ON ANISOTROPY OF SOLAR HARD X-RAY EMISSION

G. PIZZICHINI, A. SPIZZ1CHINO, and G. R. VESPIGNANI *Lab. TESRE-CNR, Bologna, Italy*

(Received 9 February; in revised form 29 October, 1973)

Abstract. A number of solar X-ray events above 10 keV and 20 keV were compiled in order to test for evidence of anisotropic emission. The results are not definite, although the two samples show apparently different behaviours.

Among the mechanism of X-ray emission from solar bursts and of related phenomena, like for instance Compton X-ray scattering, some are in principle apt to introduce a dependence of intensity on the direction of observation. This in turn could be evidenced by a centre-to-limb modulation on the number of events detected at different heliographic longitudes (HL).

It was once pointed out by Ohki (1969) that the frequency of detection of hard X-ray $(hv \ge 10 \text{ keV})$ solar bursts appeared to decrease from the centre to the limb of the solar disk. On the other hand, a maximum of detection frequency around 40-50 deg HL was claimed by Pintér (1969), closing in towards $20-30$ deg at $1-10$ keV and near the centre at 0.6-1.5 keV. This pattern seemed in agreement with a Takakura-Kai flare model.

We attempt here to reconsider the matter with a larger compilation of events above 10 keV, and a sample above 20 keV. In the \gtrsim 10 keV band, the OGO-1 and OGO-3 Atlases of X-ray bursts (Arnoldy *et al.,* 1968; Kane and Winckler, 1969) were examined, covering the period from 5 Sept. 1964 to 31 Dec. 1967. Fourteen events from OGO-5 were collected among those reported by Kane (1969) and by Kane and Anderson (1970). In the ≥ 20 keV band, the events were selected from the list of 'pre-OGO' measurements reported by Arnoldy *et al.* (1968), from the list of OSO-3 events which McKenzie (1971) labelled 'Channel 4' (\gtrsim 20 keV), and from the events given by Brini *et al.* (1973) from the Bologna experiment on OSO-6.

A comprehensive list of all the events considered is given in Tables I and II. The heliographic locations are based as usual on associations with $H\alpha$ flares reported in *Solar-Geophysical Data,* subject to the condition that no other flares be reported with end time later than, or start time earlier than the time of X-ray maximum. Exceptions were made when the overlapping flares occurred at approximately the same HL, whereby no serious ambiguity should arise within the context of this procedure. The X-ray time of maximum for the OGO-1 and -3 events was deduced with an accuracy of typically one minute from the profile time scales on the Atlases.

The events were distributed in 10 deg bins of HL by splitting in two halves the contributions of those falling at exact multiples of 10 deg, except for including all events at 90 deg in the 80-90 deg bin (Figure 1).

432 G, PIZZICHINI ET AL.

TABLE I

 \geq 20 keV X-ray bursts with associated flares

OSO-6 (Brini *et al.,* 1973)

434 G. PIZZICHINI ET AL.

TABLE II

 \geq 10 keV X-ray bursts with associated flares

Date		X-ray max. UT	Flare max. UT	Flare locat.	Imp.
	OGO-1 and 3 (Arnoldy et al., 1968)				
1965	2 May	0048	0051	N28E78	$1 -$
	21 May	2340	2343	N23W11	$1 -$
	5 Jun	1813	>1835	S09W49	$1 -$
	30 Sep	1937	1939	N21E30	$\overline{\mathbf{c}}$
	2 Oct	1619	1622	N19E05	1
1966	16 Mar	1629	1628	N15E60	SB
	16 Mar	1922	1923	N16E55	1B
			1917	N36W56	SF
	18 Mar	0425	0427	N16E39	SF
	18 Mar	0442	0445	N15E41	1B
	19 Mar	1401	1402	N21E27	SВ
	20 Mar	0224	0234	N20E20	1 _N
	20 Mar	1803	1805	N21E12	1N
	20 Mar	1900	1859	N20E09	1B
	24 Mar	0238	0238	N22W42	2B
	30 Mar	1250	1249	N27E47	2N
	31 Mar	1902	1906	N30E36	1 _N
	1 Apr	1752	1800	N29E21	1N
	4 Apr	0734	0745	N27W08	2N
	15 Apr	1008	1010	N18E40	2N
	4 May	0154	0153	N29W67	1B
	5 Jul	2022	2019	N33W33	— B
	6 Jul	1303	1305	N34W40	$-{\bf N}$
	6 Jul	2030	2032	N33W45	1F
	6 Jul	2150	2152	N34W46	-- N
	6 Jul	2225	2230	N34W46	$-N$
	7 Jul	0038	0043	N34W48	2В
	10 Jul	1632	1632	N19W44	$-F$
	12 Jul	1152	1157	N25E90	$-N$
	23 Jul	0241	0243	N38E40	— B
	23 Jul	0550	0552	N37E36	1B
	28 Aug	1528	1529	N23E04	3B
	20 Sep	0826	0828	N22E19	$1 +$
	13 Oct	0432	0432	N21E66	2
	14 Oct	0531	0530	N21E50	$1 -$
	14 Oct	1308	1309	N21E42	$2 -$
	15 Oct	1921	1925	N21E25	$1 +$
	17 Oct	0247	0247	N22E09	1
	17 Oct	0431	0429	N22E05	$2+$
				N12E65	$1 -$
	20 Oct 23 Oct	2042 1024	2043 1024	N13E25	$1 -$
	23 Oct	1425	1428	N14W76	1
	23 Oct	2103	2108	N14W80	$\pmb{1}$
	23 Oct	2355	2356	N14E17	1
	22 Nov	1840	1837	N32W20	$1 -$
	9 Dec	0307	0307	N23E59	$1 -$
	9 Dec	1800	1806	N22E50	2

Fig. 1. Normalized distributions of $\geq 20 \text{ keV}$ and $\geq 10 \text{ keV}$ X-ray solar bursts according to the heliographic longitude of associated H α flares (solid lines). The distribution after correction for H α visibility is in broken lines. The horizontal straight lines indicate the average and corresponding 3σ levels. The linear best fits are also indicated.

An 'H α correction' has been deduced from the HL distribution of flares given by Drake (1971), as a possible correction for the H α visibility effect. This correction is applied by dividing each number of observed X-ray events in a 10 deg interval by the corresponding value of the $H\alpha$ flare distribution. This procedure should roughly compensate for the H α visibility distribution being folded onto the X-ray bursts distribution through the process of X-ray to $H\alpha$ association. The resulting corrected values are drawn in dotted lines in Figure 1, but they have not been adopted for this exploratory analysis.

A quantitative estimate of possible features of the uncorrected distribution n (HL) has been made by χ^2 -testing the goodness of fit to a constant level given by their average m over the 0–90 deg HL range, to a linear best fit, and to a Poisson distribution $m^n e^{-m}/n!$. The latter fit amounts to testing the randomness of the numbers of events observed with a 10 deg 'window', but otherwise irrespective of their HL

Sample		(a)	(b)
Fit		\gtrsim 20 keV	≥ 10 keV
$const = m$	χ^2	5.5	8.8
	F ₈	70	35
linear best fit	χ^2	2.6	8.8
	F ₇	95	25
Poisson (mean $=m$)	χ^2	9.3	5.5
	F_8	35	70
m		8.4	15.2

 χ^2 tests and significance levels $F_n(\%)$ with *n* degrees of freedom for fits to HL distributions

location, about a mean corresponding to their observed average over the whole disk. However, the significance of this test is very low, since only 9 'observations', and with poor statistics, are given to evaluate a mean and to fit a Poisson curve.

Table Ill summarizes the results of these tests on the two samples, for nine HL bins 10 deg wide. From a simple statistical point of view, the significance of the samples is still such that it matters how one defines the angular bins, but if we take the results at their face value, one consideration can be made. It appears that the first sample (\geq 20 keV) would have a poor fit to the hypothesis of randomness but a fair probability of fitting a non-zero slope. The second sample $(\geq 10 \text{ keV})$ would not fit well a hypothesis of linearity, while exhibiting a peak $>$ 3 σ above the average, between 30 and 40 deg. This happens to be near that of Pinter whose sample of 46 events is included in the present one.

Discussion

The obvious requirement of a better statistical resolution is only one of the conditions necessary to definite results. Since the effects of anisotropic emission should depend on the emission mechanism, on source configuration and on energy distribution, it is likely that uncharacteristic compilations such as these show no definite features or lead to incorrect conclusions anyhow.

In order to obtain physical information on solar X-ray emission through possible signature of directivity, which is the aim of this kind of search, many different samples will have to be collected distinctly, depending on such parameters as, in a first instance, the sensitivity threshold of detection, the classification of events in 'impulsive' and 'gradual' bursts, in 'thermal', 'quasi-thermal' or 'non-thermal', and, even then, their spectral hardness.

If, however, the indications given by these samples were to be confirmed, a peak of visibility should be moving towards the centre from 10 keV to 20 keV. In a simple minded view this could mean that energetic bursts arose from upward-moving streams of electrons rather than from Takakura-Kai configurations.

On the other hand, not only could the emitted spectrum depend on direction, as in the case of non-thermal Bremsstrahlung, but it might also be significantly altered by secondary processes depending on direction of observation and on photon energy. One such process is the multiple Compton scattering of hard photons emitted towards the solar surface, resulting in a backscattered component at present indistinguishable from the primary emission. Quantitative estimates of spectral distortion as a function of angle of observation have been made by Santangelo *et al.* (1973) in the hard X-ray band. Their results show how even an isotropic emission could give rise to an anisotropic total flux of hard X-rays (primary backscattered) with a strong ($\approx 30\%$) enhancement towards the centre of the disk.

Aside from external factors, the effects arising just within the source can be expected to be complex and not always uuivocal. For example, the computations of Elwert and Haug (1971) on the directivity of non-thermal Bremsstrahlung emission show clearly how widely the result can be changed by diffeient details in the electrons spectrum and their pitch angles in the magnetic field.

Finally, the effect of an assumed directivity of emission can be translated with some reliability into a modulation of the *number* of observed events when the sample comes from consistent observations with the same detection threshold and depending on the parameters assumed to define a 'luminosity function' of a class of X-ray bursts. An approximate relation between intensity modulation and number modulation was indicatively examined by Brini *et al.* (1973).

Acknowledgements

We wish to thank Dr S. R. Kane and Prof. J. R. Winckler for providing us with the OGO-1 and OGO-3 Atlases. We are also grateful to our referee whose initial comments helped in the revision of this paper.

References

Arnoldy, R. L., Kane, S. R., and Winckler, J. R.: 1968, *Astrophys. J.* 151, 711, and 1968, CR-108, Univ. of Minnesota.

- Brini, D., Evangelisti, F., Fuligni Di Grande, M. T., Pizzichini, G., Spizzichino, A., and Vespignani, G. R. : 1973, *Astron. Astrophys.* 25, 17.
- Drake, J. F.: 1971, *SolarPhys.* 16, 152.
- Elwert, G. and Haug, E.: 1971, *Solar Phys.* 20, 413.
- Kane, S. R.: 1969, *Astrophys. J.* 157, L139.
- Kane, S. R. and Anderson, K. A.: 1970, *Astrophys. J.* 162, 1003.
- Kane, S. R. and Winckler, J. R.: 1969, CR-134, Univ. of Minnesota
- McKenzie, D. L. : 1971, Thesis, UCSD SP 71-03.
- Ohki, K. L : 1969, *Solar Phys.* 7, 260.
- Pintér, S.: 1969, *Solar Phys.* **8**, 142.
- Santangelo, N., Horstman, H., and Horstman-Moretti, E.: 1973, *Solar Phys.* 29, 143.
- *Solar-Geophysical Data* ESSA Reports, Boulder.