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Abstract. The continuous spectrum of a 2D magnetostatic equilibrium with y-invariance is derived. It is 
shown that the continuous spectrum is given by an eigenvalue problem on each magnetic surface and is 
related to the different behaviour of the equilibrium quantities in different magnetic surfaces. The special 
case of a uniform poloidal magnetic field in a 1D equilibrium that is stratified with height, has been 
considered in detail and it is found that there is no continuous spectrum. It is shown that this result relies 
completely on the artificial property that the behaviour of the equilibrium quantities along a magnetic field 
line is independent of the field line considered. As a consequence the non-existence of a continuous spectrum 
in a 1D equilibrium with a uniform magnetic field cannot be used to argue that the continuous spectrum 
has no physical relevance. 

I. Introduction 

The linear and adiabatic oscillations of a vertically stratified plasma with a horizontal 
magnetic field are governed by an ordinary second order differential equation for the 
vertical component of the displacement vector. It is well-known that this differential 
equation possesses a singularity at the level where the local Alfv6n frequency or the local 
cusp frequency equals the frequency of the oscillation (see e.g., Appert et al., 1975; Chen 
and Hasegawa, 1974; Adam, 1977; E1 Mekki et al., 1978; Rae and Roberts, 1982). The 
level where the singularity occurs is called the critical level and the range of frequencies 
for which there is a singularity is the continuous spectrum. For a compressible plasma 
the continuous spectrum consists of an Alfv6n continuum and a cusp continuum. In the 
incompressible limit the Alfv6n and cusp continua coincide. The solutions that corre- 
spond to the continuum frequencies are non-square integrable and have been discussed 
for instance by Goedbloed (1983). 

The continuous spectrum has received ample attention in plasma physics because it 
is realized that the continuous spectrum is an integral part of the spectrum of ideal MHD 
and also because resonant absorption of Alfv6n waves is a possible means of heating 
plasmas (see e.g., Chen and Hasegawa, 1974; Tataronis, 1975). Recently, Schwartz and 
Bell (1984) have argued that the existence of critical levels, and as a consequence the 
continuous spectrum (although Schwartz and Bell do not mention the continuous 
spectrum) is an artifact of the assumption that the magnetic field is purely horizontal. 
Schwartz and Bell use the result that there are no critical levels in a uniform magnetic 
field of an arbitrary direction even if the magnetic field is almost horizontal, to suggest 
that the singularities and as a consequence the continuous spectrum of the exactly 
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horizontal case are of no physical relevance for example in the solar atmosphere where 
the planar horizontal field approximation is seldom adequate. 

A magnetic field of an arbitrary direction is likely to be non-uniform and to have 
components that depend on two spatial coordinates rather than to be constant. We 
therefore conclude that the suggestion by Schwartz and Bell (1984) is premature. The 
continuous spectrum of the exactly horizontal case is of no physical relevance if it can 
be shown that there is no continuous spectrum for 2D equilibria. 

The present paper is concerned with the continuous spectrum of a static two 
dimensional equilibrium in which all physical variables depend on two cartesian 
coordinates x and z but are invariant with respect to y. Gravity is included. The 
continuous spectrum of a static 2D axisymmetric and toroidal plasma has been derived 
independently by Goedbloed (1975) and Pao (1975). Ample attention has since then 
been given to the continuous spectrum and effects like plasma flow (Hameiri and 
Hammer, 1979; Hameiri, 1983; Hellsten and Spies, 1979) and plasma anisotropy 
(Hellsten, 1979; Hellsten and Scheffel, 1984) have been taken into account. A rigorous 
determination of the continuous spectrum has been given by Hameiri (1985). All the 
papers referred to so far in this paragraph concern laboratory plasmas and neglect 
gravity. The continuous spectrum of a static 2D axisymmetric equilibrium with gravity 
included has been derived for a purely poloidal magnetic field by Goossens et al. (1984) 
and Hermans et aI. (1984) and for a mixed poloidal and toroidal magnetic field by 

Poedts et al. (1985). 
The present paper is arranged as follows. The equations that describe the equilibrium 

state and the linear motions about this equilibrium state are recalled in Section 2. The 
continuous spectrum of a 2D magnetostatic equilibrium with y-invariance is derived in 
Section 3. The special case of a 1D magnetostatic equilibrium with a uniform magnetic 
field of arbitrary direction is considered in Section 4. 

2. Basic Equations 

A self-gravitating magnetostatic plasma is governed by the magnetostatic equations 

1 
V p + p V ~ - - -  ( V x B )  x B = 0 ,  (1) 

4x 

7 .  B = O, (2) 

72ci) = 4xGO, (3) 

where p, p, and �9 are the pressure, density and gravitational potential, and B the 
magnetic field. The equilibrium state which is of interest to us, is a 2D equilibrium with 
all physical variables functions of the cartesian coordinates x and z but not ofy. The 
magnetic field is split up in a poloidal and a toroidal magnetic field, Bp and B t, and the 
poloidal magnetic field is written in terms of a magnetic flux function 0(x, z) as 

Bp = - 7O(x, z) x ly = ~ - ~xx lz' (4) 
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where !~, ly, and !~ are the unit vectors in the x-, y-, and z-direction. The toroidal 
magnetic field cannot be chosen at will. The assumption of y-invariance implies that 

B, = Byly = f(~)ly (5) 

with f an arbitrary function of its argument. 
It is known in the literature that there exist 2D-equilibria with nested magnetic 

surfaces even when gravity is included (see e.g. Low, 1980). Consider such an 
equilibrium with nested magnetic surfaces. 

We then define a local orthogonal system of flux coordinates ~(x, z), Z(x, z), y with 
Z the poloidal variable. All equilibrium quantities are now functions of Z and 6 but not 
of y, and the equilibrium magnetic field has components (0, B z, By) in the (~, Z, Y) 
system of coordinates. We use the abbreviation 

~2 = ~ + 8=. (6) 

We need to have expressions for the operators 7, 72, div and rot in terms of Z, ~, and 
y for the study of the equilibrium equations and the linearized equations of MHD.  We 
have 

1 ~f I z + B z af 1r + -0Jly, (7) 
Wf - jBz 8Z ~ ~Y 

v y =  J ~ + se~  + -  s , (s) 
JB z cZ/ ~ " oy 

1 8 u z a (JBzuo) + (JUy) (9) v..=j , 

1 [ 8 BUy7 
+ 

] + SLa#kBff -~ (sBzuz) ly. ( I0) 

J is the J acobian of the (~, Z, Y) coordinate system and 1 o is the unit vector perpendicular 
to the flux surfaces and I z is the unit vector along the magnetic field lines. 

The ~- and Z-component of the force balance equation and Poisson's equation take 
the form 

a p + p _ +  / ~ j = 0 ,  (11) 

- - +  p - - =  O, (12) 
8Z 8Z 

D J az ~ + J s O L  z = 4rcGp. (13) 
z 
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The equations that govern the linear adiabatic oscillations about a static equilibrium 
are obtained by linearization of the equations of ideal MHD. We denote the Lagrangian 

displacement by { and the Eulerian perturbation of a physical q u a n t i t y f b y f ' .  Since 
the equilibrium state is independent ofy  and of course of t, we can Fourier decompose 
the perturbed quantities with respect to time t and y and make them proportional to 
exp (i(o-t + kyy)). The equations for the linear oscillations about a self-gravitating static 
equilibrium are 

-po2{ = - 7 p ' - p ' T q v - p v f b ' +  I ~ [ ( 7 x B )  x B ' + ( V x B ' ) x B ] ,  (14) 
4~ 

/9' = - V. (p~), (15) 

p' = - { .  7p - r ip  div{, (16) 

B' : 7 x (~ x B), (17) 

V2~ ' = 4~ap. (18) 

We now rewrite Equations (14)-(18) so that we can identify the magnetic surfaces 
as characteristic surfaces without the use of any particular system of coordinates (see 
also Harneiri and Hammer, 1979; Hameiri, 1985). Equations (14)-(18) can be written 
in the following form: 

- p a 2 {  + VP' + p ' V ~  + pV~' - 1 (B' �9 V)B - 1 (B. V)B' = 0, (19) 
4~ 

p' + p(V. ~) + (~. v)p = o, (20) 

p '  + (~. V)p + L p ( V .  ~) = o, (21) 

B' - (B'V)~  + B ( V . ~ )  + ( ~ . 7 ) B  = 0, (22) 

72fib ' - 47rGp' = 0. (23) 

It is important to note here the part-hyperbolicity of the system. The existence of a 
hyperbolic part can be seen from the property of the system that all spatial derivatives 
are within ~0-surfaces, except in the terms with 7 . ~ ,  7~ ' ,  and VP', where 
P' = p' + (B. B'/47r) is the disturbed total pressure. Thus, every ~/-surface is a charac- 
teristic surface of multiplicity six. If Cauchy data are prescribed on such a surface, only 
the normal derivatives o fP ' ,  ~o, and ~b' are known while all other quantities cannot be 
continued off the surface. The discussion in the following sections is indeed based on 
singling out these quantities. 

3. The Continuous Spectrum 

Modes belonging to the continuous spectrum are recognized by their singular behaviour 
at a magnetic surface. In the case of a one-dimensional magnetostatic equilibrium (e.g. 
the plane slab, the diffuse linear pinch) two spatial coordinates are ignorable, the 
magnetic surfaces coincide with the coordinate surface of the remaining non-ignorable 
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coordinate and the Equations (14)-(18) can be reduced to one ordinary second order 

differential equation for the component of the displacement that corresponds to the 
non-ignorable coordinate. The values of a2 that correspond to the mobile regular 
singular points of this differential equation are associated with non-square integrable 
solutions and define two continuous parts of the spectrum, namely the Alfv6n continuum 
and the cusp continuum. The Alfv6n and cusp continua consist of the frequencies 
~2 = a~, and a 2 = a 2 where aA 2 = (k" B)2/4rrp, and a 2 = a2c2/(c 2 + V2A), with k the 

horizontal wave vector, and V 2 the square of the Alfvtn velocity, VA 2 = B2/47rp. 
The continuous spectrum of a static one-dimensional magnetic equilibrium is obtained 

by simply putting the coefficient in front of the highest order derivatives equal to zero. 
This procedure cannot be followed to obtain the continuous spectrum of a two- 
dimensional equilibrium. The equations that describe the linear motions are now partial 
differential equations and we have to redefine the continuous spectrum as those 
frequencies for which the corresponding solutions show non-square integrable 
singularities at a flux surface 0 = 00 (Pao, 1975). Therefore, we have to rewrite 
Equations (14)-(18) giving special attention to derivatives across the flux surface, i.e. 
the 0-derivatives. Further, the solutions that correspond to the Alfvtn continuum and 
the cusp continuum in the linear diffuse pinch are characterized by motions in the flux 
surface that are polarized either perpendicular or parallel to the magnetic field lines. This 
polarization property also holds for a static axisymmetric equilibrium with a purely 
poloidal magnetic field (Goossens et al., 1984; Hermans et al., 1984), but not for a static 
axisymmetric 2D equilibrium with a mixed poloidal and toroidal magnetic field (Poedts 
et al., 1985). Although this polarization property cannot be expected to hold in a mixed 
poloidal and toroidal magnetic field, it is sometimes convenient to have vectors in the 
flux surfaces decomposed in components parallel and perpendicular to the magnetic 
field lines. 

We here closely follow Pao (1975) to derive the continuous spectrum. We use 
Equation (15) to eliminate p' from Equation (14) and we rewrite Equations (14), 
(16)-(18) in the form that we can abbreviate as 

0R 
A I ( 0 ,  Z ) _ - ~  + A2(I//, Z) S = A3(0 ,  )~)R. 

#0 
(24) 

A 1 is an algebraic matrix operator, and A 2 and A 3 are differential matrix operators in 
)~, but algebraic in 0. R is the column vector that contains the perturbed quantities that 
are differentiated with respect to 0 and S is the column vector that contains the 
remaining perturbed quantities. 

The vectors R and S are in the present case 

R = [x, e ' ,  e'] , ,  s : [ ~ ,  ~y, e , ,  ~ ,  B)] ,, 

where P' is the perturbed total pressure 

(25) 

B . B  I 
P' = p' + - -  (26) 

4~z 
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and 

X = Bz~,. (27) 

Equation (24) shows again that the magnetic surfaces are characteristic surfaces since 
only three of the eight unknown functions, namely X, P', and ~', are differentiated 
across the magnetic surfaces. It is convenient to have the equations of the spectrum of 
ideal MHD written in the form (24) since we obtain the continuous spectrum by taking 
the limit 8 / 8 ~  oo. This implies that Q and 8Q/Sz are neglected compared to 8Q/8~p 
for any perturbed quantity Q that is differentiated with respect to ~. 

The explicit form of the set of Equations (24) is the following. The components of the 
equation of motion: 

0P' 845' 8~ , { ~ ' ~  1 8~ 8p,  p 8~ 
- - + p  - p  F k~z) q z + - - - - '  + 

+ - -  x ) B i  = g l ,  ( 2 8 )  
2~. 

k , ~ {  "~ 1 045 0p 
pcr2~z + P 8 ~ F ,  ~z + J Bz 8Z 8Z jB z OZ 2 2 

1 
~ z + ~ -  F * ( B . B ' ) -  

47rB z 

p 8~ By 
B z - - - F  B~, = g2, (29) 

JBZz 8Z 4roB z 

pa @ + F'By = g3, (30) 

the energy equation: 

( ~ )  1 1 @ ~z B'z B'B'  
F* ~x + (31) 

FlP J 8Z Bz Bz 47zF1p- g4; 

the components of the induction equation: 
t BzB~ = gs, (32) 

8 B~ ikyQ O, (33) - - + - - +  = 

80 B z 

F*Q - (By - B~zB'z) = g6, 

and the Poisson equation: 

1 jB 2 4rcG - pF* + 
J 8g,] 

(34) 

1 @  ~z BBI 1 J 8Z Bz P = g7, (35) 
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where 

PG2 X F,(F*X) 
gl = B2 + \ 4 ~ z z j  + 

0r 1 O(pJ) x ' 

O0 J ~O 

1 By p,  ~q) O(pJ) X 
g2 = - -  F*P'  - iky 

B z B z OZ O0 JB~ 

1 (JB~) 1 F*(X)+ - - ,  
4~p Bzz P ~Z 

g3 = ikyP' 1 dBy F * X  + ikyD(b' , 
4~z dO 

g4 - 
I @ X  1 0 J  P' 

- -  - -  - - X - -  - -  

Flp O0 J gO Flp '  

g5 = F ' X ,  

1 6(JBy) 
g6- X, 

J gO 

) k2B2 1 2ikyB y 
g7 = F* ,,~ F*(b' F*(b' - - -  

Now 

- i kyBy ~ (B2z) - 4rcG 1 0 X - 
JB 4 J 

(36) 

By 
e = 6 - ( 3 7 )  

is a component in the flux surfaces perpendicular to the magnetic field lines and 

1 0 
F* = B .  V = - - -  + ikyBy (38) 

J ~Z 

is a differential operator along the magnetic field lines. 
The equations that govern the continuous spectrum are obtained by taking the limit 

0/g0 ~ oo. This leads to putting the right-hand members of Equations (28)-(35) equal 
to zero. The continuous spectrum is governed by the Equations (28)-(35) with gi up 
to g7 put equal to zero. From Poisson's equation it follows that 02(b '/~?~02 is of the same 
order as ~z and/or B' z so that ~b' and 0~b'/0~gcan be neglected compared with ~z and/or 
B' z . This means that in fact the perturbation of the gravitational potential has no effect 
on the continuous spectrum. 
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The set of equations that determines the continuous spectrum is 

1 0 
+ - -  JBz)B ~ = 0, (39) 

2z /  

~ .] [" z" ~ 1 Or r 1 p~rz~z + P 0.~F,  ~z + Cz + F * ( B ' B ' ) -  
jB z OZ 2 2 J B z aZ c3Z 4riB z 

P ~ B '  By F'By = 0, (40) 
jB 2 - -  z OZ 4 nB z 

1 
pa2~y + - - F * B )  = O, 

4n 
(41) 

( ~ )  1 1 0p ~z B~ B ' B '  _ 
F* ~z + laP J 8Z Bz Bz 4nF~p O, (42) 

t B4, = 0, (43) 

! 

QX+__+B z iC Q=O, (44) 
O tfi B x 

( ) F ' Q -  B~,- B x =0,  (45) 

1 0 JB~ + 4rig + = 0. (46) 
J ~t~ ~ J  J ~Z Bz Bz 

Equations (39)-(46) are eight equations for eight unknowns; namely c3X/~, Cz, Cy, 
B~, B' z, By, ~P'/OO, and ~2~,/~2. Equation (43) implies that B~ = 0. Since r ~ 0, the 
solutions corresponding to the continuum frequencies have displacements and 
perturbed magnetic fields in the magnetic surfaces. Equation (39) determines 3P'/~3ff in 
terms of ~z and B' z and Equation (44) determines OX/Or in terms of B~, ix, and Cy. 
Equation (46) determines ~2~, /~2  in terms of ~z and B~. Note also that in addition 
to ~q,~ 0 and B~-.~ 0 we have also P' ~ 0, ~' ~ 0, and 3 ~ b ' / ~  0. The continuous 
spectrum is thus governed by the Equations (40), (41), (42), and (45), which are four 
first order differential equations for the unknowns ~z, Cy, B'z, and By. We can solve 
Equation (41) for Cy and Equation (40) and (42) for Cz in terms of B' x and By as 

- 1  
= - -  F 'By,  (47) 

~Y 4npaa 
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where 

- 1  1 F , ( B . B , )  + p 1 C B . B ' - - - F  B ) I ,  (48) 
~ 4~p(~-- U~) rip JS~ ~z ~ 3 

1 6 ~ (  1 1 @ 1 @) (49) 
N2= J~ ~ \JB~ p ~Z LpJB~ 

can be considered as the square of the Brunt-Vaisfilfi frequency along the magnetic field 
lines. N 2 can be negative or positive depending on the variation of density, pressure and 
gravity in the magnetic surfaces. 

Elimination of ~y and ~z with the aid of (47) and (48) from the four first order 
differential equations that govern the continuous spectrum leads to two coupled second 
order differential equations for B'L and BII: 

B ~ + F , /  _ _ _ _ z - z  F* B~_ + 
B z LaTzpa2(o -2 _ N 2) 

+ Bfl c7. (4~rpo.a(a2 - 
0.2B2 2 2 - N[~B z F*(B 2) , 

F*BII + BII + 
N2)B: 4upaZ(a 2 - N2z) BZB 4 

1 1 1 
+ a2 ~ 4~r, pBzB;,~z = 0, (50) 

~'B,, 
By. (BZBz +(F* p 1 ~ )  1 F , ( ~ 2 B , ) }  + 

Flp J cx /  47z1(o " 2 -  Nf)  

( 1 1 fc2+VZB, 1 
+ - -  ~ Ii + F *  P 

4 ~  ~ pc g~ Flp J p(a 2 N 2) 

BayF*(B2)B' P 1 O(bB,-]~ 1 F,BI r + _ _  + =0.  (51) 
X ~ B2zB 4 II rip JB2z ~Z iij[ 

Equations (50) and (51) are the governing equations for the continuous spectrum in 
terms of the variables B~ and Bil that are defined as 

BI~ = B. B', B I = B '  ~ '~  - B~B~ , (52) 

and are the components parallel and perpendicular to the magnetic field lines. 
Equations (50) and (51) are two ordinary differential equations for the variables B ~_ and 
Biq not involving derivatives across the magnetic surfaces. They can be written in 
compact form 

L(qJ, Z, ~ ) V  = 0, (53) 

where 

V = [Bil , B~_ 1' (54) 
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and the operator L(0, )~, a 2) has the important property of being a differential operator 
in )~ but algebraic in 0. This allows us to separate in the solutions the improper normal 
dependence from the proper tangential behaviour. 

We now restrict the analysis to the neighbourhood of a particular magnetic surface 
0 = ~'o. On that magnetic surface 

L(Oo, z, o2)Vo(Z) -- 0 (55) 

is a nonsingular eigenvalue problem when supplemented with proper boundary 
conditions. It can be shown that a solution Vo(Z) to the nonsingular eigenvalue problem 
(55) corresponds to a solution 

V(~0, )~)= 6 (0 -  00)9000 (56) 

of the singular eigenvalue problem. The continuous spectrum can then be found as 
follows. The nonsingular eigenvalue problem is solved on each magnetic surface. For 
the fixed value of the wave number ky, a discrete set of eigenvalues {a2(00)} is found. 
Now any equilibrium quantity f(0, Z) depends on the two coordinates ~ and )~ and the 
variation of f in a magnetic surface (i.e. the variation of f with respect to )~ for fixed 

= 0o) depends on the magnetic surface considered. This implies that the differential 
matrix operator L(Oo, Z, 0`2) depends of the magnetic surface considered and as a 
consequence that each eigenvalue of the discrete set {0,2(~o) } depends on the magnetic 
surface considered. When the magnetic surface r = ~o is varied each eigenvalue of the 
discrete set spreads out a continuous spectrum. The continuous spectrum arises because 
of the different behaviour of the equilibrium quantities in different magnetic surfaces. 

Before we proceed to the discussion of the continuous spectrum defined by 
Equations (40), (41), (42), and (45) or Equations (50)-(51) we first consider the case of 
a purely poloidal field (By - 0). The Equations (40), (41), (42), and (45) can be simplified 
by dropping the terms that contain By. One can now eliminate B' z and By or ~z and ~y. 
Elimination of ~z and Cy leads to 

a2By + F * (  1 F 'By)  =0, 
4rcp 

{ <+ + N] 
c2v  - U]) 

+---1 0 I 1 1 O~]~ BzB' z§ 
J 0Z c2( a2-- N2) jB2 3zJ] P 

(57) 

p 1 , , ] + F* F (BzBz) = 0, (58) 
0 , 2  2 2 - 

where now 

1 0 
F ~  ~ - -  

J OZ 

Equations (57) and (58) correspond to (50) and (51) and can actually be derived from 
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(50) and (51) directly. Elimination of B' z and By leads to 

1 
0 " 2 r  -- ( F * ) 2 ~ y ,  (59) 

47rp 

2 ~" [ r a ~x = - -  Nz 2 + - -  
/ C 2 +  VA 2 

- ~ 1  F * [  pc2V2 F*(~)].  (60) 
'G L + vd \B /J 

Equations (57)-(58) and Equations (59)-(60) are two uncoupled second-order differen- 
tial equations for respectively By and B' z and ~y and Cz" They allow solutions ~y r 0, 
By :~ 0, ~z = 0, B z = 0 and gy = 0, By = 0, ~z r 0, B z r 0, respectively. The solutions 
correspond to motions in the magnetic surfaces that are polarized either perpendicular 
or parallel to the magnetic field lines. The solutions have the classical polarization 
property of the solutions agsociated with the Alfv6n and the cusp continua of the linear 
diffuse pinch. The continuous spectrum of a 2D y-invariant equilibrium with a purely 
poloidal magnetic field consists of two uncoupled parts which can be called an Alfv6n 
continuum and a cusp continuum. Gravity and compressibility only affect the cusp 
continuum. 

The location of the continuum in the spectrum can be derived with the aid of a 
variational principle. The variational principle can be derived for the mixed poloidal and 
toroidal magnetic field case but the expressions involved are rather lengthy. We prefer 
to derive the variational principle for the case of a purely poloidal magnetic field where 
the cusp and Alfv6n continua are uncoupled so that there is a relatively simple 
variational principle for each continuum. The operator F = - iF* satisfies the similar 
property 

f v * ' F ( w ) J d  z = f [F(v) ]* 'wJdx  - i [v* 'w],  (61) 

where * denotes the complex conjugate. For functions v and w that are periodic in Z, 
the second term in the right-hand side of Equation (1) vanishes. We then define an inner 
product in the Hilbert space of one-dimensional functions V(Z) as 

(62) 

and write Equations (59)-60) in the following form: 

A(~). V(Z ) = aZV(x). (63) 
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We use (63) to show that 

(9~, A(V2) ) = g f t091 �9 A(V2)J dz 

f{1 
= ~z [F(~y,)]  *[F(r ] + 2 + VA 2 N2 + 

P L (  V~ 1 6q _7~)]~z,l~z2 + 
+ s ~  ez c 2 + v~ 

pc2Vk [F(~Z2~] [F(~Z1)] *} 
+ c 2 + ~  L kBx/J  B7 J d z  

= ~ f pA(90*. 9:Jdz 

= (a (9,), 9~), (64) 

where V(Z ) = [~y, ~z] t. The operator A(0o) on a given flux surface 0 = 0o is Hermitian 
and this enables us to formulate a variational principle for the continuum frequencies: 

cry(O) _ (9,A9) 
(9, 9) 

[f(l pc242[  ,2+ p ~ (  Vff 1~)14zl2+ 
-- ~ IF(~y)I2 + c 2 + V~ JB2z ~Z c2 + V2 J 

P{[~yj2 + I~z[Z}Jd)~. (65) 

The Alfv6n continuum and the cusp continuum are uncoupled and we can derive a 
variational expression for each of them. For the frequencies in the Alfv6n continuum 
we have, with ~y ~ 0 and ~z = 0, 

f 1 / f  cr'~(O) = 4rc IF(~y)I2jdz Pl ~yl2Jdz, (66) 
L 

and for the frequencies in the cusp continuum, we find, with ~y = O, and ~z r O, 

f {  p c ~  p ~ (  VA 2 1 a~) l{z ,2+  
0-~(~) = C2+ V 2 J~z2l~zl2 + jB ~ C 2 q  - V 2 J 

(67) 

Thus, the Alfv6n continuum is always on the stable side of the spectrum, but the cusp 
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continuum can have negative values when 

c 2 1 ~Z(  V2 1 ~7r 
- -  - -  < O.  ( 6 8 )  
c 2 + + c 2 + J 

Note also that ~Z 2 is not necessarily a non-negative number. An unstable stratification 
of density, pressure, gravity and magnetic field along magnetic field lines leads to an 
unstable cusp continuum. The present conclusion about the stability of the continuous 
spectrum is similar to the conclusion by Hellst'en (1979) who also found that the Alfv6n 
continuum is stable but that the cusp continuum can be unstable due to the unstable 
perpendicular and parallel pressure distributions along the field lines. 

Let us consider the incompressible limit (c 2 ~ oo). The Equations (57) and (59) for 
the Alfv6n continuum remain unchanged, but Equations (58) and (60) reduce to 

pV 2 Bz + ~2 2 2 F (BzBz) = 0, (69) 
- 

aZ~z = N~r z - - -  F*  . . . .  F*  (70) 
pB z Lc 2 + v~ 

where now 

1 1 c 3 p ~  
2 2 J Bz P c~Z ~?Z 

Note that even in the incompressible limit the cusp continuum does not coincide with 
the Alfv6n continuum. The cusp continuum in contrast to the Alfv6n continuum which 
is stable, may become unstable�9 In the incompressible case, instability occurs when 
c3~/~ z and @/OZ have the same sign so that along a magnetic field density increases in 
the direction of gravitational acceleration. This instability resembles the classical 
Rayleigh-Taylor instability of a heavier fluid on top of a lighter one. 

Let us now turn back to Equations (50) and (51). Equations (50) and (51) are two 
uncoupled second-order differential equations and the solutions have no longer the 
classical polarization properties in the magnetic surfaces�9 The solutions have mixed 
properties and the continua are coupled. This coupling is caused by the component of 
the magnetic field in the ignorable direction, i.e. By. This can easily be understood if 
one compares the corresponding Equations (50)-(51) to (57)-(58) and notes that 

r t ! Bil = BzB z and B• = BzBy in the case of a purely poloidal magnetic field. If the 
solutions were to have the classical polarization properties and the continua to be 
uncoupled, then Equation (50) could only contain terms in B', and Equation (51) only 
terms in Bil. But Equation (50) contains also terms in Bil that are proportional to By, 
and conversely Equation (51) contains also terms in B~_, that are proportional to By. 
Equations (50) and (51) are coupled through expressions proportional to By. The degree 
of coupling depends on the variation of the equilibrium quantities in the magnetic 
surfaces. The names 'Alfv6n continuum' and 'cusp continuum' are here also meaningful 
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when the coupling is weak so that the modes are indeed polarized almost purely 
perpendicular and almost purely parallel to the magnetic field lines. The classical Alfv6n 
and cusp continua are coupled and this coupling persists even in the incompressible limit 
as can be seen by taking the limit c2--. oc in Equations (50) and (51). The continuous 
spectrum is affected by gravity and this implies that the continuous spectrum can be 
unstable. 

4. Special Case 

We now consider a uniform poloidal magnetic field of arbitrary direction, 

B = (Bx, O, Bz), (71) 

in a plasma that is only stratified in the vertical direction, so that density, pressure and 
the component of gravitational acceleration are only functions of height z. Since B:, and 
Bz are constant, the magnetic flux function ~(x, z) is given by a linear expression in x 
and z: 

~ ( x ,  z)  = - x B z  + z B x .  (72) 

The magnetic surfaces 4,(x, z )=  C are parallel planes and their sections with the 
xz-plane are parallel straight lines as indicated in Figure 1. Z(x,  z)  is also a linear 
expression in x and z and a choice for Z(x, z) can be 

)~(x, z )  = x B  x + z B  z .  (73) 

The surfaces )~(x, z) = C are again parallel planes and their sections with the xz-plane 
are parallel straight lines as indicated in Figure 1. 

From now on we confine our discussion to the xz-plane. The magnetic field lines are 
parallel straight lines. The equilibrium quantities only depend on height, and so at a given 
height an equilibrium quantity, like density, takes the same value on different field lines. 
The variation of the equilibrium quantities along a magnetic field fine is independent of 
the magnetic field line considered. Since all equilibrium quantities are independent of 
x we can Fourier decompose the perturbed quantities also with respect to x and make 
them proportional to exp ( ikxx) .  The operator F* applied to a perturbed quantity takes 
the form 

d 
F *  = B x i k  x + B z  , (74) 

dz 

so that the derivative along a field line is independent of the field line considered. In 
summary, the variation of the equilibrium quantities along a magnetic field line and the 
operator F* are independent of the field line considered. The nonsingular eigenvalue 
problem (55) is the same for all magnetic field lines and there is no continuous spectrum. 

The non-existence of the continuous spectrum for a uniform magnetic field with an 
arbitrary direction can also be made clear in the following way. Take as an example 
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Fig. 1. Lines of  constant  ~ and constant  Z for a uniform poloidal magnetic field. 

Equation (59) for the Alfv6n continuum and use Equation (57) to rewrite it as 

1 ( 2 2 ~" a2~y : ~ k~xBxCy_ 2ikxBxBz d_gy 2dZCy'~ 
dz - B" J " 

(75) 

Equation (75) is independent of the magnetic field line considered and the discrete 
eigenvalues are independent of the magnetic field line and do not spread out a 
continuous spectrum as the magnetic field line ~ = @o is varied. 

In summary, there is no continuous spectrum for a vertically stratified plasma with 
uniform poloidal magnetic field because the variations of the equilibrium quantities 
along a magnetic field line are the same for all magnetic field lines. An equilibrium in 
which the variations of the equilibrium quantities along a magnetic field line, are identical 
for all magnetic field lines, is probably not often a good approximation of reality. The 
non-existence of the continuous spectrum for a uniform magnetic field with an arbitrary 
direction in a 1D equilibrium cannot be used to argue that the continuous spectrum has 
no physical relevance. 

5. Conclusion 

The continuous spectrum has been derived for a 2D magnetostatic equilibrium with 
y-invariance. The continuous spectrum arises because of the different behaviour of the 
equilibrium quantities in different magnetic surfaces. The continuous spectrum of a 
magnetostatic equilibrium with a purely poloidal magnetic field consists of two 
uncoupled parts which on the basis of the polarization properties of their solutions can 
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be identified as an Alfv6n continuum and a cusp continuum. The Alfv6n continuum is 
stable, but the cusp continuum can be unstable and in the compressible limit the 
instability resembles the Rayleigh-Tayl0r instability of  a heavier fluid on top of a lighter 
one. The continuous spectrum of a magnetostatic equilibrium with a mixed poloidal and 
toroidal equilibrium has solutions that are no longer polarized purely perpendicular or 
purely parallel to the magnetic field lines but that do show mixed properties. The 
coupling of the classical Alfv6n and cusp continuum is due to the toroidal magnetic field 
and the degree of coupling depends on the variation of  the equilibrium quantities in the 
magnetic surfaces. 

The special case of  a uniform poloidal magnetic field in a 1D magnetostatic 
equilibrium that is stratified with height, has been considered in detail. It is shown that 
this equilibrium has no continuous spectrum. This result cannot however be used to 
argue that the continuous spectrum has no physical relevance since it has not any general 
validity as it is completely due to the artificial property that all field lines are identical 
in the sense that the behaviour of the equilibrium variables along a field line is 
independent of the field line considered. 
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