizations. These are the only required communications.

Figurel. Star configuration.

Iiiiii iii iiiiit
k ~

iiiiiiiiii!iii
k

Fac to r i za t io r Send D - - - ~

iiiiiiiiiiiiiii!iii
i!!iiiiil iiilii ii i~

HOST iiiiiiiiiiiiii!iiiiiiiiiii!iiiiiiiii!!iii!i!iiiiiiiiii!ii

i i

/
Iiiii!iiiiiiii!iiJ

i i

iiii iiii~i~ii ii ~ i i �84

k ~l,4.4.4.4,4.4J,4,4,4.k

5.1. Host functions

The host machine has three responsibilities: first, to compute the sequence of D's;
second, to store incoming factorizations from the satellites; third, to monitor the
satellites and provide for satellite failures. This sequence of operations is detailed in
Figure 2.

1. Computation of D. We wanted to keep all satellite processors as busy as
possible, so when a request arrived from a satellite for a new value of D, the

P A R A L L E L I M P L E M E N T A T I O N OF THE Q U A D R A T I C SIEVE 283

host had already computed it. The simplest way to do this was to maintain a
stack of D's. The length of this stack will be implementation and machine
dependent. We used a stack of D's equal to twice the number of machines.
When a request arrived for a D, it was already available on the stack. When the
host had no incoming messages, it spent its time computingD's and augmenting
the stack if necessary.

Figure 2. Host functions.

Create Factor Base

Compute Scaled Logs
Compute Square Roots

Create List of D's

I
I Start Remote Processors

l
Any Incoming Messages?] 'ql

I,de~ Message I I's Stack Ful,:l

I Monitor
Satel ites [I Send D I Store

Compute if
Necessary Factorization

1 l
Add New D

to Stack

2. Storage of incoming factorizations. The second type of message received by the
host was a factorization. Our implementation sent the factorization to the host
as a formatted string already encoded for disk storage. All the host needed to
do was read the message, determine that it was a factorization rather than a

284 T.R . C A R O N A N D R. D. S ILVERMAN

.

request for a D, and then store the string in a file. This operation takes virtually
no time.
Satellite monitoring. There are two types of processor failure. The first,
considered a critical failure because it halts all computation, occurs when the
host or the network crashes. The only cure for this is a complete restart. To
safeguard against this possibility the host frequently checkpointed the current
value of D so that a restart would not duplicate polynomials. The second type
of failure occurs when one of the satellites goes down. This is a noncritical
failure because the satellite simply stops sending messages to the host--al l other
satellites continue running. To prevent gradual degradation of the system from
satellite shutdowns, our host periodically checked whether all satellites were
still running. When a satellite went down, the host attempted to restart the pro-

gram on that machine or, if another satellite was available, on a previously
unused machine. The automation of this process saved a great deal of trouble.

5.2 Satellite functions

Satellites have functional duties. That is, any computat ion on any satellite must have
no side effects on the host or another satellite. A satellite's chores are to request and

Figure 3. Satellite functions.

i
Request D from Host I

I Accept D from Host

Compute Coefficients 1

Compute Roots J

Perform Sieving

I Scan for Factorizations

I Report Factorizations

P A R A L L E L I M P L E M E N T A T I O N OF THE Q U A D R A T I C SIEVE 285

receive a value of D, construct Q(x), compute its roots, perform the sieving, and report
back any factorizations. Figure 3 illustrates this sequence of operations. The advan-
tage of treating each satellite as a functional unit is that should one fail, the others
can keep running without adverse effects.

6. Performance of the algorithm

6.1. Run time

We will first show the influence of using multiple processors for factoring a typical
60-digit number (Fig. 4). The number chosen is a cofactor of 328o + 1, taken from the
Cunningham Project [Brillhart and others 1983].

Figure 4. Algorithm performance.

_

_

60 DIGIT

SUN-3/75

F A C T O R I Z A T I O N

m

W
i _

.__. 3-
I -

O
2-

! I

2 3

N u m b e r

I I I I

4 5 6 7

of P r o c e s s o r s

I
8

286 T.R. CARON AND R. D. SILVERMAN

Utilizing satellite processors is virtually 100% efficient. Of course, one could hook
up enough satellites to overwhelm the host, but that can be obviated by
implementing multiple stars using (5.1) and hooking the various hosts together. One
could also lengthen the sieve interval, at the cost of some minor performance
degradation. Increasing M would cause satellites to spend more time sieving; hence,
the time interval between messages sent to the host would also increase.

6.2. Communica t ion requirements

The total data storage requirement for an 80-digit number is about 20 Mbytes. This
includes all of the necessary values of Hj and the vectors vj. A practical device, known
as the large prime variation, has been described by several authors and was originally
suggested by Morrison and Brillhart [1975]. Rather than require that Q(x) be factored
completely over the factor base, we allow a partial factorization witfi one large prime
factor lying outside the factor base. By collecting many of these large prime
factorizations we can search for duplicates among the large prime factors and
combine the respective factorizations to yield a power of two for that large prime. In
practice, most of the data storage requirement arises from storing the large prime
factorizations, since we typically find 30 large prime factorizations for each full
factorization. The storage requirement can be modified by limiting the size of large
prime factors we are willing to accept.

The data are transmitted as a string from satellite to host. For an 80-digit number
each string is approximately 160 bytes in the following form:

LP C OUNT SIGN 11 e 1 12 (X 2 " ' " Icouyv c~ couNv H.

LP is the large prime and is arbitrarily set to 0 to indicate when the factorization was
complete over the factor base. COUNT is the number of nonzero exponents
appearing in (1.4). SIGN is the sign of Q(x). I k 0: k is the value o f / a n d corresponding
value ofc~ iin (1.4), and His the corresponding square root of Q(x). Typical values of
COUNT range from 9 to 15. For an 80-digit number, using a factor base of 10,000
primes, one would typically find about 4500 complete factorizations and about
120,000 large prime factorizations. This latter figure depends, of course, on the size
of the large primes one is willing to accept. We set a cutoff of 200 million. One can
cut storage requirements, and hence host -sa te l l i te messages, by reducing the
maximal size of the large primes. A reduction to 20 million would cut storage
requirements approximately in half at the cost of a few percent in run time needed to
generate more factorizations.

An 80-digit number takes about one week to factor using ten satellite processors.
If the total data size sent back to the host is 20 Mbytes, this averages about 33 bytes/
sec of data transmission on the network. In Table 1 the optimal number of
polynomials is about 1/2 million; hence, requests for D arrive at the host about once

P A R A L L E L I M P L E M E N T A T I O N OF THE Q U A D R A T I C SIEVE 287

every 1.2 sec. Each request for D requires 2 bytes and each value of D requires 2 bytes,
so the total average data transmission rate is 37 bytes/sec. The bandwidth of our
Ethernet is 128K bytes/sec so it is apparent that this type of implementation need not
be concerned with data transmission capacity.

Implementing Montgomery's idea of letting D be the product of two nearly equal
primes would require that each time the host sent a value of D to a satellite it would
also have to send the accompanying inverses for each prime in the factor base. Since
there are two prime factors of D and we need the inverse of each, a factor base of
10,000 primes would require the transmission of 20,000 inverses each time we change
polynomials. The host could premultiply the inverses of the two primes, but even
then we would have to send 10,000 inverses, and the host would have to do much
more work. This would overwhelm either the host or the network bandwidth. It
might be possible, however, to let each satellite generate its own supply of D's
independently from its own set of Pi's by being very careful about selecting Pi on
different machines so as not to create duplicate polynomials. There is only one
foreseeable obstacle to this. Since Pi is half the size of D, there are fewer available
values, and as P~ grows their product in pairs could wander from the optimal value
of D quite quickly. We do anticipate, however, trying this approach.

6.3. Algorithm parameters

Table 1 gives optimal estimates for the total number of polynomials required for
numbers of varying sizes. It is not uncommon to see variations in run time by a
factor of two to three for numbers of a given size, primarily because some numbers
are inherently richer in small quadratic residues. The number of polynomials given
therefore represents an average value. Furthermore, the number of polynomials
depends on M, since as M increases we need fewer polynomials. This table gives
guidelines should one choose to implement independent stand-alone versions.

Table l. Optimal algorithm parameters.

Digits Polynomials M F

60 8K 150K 3K
63 15K 200K 3.5K
66 25K 250K 4K
69 45K 300K 5K
72 85K 350K 6K
75 150K 425K 7K
78 280K 525K 8K
81 450K 750K 10K
84 750K IM 12K
87 1.2M 1.3M 15K

288 T.R. CARON AND R. D. SILVERMAN

We used SUN-3's for both host and satellites. These turned out to have greater
individual performances than we expected. Although they only yield about 70%
greater performance than a VAX/780 for most applications, they ran the Quadratic
Sieve three times faster, for the SUN-3 CPU has a built-in instruction cache that is
large enough to hold all the code for the sieving loops of the program. While the
program was sieving, a machine did not have to go to memory to fetch instructions.
Thus, sieving speeded up about 3.5 times and overall performance about 3 times.

6.4. Comparison with other implementations

A single SUN-3/75 takes approximately 100 hr to factor a single 7l-digit number.
Davis, Holdridge, and Simmons [1985] reported the factorization of the 71-digit
number (1071-1)/9 in 9.5 hr using a CRAY X-MP. A private communication with
Davis indicates that they have since been able to cut that time in half. Thus, we
would need approximately 20 SUN-3/75's, running in parallel, to achieve a similar
result. The exact price of a CRAY X-MP varies widely but is at least $10,000,000. A
single SUN-3/75 costs about $15,000. Twenty SUN-3/75's would therefore show a
minimum 33:1 price/performance improvement over the CRAY X-MP in executing
this algorithm.

The Quadratic Sieve completely dominates the older, continued fraction algo-
rithm even when the latter is run on special purpose hardware. For example, Wag-
staff [1986] reports the factorization of a 62-digit number that took several weeks on
the EPOC at the University of Georgia, a machine specially constructed to run the
continued fraction algorithm. Wunderlich [1986] reports the factorization of a 64-
digit number in about 9 hr using the massively parallel processor at NASA. A com-
parison of a single machine VAX implementation of both algorithms shows that
even for very small numbers the quadratic sieve is faster [Silverman 1987].

The implementation described here shows that special hardware is not necessary
to achieve large factorizations. Networks of microcomputers are becoming quite
common. Our results show that using them instead of supercomputers or special
hardware is much more cost effective.

7. Results

Table 2 shows some of our achieved factorizations. All were computed using 8 to l0
SUN-3's running in parallel. The CPU time, given in hours, is the total time summed
over all satellites plus the time used by the host. Typically, the host was busy approx-
imately 7% of the time in its computations and monitoring of the various satellites.
Naive extrapolation therefore says one could hook about 150 satellite processors
onto a single host before exceeding its capacity. However, as numbers grow larger,
the time between host-satellite communications grows because the individual satel-
lites take longer in their computations and report successful factorizations back less

PARALLEL IMPLEMENTATION OF THE QUADRATIC SIEVE 289

frequently. It is therefore difficult to predic t how m a n y satellites could be cont ro l led

by a single host because one would not, in fact, wan t to use all the avai lable satellites

in fac tor ing smal ler numbers .
The fac tor iza t ions in Table 2 are all of compos i te cofac tors t aken f rom the Cun-

n ingham Project. The des igna t ion base, e x p + or base, e x p - indicates a compos i te
cofac tor o f base exp 4- 1, respectively, while the des igna t ion base, exp M indicates a
compos i t e cofac tor o f a special a lgebraic factor iz ion o f base exp + 1, known as an Au-
refeuil l ian fac tor iza t ion [Bril lhart and others 1983]. The des ignat ion P x x i n d i c a t e s a

pr ime number o f x x digits.

Table2. Quadratic sieve factorizations in parallel with multiple SUN/3's.

N Digits Factors CPU Time (hr)

6,166+ 69 437801891817492814657.P48 75
10,270M 70 13029637224192121671301.P48 88
3,197+ 71 49676157359100536013871955394289.P39 135
3,193- 72 218246094772601642186973037.P44 195
3,158+ 72 10393819190815276250780568850989337.P38 210
2,562M 74 58381440973934522510444290213069.P43 345
11,95 + 76 125391374277955216479795494641.P46 425
7,109- 76 635057076990048880101785428103.P47 480
6,106+ 77 175436926004647658810244613736479118917.P39 590
11,83 + 77 47433880332031195178437273.P52 560
2,277- 78 31133636305610209482201109050392404721.P40 650
2,538M 78 I22575221550682354302309961053.P48 663
11,79- 79 185277551100523662054683911.P53 1720
2,269 + 81 424255915796187428893811.P57 1260
6,12I + 83 15186641018595718629290023681.P55 2150
3,178 + 84 1192464167514295068582330293.P57 1450
5,128 + 87 23653200983830003298459393.P62 4950

Acknowledgments

The au thors thank the M I T R E C o r p o r t a t i o n for p rov id ing the C P U t ime used in
this project , the referees for several insightful comments , and John M c C o u b r e y for
his careful edi t ing o f this manuscr ip t .

References

Brillhart, J., Lehmer, D.H., Selfridge, J.L., Tuckerman, B., and Wagstaff, S.S., Jr. 1983. Factorizationsof
b '~ l for b = 2, 3, 5, 6, 7, 10, 11, 12, up to High Powers. American Mathematical Society, Providence,
Rhode Island.

Coppersmith, D., Odlyzko, A.M., and Schroeppel, R. 1986. Discrete logarithms in GF(p).Algorithmica, 1:
1--15.

290 T.R. CARON AND R. D. SILVERMAN

Davis, J.A., and Holdridge, D.B. 1983. Factorization using the quadratic sieve algorithm. Sandia National
Laboratories Tech. Rept. SAND 83-1346.

Davis, J.A., Holdridge, D.B., and Simmons, G.J. 1985. Status report on factoring. Advances in Cryptology:
Lecture Notes in Computer Science, pp. 183 -215.

Knuth, D.E. 1981. The Art of Computer Programming, vol. 2, SeminumericalAlgorithms, 2nd ed. Addison-
Wesley, Reading, Massachusetts, p. 365.

Montgomery, P. 1985. Personal communication.
Morrison, M., and Brillhart, J. 1975. A method of factoring and the factorization of F7. Math. Comput,

29:183-- 205.
Pomerance, C. 1983. Analysis and comparison of some integer factoring algorithms. In Computational

Methods in Number Theory (H.W. Lenstra, Jr., and R. Tijdeman, Eds.), Mathematisch Centrum,
Amsterdam, pp. 8 9 - 140.

Pomerance, C. 1985. A pipe-line architecture for factoring large integers with the quadratic sieve
algorithm. SIAMJ. Comput. Special Issue on Cryptography. To appear.

Silverman, R.D., 1987. The multiple polynomial quadratic sieve. Math. Comput. 48:329 - 339.
Wagstaff, S.S., Jr. 1986. Personal communication.
Wiedemann, D. 1986. Solving sparse linear equations over finite fields. IEEE Trans. Information Theory,

IT-32, 54-61 .
Wunderlich, M. 1986. Personal communication.

