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Abstract. Previous studies of the north, soulh asymlllelly of sol,t~" aclivity (e.g., Carboncll. Oliver, 
and Balles~er, 1993; Oliver and Ballesler, 1994) suggest that the asymlnetry time series can be 
represented by' means of a multicomponent model nlade up of a ]ong-lerm Irend, a weal< sinusoidal 
component (with a period close to 12. I years) and a dominaln random process. Here, we have used 
the rescaled range analysis to study' the variation of the stochastic component of Ihe asymmetry. 1o 
avoid the influence of the trend and [he sinusoidal component on the resuh, we have removed bolh 
from the original time series. The value obtained ['or the Ht.u'st exponent (0.717 - 0.()()2) suggests 
Ihat lhe non-.periodic componenl is a correlated random process. 

I. Introduct ion 

North-  soulh asymmetry ( N -  S asymmetry) in solar activity as shown by indices 
such as sunspot areas (Carbonell, Oliven and Ballester, 1993; Oliver and Bal]ester, 
1994) or iiequency of solar flares (Roy, 1977; Garcia, 1990) is well known. 

Carbonell, Oliver, and Ballester (1993) and Oliver and Ballester (1994) reached 
several interesting results by a statistical study of the north-south asymmetry of 
sunspot areas between 1874 and 1993. The low-frequency component in the power 
spectrum of the asymmetry time series suggests lhe presence of a long-lerm trend, 
which was confirmed by a C o x -  Stuart lest. This long-term trend seems to account 
for the slow shift .Iiom soulh dominant asymmetry, a! the end of Ihe last century 
and the begimfing of the present one, to north dominant during most of this century. 
Also, the time series conlains a deterministic cycle, with a period of 12.1 years, 
which is clearly revealed in the power spectrum. The remaining component of 
the time series is practically featureless. A question arises as to whether it can be 
characterized as a corre.laled process (in which persistence or memory is present) 
or as an uncorrelated random process (in which the value of Ihe asymmetry al any 
time is independent of all previous values of the asymmetry). 

On the other hand, the Wold decomposition Iheorem (e.g., Gottman, 1981) 
states thai any discrete slationary process can be expressed as the sum of two 
tmcorrelated processes, a p u r e l y  deterministic one and a s t o c h a s t i c  one. This tneans 
Ihat, in the N - S asylnmelry, Ihe l.rend and the sinusoidal component represent the 
deterministic process while the stochastic one is yet to be Rmnd. Carbonell, Oliver, 
and Ballester (1993) removed the trend and the sinusoidal component from the 
N--S asymmetry, and then fitted autoregressive (AR), moving average (MAy, and 
autoregrcssive-moving average (ARMA) models to the remaining signal, but could 
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not find a delinite evidence of the stochastic process ill it. They concluded that the 
stochastic process is probably pure white noise that a c c o u n t s  for most of the time 
series variance. 

In order to check their conclusion, we here make use of the rescaled range 
analysis, which allows us to determine whether the stochastic fluctuations of a signal 
are caused by a white noise process or not. This test is perRmned by computing the 
so-called Hurst exponent (e.g.. Mandelbmt and Wallis, 1969a; Feder, 1988), whose 
value is equal to 0.5 when the analyzed signal contains a non-periodic variation 
generated by an uncorrelated random process, and different from 0.5 when the 
signal shows persistence. 

When computing the Hurst exponent one has to bear in mind that long-term 
trends or periodic components can make it difficult to calculate its correct value 
(Mandelbrot and Wallis, 1969b; Bhattacharya, Gupta, and Waymire, 1983). To 
avoid this difficulty, we have removed both the trend and the sinusoidal component 
irom the original time series. 

About the application of the rescaled range analysis to solar activity, Mandelbrot 
and Wallis (1969a) calculated the Hurst exponent for sunspot numbers. Recently, 
Ruzlnaikin, Feynman, and Robinson (1994) made a similar study of solar activity 
using radiocarbon data. For this record they found a constant Hurst exponent/17. = 
0.84 between 100 and 3000 years, which indicates persistence of solar activity in 
such time scales. Also, Komm (19951) analyzed MI. Wilson rotation measurements 
and found that telnporal variations of solar rotation on time scales shorter than 
the 1 l-year cycle are caused by a stochastic process which is characterized by 
persistence. 

2. Computation of the Hurst Exponent of a Time Series 

The 'rescaled range' analysis (or R/S analysis) was developed to sludy the problem 
of water storage and was described in detail, by l-lurst, Black, and Simaika (1965). 
This statistical method was used by Mandelbrot and Wallis (1969a) to study the 
long-run properties of various geophysical records, including sunspot numbers, and 
has been also reviewed by Feder (1988). Here, we follow them in our application 
of the method and reier to their works for a complete description of the analysis 
procedure. 

l.et z i ,  i = 1 , 2 , . . . ,  .N, be an observed data series whose I-:lulst exponent is 
to be computed. In the hydrological context the z i  may be the annual water input 
into a dam or reservoir during N consecutive years. Let us now restrict ourselves 
to a s-y'ear period starling at year ~0 -I- I, that is, let us consider the data set z i ,  

i = t;i) + 1, ~0 + 2 . . . .  ,t0 + s. where 0 5_ to < N - s. We denote the average of 
this subset (i.e., the average water inflow into the reservoir over the s-year period) 
as ,z(t0 ,  ,s), 
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.In an ideal reservoir, designed so as to never overflow n()r emply, ~(/.0, s) also 
represents the optimum annual water release. In Equation ( 1 ) and in what follows, 
t0 and s in brackets are used to indicate a dependence on these two parameters. 

Furthermore, the standard deviation of  the :ri, during the same period is estimated 
with the l.'ormula 

,5,(l.o,.s) = { 1 to:. s }1/2 
, ~ .  . . . .  I Z [::~:,: -~(~:",'~)]~ (2) 

i - t o  + I 

This delinition of the standard deviation (with the factor s -- 1 in the denominator 
instcad of  .s) is usually considered so as to make it an unbiased estimalor of the 
actual slandard deviation of  the time series (Bendal and Piersol, 1986; Press et al., 

1988). 
Next, a new variable gt~ i = l, 2 . . . .  , .s, is defined as follows: 

/, o - .-/. 

g,(/,o,,,,) = ~ [:~'~- ~(/,o,,~)]. (3) 
i -- l,,)-}- 1 

In tiffs equation Ihe diffcrence :~:i - 5!(I,o, .s) is the deparlure. f i 'om the mean  of the 
inllux in tile ith year. Hence, a year in which the reservoir receives less water than 
is released yields a negative value of  this quantity (Ihe opposite happens when Ihe 
watcr influx lies above the .>year average.) The summation in Equation (3) gives 
the a c c u m u l a t e d  depar ture  from the mean (i.e., thc nel gain. or loss of  stored waler) 
during the lirsl t years of  the period considered. The dimensions of the reservoir 
depend on the fluctuations in the accumulated departure and should be such that the 
reservoir never emplies nor overllows. The storage capacity required Io maintain 
the mean discharge over the s-year period is called the range (represented by /~) 
and is equal to the difference bctween Ihe maximum and the minimum accumulated 
departure over the ,s years. The range is defined by the formula 

R(/.o, ,s') - max ;ql,(lo, s') rain 'g*,(/,o. ,s) . (4) 
[ <" t <" ,s ' 1 < I. , <  s 

I I 

Thc range so defined will take values on very difl'erent scales when different 
phenomena are sludied. Therefore it is convenient to substitute it by the resca led  
range, equal to the range divided by the sample standard deviation, 

R(t,o, ,~) 
( ~ / s )  (to, ,~) - s(to,  ,_~) " (5) 
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Now one can consider thc dependence of the rescaled range on the lirne lag s. 
I towever, there still remains one arbitrary parameter, /,0, which should be elimin- 
ated. To this end the values t0 = (/, ,s, 2..,,' . . . .  are selected so that the entire data 
set is divided into as many non-overlapping s-year periods as can be construcled. 
For each of these subsets the rescaled range ( R / S )  (t,0, .s) is computed as outlined 
above and the rescaled range for the t.ime lag .s is finally detined as the average of 
lhose values, 

( /z / s )  (s) = i Z ( R / s ,  ) (6) 
'/'1' / 0 LI) 

where 'n,~ 0 is the integer parl of N/s  and is the number o1 values for f,0 used. From 
now on the subscript s in (R/S) (s) will be dropped and the rescaled range will be 

�9 / 

represented by I~/S. 
If the ratio /3/S is proportional to s H,. we can obtain H, called the Hurst 

exponent. The Hurst exponent is 0.5 for randoln noise. For 0 < 17- < 0.5, the time 
series is less correlaled than random noise. For 0.5 < H < 1.0, the time series is 
more correlated than ralldom noise and is called persistent. 

To deterlnine the vahie of H for a time series, the rescaled rail<,e~, ,/5 is 
computed and the results are presented in a 'pox' diagram (il'l which the logarilhm 
of the rescaled range is plotted versus the logarithm of the tithe lag). The Hurst 
exponent is given by the slope of a Stlaighl line filled to the points in the pox 
diagram. However, not all points in Ihe diaoram should be given the same wcighl 
(cf., Mandelbmt and Wallis, 1969a). When the lag s is; small cornpared to the 

) -1 
length of the time series, a large number of independent eslimations of h,/5 can 
be calculated. Flley have a considerable scatter so that their average could be 
meaningless. On lhe other hand. the opposite happens for values of s close to the 
total amount of data. The average has little statistical significance because only one 
or a few estimations of I~/S are available. Then, very small or very large vahles of 
the lag s must noi be considered in the determination of the I lurst exponent. 

Mesa and Poveda (1993) made a strong case against lhc use of lhe pox diagram 
alone ill the determination of H and suggested using olher estimation tools. One 
of these tools relies on the examination of the so-called "GE ) S  dia~zrams, with s 
on the abscissa and (17,/,9) /'d s, 0.5 <_ H _< 1, on the ordinate. Mesa and Poveda 
were concerned about the goodness of previous eslimations of the Hurst exponent 
for geophysical time series, which they clainled were erroneously believed to have 
11 r 0.5. if the llurst exponent is larger than ().5, then (B'./,5')/s ~ will diverge to 
infinity for large values of .s. On Ihe contrary, if 1I := (.).5 the points in the GEOS 
diaeram will convcroe towards a finite yah.re for laree s. Moreover. it is possible 
Io gain some infommtion on the actual value of the Hurst exponent by plotting a 
GEOS diagram with T1 > 0.5. A tirnc scries with Hurst exponem 0.5 will converge 
to zero l"or large .s, while a time series with Hurst exponent II will converge to a 
non-zero limit. 
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3. Rescaled Range Analysis of the N - S  Asymmetry of Sunspot Areas 

The World l)ata Center of/ .he National Oceanic and Atmospheric Administra- 
tion provided us with tile daily sunspot area in the north and south solar hemi- 
spheres, taken from the Greenwich Photoheliographic Results (fl)r tile period: 
January 1874-Dccember  1982) and the Uniled Slmcs Air Force (for Ihe period: 
January 1983-Ju ly  1993). These dalabases total 43558 daily values from which 
Ihe asy, mmclry has been computed by means of 

N .... ,'~' 
A S - :  N + 5  ' ~7) 

where N and 5' sland for Ihe tolal sunspot area in Ihe norlh and south hemispheres. 
After computing the sunspot area asymmetry with the above tk)mmla, tile king- 

term trend and the main periodic component in the time series have been removed 
by' sublracting a cubic polynomial and a sinusoidal compormnt with a period of 
12.1 y,,ears (see C, arbonell, Oliver, and Ballesler. 1993, for nlore details). The cubic 
trend is of the form 

o.0 -- a l l  + a,2/, 2 + a,3/, 3 , (8) 

with / = I. 2 . . . . .  43558 the lime index and 

a{) = 6.90 x 10 -3 . al = - 2 . 8 5  x 10 -5 . 

a 2 =  2.3.1 x 10 9. a 3 = - 4 . 0 0 x  10 14 
(9) 

Moreover, lhe equation of tile sinusoidal 

2~v, 2~ 
/ ,cos l) -.sinT(l- I), 

c o m p o n e l l l  iS 

(J0) 

, , . ~  . . 

where ~/" --- 44_~4 days is the period and 

b = - 1 . 2 4  x 10 -I  . (: = - 1 . 5 0  x 10 3 . (11) 

()nee the sublractions have been perfornlcd, the power spectrum shows thai the 
power at very low frequencies (< 0.25 • 10 4 day .r) has decreased by a lhctor 
10 ~ and that the peak at 12. I years has been eliminated (compare Figure l(b) wilh 
Figure I (a)). The remaining power corresponds to the stochastic component, which 
is the one used in our study. To eslimate the ilnporlance of the three components, 
tile power of each of them in. the periodogram has been computed. The cubic trend, 
tile dctennilfistic cycle, and the stochastic component account for 17%, 16% and 
67r-Tf: of the total power in the asymmetry time series. 

In the analysis we have used lags between 21 and 10889 clays and have then 
plotled the values of /7~'/~g in a pox diagram (Figure 2). The [lursl exponenl has 
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been computed by discarding slnall and large wflues of s. Therefore, a straight line 
has been fitted to the points ill Figure 2 with 65 < .s < 31 I 1, lbr which the value 
H = 0.717 _q: 0.002 i.s obtained. The uncertainty it] H has been estimated following 
Press et al. (1988) for the case in which the errors associated with the individual 
points are not known. 

The Hurst exponent has been calculated for several different ranges of time lags. 
()wing t0 the fine alignment of the poinls in Figure 2 along a straight line, in all 
cases the value of lI differs from H = 0.717 in the last decimal place. Moreover, 
1I has also been computed for weekly and monthly values and a slight increase of 
the Hurst exponenl with the bin size has been found. This can be understood by 
taking into account that the power ill the high-frequency range is reduced as the bin 
size is increased. According to Feder (1.991), H :::: (/3 + 1)/2, with S ,-~ f--':~ the 
power specmun and J' the frequency, so the slight increase of H is a consequence 
of the increase in the bin size. 

Figures 3(at and 3(b) show the GEOS diagrams i'or 1-/ = ().5 and H = 0.717. 
In Figure 3(at an increasing trend of (.t~,/S')/.s ~ for large values of s should he 
interpreted as an indication that the Hurst exponent of the series is larger than 0.5. 
On the other hand, Figure 3(b) shows convergence of ( ]I)./S)/.S 0"717 t o w a r d s  a finite 
value, which confirms the value of I[ found before. 

4. Conclusions 

Ill this paper, the rescaled range analysis has beell applied to the asymmetry of 
sunspol areas to ascertain whether Ihe variations of its continuum component are 
due to the presence of a white noise process or not. To this end, the long-term trend 
and the 12.1-year periodic component have been removed from the asymmetry 
time series and the Hutst exponent of the remaining signal has been computed. The 
value H = 0.717 m 0.002 indicates that the stochastic colnponent o[the asymmetry 
shows persistence and that it must be due to a random but correlated process yet to 
be found. 

From the previous results (e.g., Carbonell, Oliver, and Ballester, 1993; Oliver 
and Ballestm, 1.994) and the presenl one, we can conclude that the north--south 
asymmetry of sunspot areas can be represented by means of a multicomponent 
model made up of a long-term trend, a sinusoidal component wil.h a period close 
to 12.1 years, and a dominant non-white noise component. 

The notion of i~ersistence it] a signal has to be understood as the presence of 
fairly long time lapses with wdues mostly above or mostly below the average. It] 
contrast, a white-noise process presents disordered fluctuations around the average. 
If solar activity is a manifestation of the emergence of magnetic flux through the 
photosphere, as it is usually assumed, the existence of persistent behaviour in the 
asymtnetry leads to the conclusion that in the past there have been time lapses in 
which the transport of magnetic flux in the convection zone towards the surface has 
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Figure 2. (a) Pox diagram o1" the N - S asylnmetry o1" stlnspot aroas al"ter detrending and subtracting 
tile delerrninistic cycle fiom the original sories. The solid line represents ,'a fit to points with lag s 
between 65 and 31 I I days, which st.t2.gesl:s a vahic of the Hurst exponent  II - 0.717 m 0.002. 

been favoured in one hemisphere. This has been corroborated by Howard (1974) for 
the period 1967 - 1973 and by Rabin et aL (1991 ) for the time interval 1976- 1981. 
Thus, this imposes an important restriction on models to explain the mechanism 
by which magnetic flux tubes are carried Io lhe surface. 

As was stated in the Introduction, Mandelbrot and WaiNs (I 969a) computed a 
value H = 0.96 for the monthly sunspot numbers trom 1749 to 1948. In addition, 
Ruzmaikin, Feynman, and Robinson (1994) determined a value H - 0.84 for time 
lags between I()0 and 3000 years for a tree-ring 14C data sel. These large values 
of the Hurst exponent must be interpreted as an indication of quite strong long-ran 
memory in solar activity and proxy records, which reflect the same underlying pro- 
cess, i.e., the amounl oi- emerging magnetic flux. On the other hand, the asymmetry 
time series reflects an imbalance between the emerging llux in Ihe north and south 
solar hemispheres, so there is no reason Io expect Ihe same value or H. The Hursl 
exponent H = 0.717 of N - S asymmetry implies Ihat its continuunl component is 
closer to white noise than that of the whole-disk solar activity. 
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