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Abstract. The solution curves of the differential equations determining the behavior of the solar wind 
are calculated for the case where the heat flux has its maximum value ~ nkTv~h. All the supersonic 
solutions are asymptotically adiabatic, T ~  r -4/3. 

1. Introduction 

The simplest model of  the solar wind treats the plasma in a simple collision dominated 
approximation yielding (Chapman, 1954) for the conductive flux 

F = -/%TS/2 __dT 
dr (1) 

Such a model is only valid if the plasma remains collision dominated, that is, if the 
mean-free path  is small compared to the scale of  variation of the temperature, T. The 
mean-free path is readily calculated to be 

(3kT) 2 3 ( K 3 T 3 ~  1/2 
l -  

5.7~ne41nA , A = 2e ~ \ ~ - n e  / (2) 

with lnA lying between 20 and 25 for densities and temperatures of the solar wind. 
Now the collision dominated solutions have two types of asymptotic behavior 
T,~r  -2/7 (Parker, 1958) and T ~  r -4/3 (Durney, 1971)and an asymptotically constant 

supersonic flow, the number density n ~ r - 2. I f  for the temperature and density in the 
solar corona the ~ solution is the relevant one then the ratio of  mean-free path to scale 
height is 

(3kT) 2 dT /dr  ra/7 (3) 
e -  400 ne4T "~ 

which increases as r increases; clearly e ultimately exceeds unity and the plasma is no 
longer collision dominated. (The r -4/3 solution is collision dominated.) Indeed, in 
many models of  solar and stellar winds this happens before the asymptotic regime is 
reached. 

Ideally we need a non-local theory of heat transport  in the weak collision case but 
progress can be made by noting that the maximum heat flux is that when all the 
particles carry their thermal energy with the thermal speed (this corresponds to a 
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delta function distribution function), and gives an energy flux 

F =  fllneve lgnev e2 = B-1 rt e ( 3k T )a / z  (4) 
r A :X7-2  

H e 

where fl is a factor of order unity which is due to the non-delta function type of distri- 
bution function. The problem analyzed in this paper is the solution of the solar wind 
when the heat flux is given by this expression. 

2. Equations Governing the Flow 

The motion of the solar wind is governed by Eulers equation, mass and energy con- 
servation which are 

dv - 1 d G M  
v --dr = m n  d r  ( n k T )  - - f i -  (5) 

1 d ( r 2 F ) = - 3 0  d ( n k T  "~ 
r 2 dr  2 v dr  \ ( r a n )  st3] (6) 

nvr 2 = constant. (7) 

We make the standard transformation to the dimensionless variables z, 0, 2, first 
introduced by Chamberlain (1961) and modified by Roberts (1971), 

T m y  2 G M m  

z = T l e . '  O - kT~eo~' )~ - ~kT le . r ,  (8) 

where a ~ k T  1 is the residual energy per particle at infinity, T1 is a reference temperature, 
M the mass of the Sun and m the average mass of the particles, = ran~2 for hydrogen. 
In terms of these variables Equations (5) and (6) transform to 

1 dO 1 - 2z/~. - dz/d2 
- (9) 

2 d)~ (1 - z / q )  

( ; ) . 2  st 0 (,o) 
c~ z = l + 2  2 2 

\ - - #  

where e=fl33/2 ( m / m , ) l / 2 / 4  taken for convenience to be 23 in the worked example. 

3. Solutions of the Equations 

To simplify the equations it is convenient to introduce co = ("C/0) 1/2, and to eliminate 
d0/d2, yielding 

d z = ( 1 - ~ ) ( 1 - 2 ~ ) - ( 1 - c o  2) (11) + 5o,2 _ - 3)d  

1 + 2  5 1 
c, co = (12) 

z 2 20) 2" 

We consider now the general properties of the solutions. 
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3.1. Locus OF INFINITE DERIVATIVES 

dz/d2 is infinite when its coefficient in Equation (11) vanishes, that is 

f(co)  ___ ~co3 ~_ 50)2 - -  3~co - 3 = 0. (13) 

This cubic has two turning points at 5/3a ( x / ~  (9c~2/25)+ 1), a n d f  (co) ~ oo, co -~ 0% 
f ( 0 ) = - 3 ,  there is therefore only one positive root coo. For  ~=23, O)o=1.65. The 
locus d-r/d2 infinite is then given by Equation (12) with co=coo, 

2,002 
"c = (2~coo a + 5co2 + 1,(1) + )0 --- 0.024(1 + 2). (14) 

3.2. Locus OF ZERO DERIVATIVES 

d-r/d2 is zero when the right hand side of Equation (11) vanishes and is therefore given 
parametrically by 

(1  - ~co3)  1 - = (a  - co2),  aco . . . . .  ( 1 5 )  
2 2co ~" 

This curve has two limiting solutions, one has co --+ 0% z --+ 0; 2 ~ 0, "c --+ 2/2, the other 
has co --+ c~- ~/3 -r + 2/(5 + 3~ 2/3) as 2 - ,  0. These two limit curves join together giving 
just one curve in the (-r, 2) plane where dz/d2=0.  

3 . 3 .  C R I T I C A L  P O I N T  

The previous two curves intersect at one point, the critical point, which is given by the 
simultaneous solution of Equations (13) and (15). For our example this is where 
r =0.025, 2=0.052. 

3.4. LIMITING SOLUTION 

There is also an exact solution of the equations which have C O = 0 .  r  and 

2 
"re - (5 + 3g 2/3) (1 + 2) = 0.068 (1 + 2). (16) 

This curve is an upper limit on all possible solutions since if using Equation (12) we 
maximise -r for a given 2 this gives co=e-~/3. 

In the neighbourhood of this solution we write 

z = %(1 + -rx) co = O~ - 1 / 3  (1 -F 0)1) (17) 

and determine the equations satisfied z~ and cox. A little care is needed since r~ is of 
order col z and is given by 

d% 8 ~/3-a 1/3 ( -  %)~/2 

d2 - (5 + 3c~2/3) 3/2 (1 - a 2/3) 2 (18) 
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which has the solution 

480{ 2/3 

T1 = - -  (5  "~ 30{2/3) 3 (1 - -  0{2/3) 2 in  2 . ( 1 9 )  

As we would expect T 1 is always negative; is zero for some 2 = 2 o and depart  f rom Ze 

for both large and small 2. 

3.5 .  ASYMPTOTIC BEHAVIOUR FOR ~, -+ 0 

I f  we look for a power series expansion with 

z = %2"(1 + T12 -{-""), 09 = COo2m (1 + co,2 + ...) (20) 

there are three possibilities co- -0 ,  oo or 09~ a constant. 

3.5.1. c o + 0 ,  2 - 0 0  

In  this case m >  0 and f rom Equat ion (12) 

1 + 2  5 1 
0{09 = - -  --* o0,  "C ~ 209 2 ~ 0 (21) 

z 2 2092 

Substituting into Equat ion (13) the leading terms are 

- 3Ton2"- * = - 2To2"- a (22) 

so n =  4 and T o is arbitrary. There is hence a one parameter  family o f  solutions which 

behave asymptotically like 

~ = To,~ 4/3 (1 + . . . ) ,  09 = 2 ~" (1 + . . . )  (23) 

with To the free parameter.  These solutions are supersonic co -0 0, and are asymptotic  

to the regular adiabatic ~ solution that  exists for the normal  solar wind (Durney, 1971). 

3.5.2. { o ~ o o  2 a c o n s t a n t  

In  this case Equat ion (14) gives 

1 5 1 + 2  
0{092 + 209 z + 2 z 

1 
-0 - -  (24) 

TO 

since the left hand  side is positive definite, To >0 .  Turning to Equat ion (13)the term 
2T/2 -0 ~ as 2 ~ 0 and cannot  be balanced unless 1 - 0{r 3 ~ 0, which gives 

2 
09-00{-1/3 T-0 (5 + 30{2i3 ) (25) 

which is where % meets the T axis. 
However  we have already seen that  all other solutions diverge f rom % and so the 

only possibility is z = %. 
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3.5.3. 0) + oo 

In  this case it follows f rom Equat ion (14) that  

1 

and then Equat ion (13) requires, to leading order, 

oc0) 3 dz 
- -  ~ 0 ) 3  ( 1  - -  2T/2) 

2 d2 

and since z-+ 10)_+ 0 the only solution o f  this is 

(26) 

(27) 

= + . . . .  (28) 

This is in fact another  limiting solution. To demonstrate  this consider first the general 

power series expansion 

3 

27_( 
z ~-z(1 + va, z,2"), co = 1 + 2709,2"). (29) 

Substitution into Equations (13) and (14) gives the equations 

2 
0)1 + "el = 3 

(.0 2 -~- "C 2 = ,17 2 __ "C1 

0)3  + "173 = 2ZZZl - -  z3 - -  ~'2 -{'- "/72 - -  4~2/27 
0)4  + "l'4 = 

4z 1 + 2 = 2 z , +  t o  

4% - 20)1 = 3% + 20zl/3 - 100)1/3 - 4~2/3 

4% - 2(0)2 - 0)2) _ 32cd/27 = 4% + 10% - 20"q0)i/3 - 8c~2Zo/3 + 
- 10o92/3 + 100) 2 - d0),~ 2 - 82/9 

4"C 4 + . . . .  5 T  4 + " -  

I t  is clear that  a degeneracy occurs in the third equation o f  the second set, the % 

terms cancel and this equation becomes a consistency condit ion on %, co 2, ~,, 0), 

which are already known. In  principle there are two possibilities; this equation is 

identically satisfied, in which case z a is arbitrary and represents the degree of  freedom 

corresponding to the one parameter  family asymptot ing to z = 22, or it is not  satisfied 
in which case the degree o f  f reedom enters th rough  a logarithmic branch. 

z = 22(1 + ca + 22) 2 -t- Z323 -~ " ' )  + %2 4 ln2(1 + s12 + SO) 2 -~ "")  (31) 

3 
co -- 2 ~ (  1 + 0 ) 1 2  + ' " )  "[- ~0 41n2( 1 + ]212  "Jr-'"). 

In  the present problem the constraint is not  satisfied and we have the logarithmic 
branch. All solutions with 0) -+ oo 2 -+ 0 converge on z = 22/3. 

3.6. A S Y M P T O T I C  B E H A V I O U R  2 - - +  oo  

Again  there are in principle the possibilities 0)-+ o% 0, 0)a. Since we have already 
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identified the o9 -+ 0 ~o --+ oo behaviour we need only consider co --+ (.03 . In this case we 

note that  f rom Equations (14) if 2 ~ 0% 09 --+ 093 then -c -+ .Co), , and it then follows by 

substitution that  

�89 (~a~33 + 5a~ 2 - 3~o93 - 3) = (1 - ~o933) (1 - 2%) - (1 - 092) (32) 

1 1 
- -  = ~093 + { + - -  ( 3 3 )  
Zo 2co~ 

and this has the unique solution o~ = 1/.. This is just the solution -ce we identified 

previously namely 

2(1 + ~ )  
% - ( 5  + 3~2/3)"  ( 3 4 )  

Since this is the only asymptotic  solution it follows that  along any solution curve that  
goes to infinity o9--+ ~ -1/3. 

3.7. OTHER REMARKS 

It  is a help in calculating the solutions to notice that  -c can vanish for finite 2 and that  

in this case co--+ 0% and d - c / d 2 - + - 2 .  The other possibility namely -c--+0 is just the 
2 4/3 family of  solutions. 
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Fire 1. Solution of the saturation flux equations. 
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4. The Solution Curves 

In Figure 1 we have drawn the family of solutions to the saturation flux equations. 
The salient features are 

(a) the locus z' =0,  the dotted line; 
(b) the locus z ' =  ~ ,  the dashed line; 
(c) the critical point, C; 
(d) the limiting solution, L; 
(e) the critical solution, the bold line that extends f rom z =0,  2=0 ,  to z =  ~ ,  2 =  ov 

and f rom which all solutions diverge. 
Not  all solutions take all values of  co. There are a set of solutions beginning and 

ending at z = 2 = 0 ,  on which co varies monotonically f rom 0 to ~ .  Then there is a set 
whichstarts at co = 0, has co increasing to a-2/3, increases further to a maximum some- 
where between ~-  i/3 and cos, the value of co on the curve z' = ~ ,  and then co decreases to 
~-1/3 again. A third family has co infinite at z = 2 = 0 ,  co decreases reaches a minimum 
and then increases again until the solution curve intersects the 2 axis. A fourth set 
has co=~-/a3 as z =  ov 2 =  o% -c increases monotonically until co= ov when again the 
solution crosses the 2 axis. 

5. Conclusions 

By far the most important  conclusion and the one of relevance to the solar wind is that 
for any value of -c and 2 there is always a supersonic solution that is well behaved, 
co~0 ,  - c~0  2--+0, ~ 2  4/3. This is similar to the adiabatic wind. However, the fact 
that all supersonic solutions have a 2 4/3 dependence is of  greater importance; along 

such a curve the ratio of  the mean free path  to the scale of variation of the temperature is 

l dT T 2 I 
e = T dr n r  r 5/3 + O. (35) 

The plasma becomes collision dominated along the collisionless solution. We there- 
fore have the situation that a solution of the full conducting wind that is Parker like 
( T ~  1/r 2/7) becomes collisionless, the saturation flux then forces the solution over at 
large distances into a Durney like solution (T,,~ 1/r 4/3) and again becomes collision 
dominated. 

The actual nature of  the solutions and the extent of the transition region will be 
dealt with in a subsequent communication. 
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