RESCALED RANGE ANALYSIS OF THE ASYMMETRY OF SOLAR
ACTIVITY

R. OLIVER and J. I.. BALLLESTER
Departament de Fisica, Universitat de les Hles Balears, E-07071 Palma de Mallorea, Spain

(Received 16 July, 1995; in final form 19 July. 1996)

Abstract. Previous studies of the north- south asymmetry of solar activity (e.g.. Carbonell. Oliver,
and Ballester, 1993; Oliver and Ballester, 1994) suggest that the asymmerry time series can be
represented by means of a multicomponent model made up of a fong-lerm trend, a weak sinusoidal
component (with a period close to 12.1 years) and a dominant random process. Tlere, we have used
the rescaled range analysis to study the variation of the stochastic component of the asymmetry. To
avoid the influence of the trend and the sinusoidal component on the result, we have removed both
{rom the original time serics. The value obtained for the Hurst exponent (0.717 = 0.002) suggests
that the non-periodic component is a correlated random process.

1. Introduction

North —south asymmetry (N—S asymmetry) in solar activity as shown by indices
such as sunspot areas (Carbonell, Oliver, and Ballester, 1993; Oliver and Ballester.,
1994) or [requency of solar flares (Roy, 1977; Garcia, 1990) is well known.

Carboncll, Oliver, and Ballester (1993) and Oliver and Ballester (1994) reached
several interesting results by a statistical study of the north —south asymmetry of
sunspot areas between [874 and 1993. The low-frequency component in the power
spectrum of the asymmetry lime scries suggests the presence ol a long-term trend.,
which was confirmed by a Cox — Stuart test. This long-term trend seems to account
for the slow shift ([rom south dominant asymmetry, at the end of the last century
and the beginning of the present one, 1o north dominant daring most of this century.
Also, the time serics contains a detcrministic cycle, with a period of 12.1 vears,
which is clearly revealed in the power spectrum. The remaining component of
the time serics is practically featureless. A question arises as to whether it can be
characterized as a correlated process (in which persistence or memory is present)
or as an uncorrelated random process (in which the value of the asymmetry at any
time is independent of all previous valucs of the asymmetry).

On the other hand, the Wold decomposition theorem (e.g.. Gottman, 1981)
states that any discrete stationary process can be cxpressed as the sum ol two
uncorrelated processcs, a purcly deterministic one and a stochastic one. This mecans
that, in the N—S§ asymmectry, the trend and the sinusoidal component represent the
deterministic process while the stochastic onc is yet 1o be found. Carbonell, Oliver,
and Ballester (1993) removed the trend and the sinusoidal component from the
NS asymmetry, and then [litted autoregressive (AR), moving average (MA), and
autoregressive-moving average (ARMA) modecls to the remaining signal, but could
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not find a definite evidence of the stochastic process in it. They concluded that the
stochastic process 1s probably pure white noise that accounts for most ol the time
serics variance.

In order to check their conclusion, we here make use of the rescaled range
analysis. which allows us to determine whether the stochastic (luctaations of a signal
are causcd by a white noisc process or not. This test is performed by computing the
so-called Hurst exponent (e.g.. Mandelbrot and Wallis, 1969a; Feder, 1988), whose
value is cqual to 0.5 when the analyzed signal contains a non-periodic variation
ecnerated by an uncorrclated random process. and different from 0.5 when the
signal shows persistence.

When computing the Hurst exponent onc has to bear in mind that long-term
trends or periodic components can make it difficult to calculate its correct value
(Mandclbrot and Wallis, 1969b: Bhattacharya, Gupta, and Waymire, 1983). To
avoid this difficulty, we have removed both the wrend and the sinusoidal component
from the original time scries.

About the application of the rescaled range analysis 1o solar activity, Mandelbrot
and Wallis (1969a) calculated the Hurst exponent lor sunspot numbers. Recently.
Ruzmaikin, Feynman, and Robinson (1994) made a similar study of solar activity
using radiocarbon data. For this record they found a constant Hurst exponent 11 =
0.84 between 100 and 3000 ycars, which indicates persistence of solar activity in
such time scales. Also. Komm (1995) analyzed Mt. Wilson rotation measurements
and found that temporal variations of solar rotation on time scales shorter than
the 11-year cycle arc caused by a stochastic process which is characterized by
persistence.

2. Computation of the Hurst Exponent of a Time Series

The ‘rescaled range’ analysis (or R/S analysis) was developed to study the problem
of water storage and was described in detail by Hurst, Black, and Simaika (1965).
This statistical method was used by Mandelbrot and Wallis (1969a) 1o study the
long-run properties of various gcophysical records, including sunspot numbers, and
has been also reviewed by Feder (1988). Here, we follow them in our application
of the method and refer to their works for a complete description of the analysis
procedure.

let z;, 1 = 1.2,.... N, be an obscrved data serics whose Hurst exponent is
to be computed. In the hydrological context the z; may be the annual water input
into a dam or reservoir during N consccutive vears. Lel us now restrict ourselves
o a g-year period starling at year £, -+ 1. that is, let us consider the data sct x;,
t =19+ 1, g+ 2....,ty + 5, where 0 < by < N — 5. We denote the average of
this subset (i.e., the average waler inflow into the reservoir over the s-year period)
as T(to, ).
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In an ideal reservoir, designed so as to never overflow nor emply, Z(ly. s) also
represents the optimum annual water releasc. In Equation (1) and in what follows,
Lo and ¢ in brackets arc used to indicatc a dependence on thesc two parameters.

Furthermore, the standard deviation of the x; during the same period is estimated
with the [ormula
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This definition of the standard deviation (with the factor s — [ in the denominator
instcad of ) is usually considered so as to make it an unbiased estimator of the
actual standard deviation of the time series (Bendat and Piersol, 1986; Press et al.,

1988).
Next, a new variable y;, i = 1,2, ..., 3, is defined as follows:
Loy 1.
yillo.s) = Y [ = E(lo,5)] . (3)
iyl

In this equation the diflcrence z; — T(lo. s) is the departire from the mean of the
influx in the 4th yecar. Hence, a year in which the rescrvoir receives less water than
is relcased yields a negative value of this quantity (the oppositc happens when the
water influx lies above the s-year average.) The summation in Equation (3) gives
the accumulated departure from the mean (i.e., the net gain or loss of stored waler)
during the first ¢ years of the pertod considercd. The dimensions ol the reservoir
depend on the fluctuations in the accumulated departure and should be such that the
reservoir never empties nor overllows. The storage capacity required o maintain
the mean discharge over the s-year period is called the range (represented by I?)
and is equal to the difference between the maximum and the minimum accumulated
departure over the s years. The range is defined by the formula

R(ly.s) = max y(log.s) - min y(fy. s) . 4)
1<i<s 1<i<s

The range so defined will take values on very different scales when different
phenomena are studied. Therefore it is convenicnt to substitute it by the rescaled
range. equal 1o the range divided by the sample standard deviation,

(R)S) (tg. 5) = —0:2) (5)
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Now onc can consider the dependence of the rescaled range on the time lag .
However, there still remains one arbitrary parameter. %y, which should be elimin-
ated. To this end the values o = 0, s, 2s. ... arc selected so that the entire data
set is divided into as many non-overlapping s-ycar periods as can be constructed.
For each of these subsets the rescaled range (R/S) (4. $) is computed as outlined
above and the rescaled range for the time lag s is finally defined as the average ol
thosc values,

_ I |
(1/S)(s) = == 3 _(R/S) (10.5) ©6)
g

where 1y, is the integer part of N/s and is the number ol values for #y used. From
now on the subscript s in (R/S) (s) will be dropped and the rescaled range will be
represented by [2/S.

Il the ratio R/S is proportional 10 s'', we can obtain H, called the Hurst
exponent. The Hurst exponent is 0.5 for random noisc. For 0 < IT < 0.5, the time
series is less correlated than random noise. For 0.5 < H < 1.0, the time scries is
more correlated than random noise and is called persistent.

To determine the value of H tor a time series, the rescaled range R/S is
computed and the results arc presented in a “pox’ diagram (in which the logarithm
of the rescaled range is plotied versus the logarithm of the time lag). The Hurst
exponent is given by the slope of a straight line fitted to the points in the pox
diagram. However, not all points in the diagram should be given the same weight
(cf., Mandelbrot and Wallis. 1969a). When the lag s is small compared to the
length of the time series, a large number of independent estimations of /2/S can
be calculated. They have a considerable scatter so that their average could be
meaningless. On the other hand, the opposite happens for values of s close to the
total amount ol data. The average has little statistical significance because only one
or a few cstimations of 12/ arc available. Then, very small or very large values of
the lag $ must not be considered in the determination of the Turst exponent.

Mesa and Poveda (1993) made a strong case against the use of the pox diagram
alone in the determination of H and suggested using other estimation tools. One
of these tools relies on the examination of the so-called ‘GEOS™ diagrams. with s
on the abscissa and (12/8) /s, 0.5 < H < 1, on the ordinate. Mesa and Poveda
were concerned about the goodness of previous estimations of the Hurst exponent
for geophysical time series, which they claimed were erroneously believed to have
11 # 0.5.1f the Hurst exponent is larger than 0.3, then (2/5)/s" will diverge to
infinity for large values of 5. On the contrary, il 1/ = 0.5 the points in the GEOS
diagram will converge towards a finite valuc for large s. Moreover. it is possible
1o gain some information on the actual value of the Hurst exponent by plotting a
GY0S diagram with 7T > 0.5. A time scries with Hurst exponent 0.5 will converge
1o zero for large s, while a time series with Hurst exponent I/ will converge (o a
non-zero limit.

/
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3. Rescaled Range Analysis of the N-S Asymmetry of Sunspot Areas

The World Data Center of the National Oceanic and Atmospheric Administra-
tion provided us with the daily sunspot area in the north and south solar hemi-
spheres, taken from the Greenwich Photoheliographic Results (for the period:
January 1874 —Dccember 1982) and the United Staies Air Force (for the period:
January 1983 —July 1993). These databases total 43558 daily values from which
the asymmeltry has been computed by means of

N-8
N+ S

AS - (7
where 2V and S stand for the total sunspot area in the north and south hemispheres.

Afler computing the sunspot arca asymmetry with the above formula, the long-
term trend and the main periodic component in the time series have been removed
by subtracting a cubic polynomial and a sinusoidal component with a period of
12.1 vears (see Carboncell, Oliver, and Ballester, 1993, for more details). The cubic
trend is ol the form

2
.,

any —al + arl” + (':,._;l.'; . (8)
with [ = 1. 2..... 43558 the time index and

ap = 6.90 x 1073, a) = =2.85 x 1077,

9)
ar =231 %10 . a3 =—-4.00x 10 '*.
Morcover, the equation of the sinusoidal component is
beos Tt 1)+ esin 2o (i — 1) 10
cos At~ 1) esm—([—1),
beos - ) s 7z : (10)
where 1" = 4434 days is the period and
h=—124x 107", c=—1350x10 *. (11)

Once the subtractions have been performed, the power spectrum shows that the
power at very low [requencics (< 0.25 x 10 * day ') has decreased by a factor
10° and that the peak at 12.1 years has been eliminated (compare Figure I(b) with
Figure 1(a)). The remaining power corresponds to the stochastic component. which
is the one used in our study. To estimate the importance of the three components,
the power of cach of them in the periodogram has been computed. The cubic trend.
the deterministic cycle. and the stochastic component account for 17%, 16% and
67% of the total power in the asymmeltry time scries.

In the analysis we have used lags between 21 and 10889 days and have then
plotled the values of B/S in a pox diagram (Figurc 2). The Tlurst exponent has
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been computed by discarding small and large values of s. Thercfore, a straight line
has been fitted to the points in Figure 2 with 65 < s < 3111, for which the value
H = 0.717£0.002 is obtained. The uncertainty in 1 has becn estimated {ollowing
Press et al. (1988) for the case in which the errors associated with the individual
points are not known.

The Hurst exponent has been calculated for several different ranges of time lags.
Owing to the fine alignment of the points in Figure 2 along a straight linc, in all
cascs the value of H differs from H = 0.717 in the last decimal place. Morcover,
1T has also been computed for weekly and monthly values and a slight increase ol
the Hurst exponent with the bin sizc has been found. This can be understood by
taking into account that the power in the high-frequency range is reduced as the bin

power spectrum and | the {requency, so the slight increase of 1T is a conscquence
of the incrcase in the bin sizc.

Figures 3(a) and 3(b) show the GEQOS diagrams for [ = 0.5 and H = 0.717.
In Figure 3(a) an increasing trend of (R/S)/s" for large values of s should be
interpreted as an indication that the Hurst exponent of the series is larger than 0.5.
On the other hand, Figure 3(b) shows convereencc of (12/.5) /%77 towards a finite
value, which confirms the value of /T found before.

4. Conclusions

In this paper, the rescaled range analysis has been applicd 10 the asymmelry of
sunspol areas to ascertain whether the variations ol its continuum component arc
due to the presence ol a white noise process or not. To this end, the long-term trend
and the 12.1-year periodic component have been removed [rom the asymmetry
time serics and the Hurst exponent of the remaining signal has been computed. The
value H = 0.717-0.002 indicates that the stochastic component of the asymmetry
shows persistence and that it must be due to a random but correlated process yet to
be found.

From the previous results (e.g., Carbonell, Oliver, and Ballester, 1993; Oliver
and Ballester, 1994) and the present one, we can conclude that the north--south
asymmetry of sunspot areas can be represented by means ol a multicomponent
model made up of a long-term trend, a sinusoidal component with a period close
10 12.1 years, and a dominant non-whitc noisc component.

The notion of persistence in a signal has to be understood as the presence of
fairly long time lapses with values mostly above or mostly below the average. In
contrast, a whitc-noise process presents disordered (luctuations around the average.
If solar activity is a manifestation of the emergence of magnetic (lux through the
photosphere, as it is usually assumed, the existence of persistent behaviour in the
asymmetry leads 10 the conclusion that in the past there have been time Japses in
which the transport of magnetic {Tux in the convection zone towards the surface has
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Figure 1. (a) Power spectrum of the sunspot area asymmeury between January 1874 and July
1993. (b) Power spectrum of the sunspot area asymmetry without the cubic trend and the 12.1-ycar
period. The clfect ol the Tong-term trend removal is to reduce the power at low frequencics. while
the subtraction of the periodic signal reveals itself in the disappearance of the peak at 4434 days
(12.1 vears).



[\
[
(]

R. OLIVER AND J. L. BALLLSTER

T T

T 7

T

1.5 2.0 2.5 30 3885 4.0
log,, s

Figure 2. (a) Pox diagram ol the N =S asymmetry of sunspot arcas after detrending and subtracting
the deterministic cycle from the original series. The solid line represents a fit to points with lag s
between 65 and 3111 days, which suggests a value of the Hurst exponent 11 = 0.717 =i- 0.002.

been favoured in one hemisphere. This has been corroborated by Howard (1974) for
the period 1967 — 1973 and by Rabin et al. (1991) for the time interval 1976~ 1981.
Thus, this imposes an important restriction on models to explain the mechanism
by which magnetic (lux tubes are carried 1o the surface.

As was stated in the Introduction, Mandelbrot and Wallis (1969a) computed a
value H = 0.96 for the monthly sunspot numbers from 1749 to 1948. In addition,
Ruzmaikin, Feynman, and Robinson (1994) determined a value T — 0.84 for time
lags between 100 and 3000 years for a tree-ring *C data set. These large values
of the Hurst exponent must be interpreted as an indication of quite strong long-run
memory in solar activity and proxy records, which reflect the same underlying pro-
cess, i.e., the amount of emerging magnetic flux. On the other hand, the asymmetry
time serics reflects an imbalance between the emerging {lux in the north and south
solar hemispheres. so there is no reason Lo cxpecet the same valuc of . The Hurst
exponent = 0.717 of N—S asymmetry implies that its continaum component is
closcr to white noise than that of the whole-disk solar activity.
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Figure 3. GEOS diagrams ol the N--§ asymmelry ol sun\pnt arcas after detrending and subtracting
the deterministic cycle from the original serics. (a) 1/ = 0.5: there is divergence of (12/S)/s™ for
large values of s. (b)Y IT = (0.717; there is convergence of the points in (he diagram towards a finite
limit.
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