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Abstract. It has been demonstrated in the past that single, two-dimensional coronal arcades are very unlikely 
driven unstable by a simple shear of the photospheric footpoints of the magnetic field lines. By means of 
two-dimensional, time-dependent MHD simulations, we present evidence that a resistive instability can 
result if in addition to the footpoint shear a slow motion of the footpoints towards the photospheric neutral 
line is included. Unlike the model recently proposed by van Ballegooijen and Martens (1989), the photo- 
spheric footpoint velocity in our model is nonsingular and the shear dominates everywhere. Starting from 
a planar potential field geometry for the arcade, we find that after some time a current sheet is formed which 
is unstable with respect to the tearing instability. The time of its onset scales with the logarithm of the 
magnetic diffusivity assumed in our calculation. In its nonlinear phase, a quasi-stationary situation arises 
in the vicinity of the x-line with an almost constant reeonnection rate. The height of the x-line above the 
photosphere and the distance of the separatrix footpoints remain almost constant in this phase, while the 
helical flux tube, formed above the neutral line, continuously grows in size. 

1. Introduction 

The forced motion of the photospheric footpoints of closed coronal magnetic field lines 
is widely considered to be the main energy source for the magnetic energy stored in the 
corona and is believed to be ultimately responsible for the high coronal temperature and 
the X-ray emission from active regions (Parker, 1972, 1983). The average energy input 
into the corona by photospheric motions moving the line-tied magnetic field lines has 
been estimated by various authors to be of the order of 10 7 ergs s - 1 cm - 2 (Golub et  al., 

1980; Parker, 1983). 
While the energy supply by the random motion of the photospheric footpoints seems 

to be more or less continuous, its release from the corona is often observed to be 
intermittent and eruptive. Many energetic processes in the solar corona, like flares, 
prominence eruptions, and coronal mass ejections, set their energy free on time scales 
much shorter than the time necessary to supply the energy from the solar surface. The 
released energy often is a fair fraction of the magnetic energy present in the erupting 
volume of the corona (e.g., Forbes, 1990). For instance, for a coronal mass ejection with 
an energy of 1032 ergs (Howard et al., 1985) released within minutes over an area of 
102o cm 2, the above estimate of the energy input by line-tied motions implies that it takes 
more than a day to accumulate the free energy in the magnetic field. This suggests that 
line-tied motions not only gradually enhance the magnetic energy in the corona, but 
eventually drive the magnetic field configuration into a situation where its equilibrium 
is lost or an instability occurs, the onset of which then is responsible for the rapid release 
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of at least part of the stored energy. As the speed of the footpoint motion in general is 
well below the coronal Alfv6n velocity, the magnetic field configuration stays close to 
the equilibrium field associated with the actual footpoint position until nonequilibrium 
or an instability is reached. 

Consequently, there have been quite a number of attempts to quantitatively model the 
formation of unstable magnetic field geometries starting from a simple, low-energy initial 
configuration. As most active regions are observed to occur near photospheric neutral 
lines, where the photospheric normal component of the magnetic field reverses its sign, 
an often adopted model for this low-energy initial configuration consists of plane, 
two-dimensional magnetic arcades. In almost all of these models, the footpoints are then 
sheared in the invariant direction along the photospheric neutral line. It turned out, 
however, that a shear of the footpoints alone, i.e., a displacement parallel to the 
photospheric neutral line, in a two-dimensional geometry is not enough to drive an 
initially simple magnetic arcade field configuration unstable (Klimchuk, Sturrock, and 
Yang, 1988; Biskamp and Welter, 1989). Other model calculations of eruptive or 
unstable processes therefore include some additional source of free energy like a 
localized, persistent (Zwingmann, 1987) or impulsive pressure source (e.g., Steinolfson 
and Hundhausen, 1988; Linker, van Hoven, and Schnack, 1990), or an externally fed 
coronal line current (Forbes, 1990). Some models already start off with an unstable 
magnetic field configuration (Forbes and Priest, 1983) or with an ensemble of magnetic 

arcades (Mikic, Barnes, and Schnack, 1988; Biskamp and Welter, 1989). However, 
there is no observational evidence for the presence of additional energy sources or of 
the presence of multiple magnetic arcades in active regions of the solar corona. 

In the present paper, we demonstrate that it is indeed not necessary to invoke the 
above-mentioned additional energy sources to drive an initially stable, two-dimensional 
arcade magnetic field configuration towards an instability. The effect of line-tying is 

sufficient for that purpose if the footpoint motion includes besides the shear along the 
photospheric neutral line also a component of the photospheric boundary velocity that 

converges the footpoints towards the neutral line. 
This kind of footpoint motion has also been considered in modelling the evolution 

�9 of the coronal magnetic field by van Ballegooijen and Martens (1989). They proposed 
a model for the formation of filaments based on forced reconnection of field lines exactly 
at the photospheric neutral line. The reconnection rate in their model is entirely con- 

trolled by the photospheric velocity component towards the neutral line and the normal 
component of the photospheric magnetic flux density in its vicinity. In order to achieve 
a finite reconnection rate, however, they had to assume a singular convergent velocity 
component in the photosphere, the magnitude of which increases inversely proportional 
to the distance from the neutral line as the neutral line is approached. 

Here, we consier instead a continuous, nonsingular footpoint motion whose speed is 
everywhere small compared to the shear velocity. Further details of our model are 
outlined in Section 2. Starting from a stable arcade magnetic field geometry, the velocity 
component towards the magnetic neutral line then helps to drive the system towards 
a resistive instability as is demonstrated in Section 3. The evolution of the system after 
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the tearing mode has set in is presented in Section 4, and relations to previous work and 
potential applications of our results to solar coronal phenomena are discussed in 

Section 5. 

2. M o d e l  and M e t h o d  

In our simulation model, we describe the coronal plasma by the isothermal MH D  
equations in two dimensions. The model is two-dimensional in the sense that gradients 
vanish in one invariant direction, whereas the components of all vector fields in this 

direction are self-consistently includced. Such a model is also often called 2�89 
sional. After a suitable normalization, based on a typical length scale Lo, density Po, and 
magnetic field strength B o, these equations can be written in conventional notation as 

@ - 7 " u ,  ( l a )  
8t 

_ 1 2 1 8u 7 (p  + gB ) + 7 . ( B B  - uv) + - -  72u ,  (lb) 
8t S k 

where 

_ 1 
8B 7"(Bv - vB) + - -  V2B, (lc) 
8t S m 

u = p v ,  p =/~op, 

and S., = VAoLo/r] is the conventional Lundquist number defined by the typical Alfvdn 
speed VA0 = Bo/~x/~op o and the magnetic diffusivity r/. The velocity and the time have 
been normalized by the Alfv6n speed VAo and the Alfv6n transit time Lo/VAo, respec- 
tively, so that S k corresponds to a kinematic Lundquist number where the magnetic 
diffusivity t/is replaced by the kinematic viscosity v of the plasma, or a modified 
Reynolds number normalized by VAo rather than by the typical flow speed. Since we 
assume a constant temperature, the ratio of pressure and density is constant and 

corresponds in normalized variables to the ratio rio of the thermal and the magnetic 
pressure. In all the calculations presented, flo = 0.1 has been assumed. 

In a two-dimensional geometry with9 as the invariant direction all variables depend 
only on the x- and z-coordinates, and we can represent the poloidal magnetic field by 
a flux function A so that 

B = f~ x 7,4 + 9By.  (2) 

Here, 7 operates only in the x, z-plane and the contour lines of the flux function A(x, z) 
represent the projection of the field lines onto the x, z-plane. 

Since the photospheric footpoints are assumed to move slowly in our simulations, we 
expect our results to be most of the time close to a static equilibrium solution of (1), 
where u = 0. In the ideal case S,,, = oc this requires that p and B are constant along 
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the field lines (Birn and Schindler, 1981; Low, 1982), 

p = p ( A ) ,  B~ = By(A), (3a) 

and that the j x B force balances the pressure force which gives rise to 

d 
AA - (�89 + p). (3b) 

dA 

In fact, Mikic, Barnes, and Schnack (1988) and Biskamp and Welter (1989) have 
pointed out that solving the time-dependent problem (1) while insuring that the velocities 
remain small compared to the Alfv6n speed is a convenient way to obtain a sequence 
of approximate solutions to the equilibrium problem (3b). 

The typical values for normalization quantities Lo, Po, and B o are imposed by the 
initial configuration of our model. The initial density is chosen to be homogeneously 
distributed over the computational domain with a value ofpo. The coronal magnetic field 
at t = 0 is assumed to be a potential field and corresponds to the field of a horizontally 

orientated line dipole of strength B o L  ~ at a depth of L o below the photospheric plane 
at z = 0. The resulting field lines are thus circular arcades in the x ,  z-plane, bridging a 
photospheric neutral line in the y-direction at the origin x = 0, z = 0 of our computa- 
tional plane. Similar initial magnetic field geometries have previously been used in 
analytical work by numerous authors (see the review by Birn and Schindler, 1981) and 
in two-dimensional MHD simulations by Zwingmann (1987), Klimchuk, Sturrock, and 
Yang (1988) and others. 

The characteristic speed VAO in our model corresponds to the Alfv6n velocity at the 
origin of our coordinate system. At a finite height, however, there is a decrease of the 
Alfv6n velocity due to the decrease in the magnetic field strength rather than an increase 
as in the real solar corona. This reversal of the Alfv4n speed gradient does not have a 
great impact on the results of this calculation because we consider primarily processes 
that are slow compared to a typical Alfv6n transit time. 

Similarly, the model plasma fi increases with height well above its value close to the 
photosphere, whih is approximately rio. Since the important processes in our model 
occur just above the photosphere, the value of rio = 0.1 can be considered as the relevant 
magnitude of the plasma fi in our simulation. The fact that 13 increases with height 
probably has a stabilizing effect on the calculation. Since the relevant fi is small and 
transport of heat and radiation complicate the energy budget of the coronal plasma 
considerably, we will, as a first step, neglect adiabatic and other kinds of heating in our 
model and adopt an isothermal energy equation. 

In the high-temperature, low-density corona the (compressional) kinematic viscosity 
v is expected to be much larger than the magnetic diffusivity r/(Priest, 1982). For a 
typical scale of 105 km, kinematic and magnetic Lundquist numbers of the order of 106 
and 1014 , respectively, are obtained, which is beyond what can reliably be treated in 
computer simulations. In our calculations we assumed a value of $I, = 1000, while for 
S,,, various values were used. The results reported here were obtained with Lundquist 
numbers S,, = 1000 and S m = oo. 
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To solve Equations (1) numerically, we employ a leap-frog scheme which has almost 
no numerical diffusion except what is induced locally by a flux limiting procedure added 

after each time step. The numerical dispersion of the leap-frog code does not affect our 
results strongly since we want to simulate a system always close to its equilibrium rather 
than wave phenomena. A good compromise between the desire to have a high spatial 
resolution where necessary and a large computational domain at the expense of a 
moderate computation time was found by selecting a non-equidistant grid of 
186 x 93 points in x and z with a grid size varying between A x  = A z  = 0.006L o near the 
origin x = 0, z = 0, and A x  = A z  = 0.06L o at the outer boundaries located at x = + 3L 0 
and z = 3L o, respectively. 

The boundary condition along the outer boundaries includes a vanishing normal 
gradient of p and a vanishing of the tangential magnetic component By. The latter 
condition ensures that there is no current flow through the outer boundaries. For the 
other magneiic field components, 7 .  B = 0 and 9" 7 x B = 0 was used to determine the 
normal derivative of the normal and the second tangential component of B, respectively. 
On the photospheric boundary, 7- B = 0 is used again to determine the normal derivative 
of B Z. For p and the tangential components of B, the second normal derivative was 
chosen to vanish, which gave the numerically most stable results. 

As boundary condition for the velocity we prescribe its tangential components and 
demand its normal component to vanish in the photospheric plane z = 0. An alternative 
boundary condition, allowing for photospheric influx, would fix the photospheric pres- 
sure and leave the velocity component parallel to the boundary magnetic field undeter- 
mined. However, it was found that this boundary condition results in a numerical 
instability, originating close to x = 0, z = 0, where the magnetic arcades become infini- 
tesimally small. The more restrictive boundary condition that we have chosen instead 
probably increases the physical stability of the system (Zwingmann, 1987). On the top 
and side boundaries we assume all velocity components to vanish. Again, these are very 
restrictive conditions which tend to stabilize the system compared to the case where the 
boundaries are open or infinitely far away. Therefore, whenever an instability is obtained 
with our numerical set-up, the instability will crtainly show also under less restrictive 
but more realistic boundary conditions. 

The boundary velocity prescribed in the photospheric plane includes a shear 
component antisymmetric with respect to the photospheric neutral line, similar to what 

has been considered in previous papers (Klimchuk, Sturrock, and Yang, 1988; Mikic, 
Barnes, and Schnack, 1988; Biskamp and Welter, 1989). However, we also include a 
converging footpoint motion towards the neutral line. We have tried several specific 
shapes for the footpoint velocity variation without essential differences in the results. 
For the case presented here, we have chosen 

W•o 
x 2 3 2 

v ( x , z = 0 ) =  J 1 + O.5 1 + ' (4) 
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where the last term in the brackets  causes v(x, z = 0) to vanish at the lateral  boundar ies  

x = _+ 3. The parameters  W~o and wy o in (4) represent  the velocity gradients  of  the x- 

and y-components ,  respectively, of  the photospher ic  mot ion at the neutral  line. They 

were chosen to be wy o = 0.20 and w,o = 0.06 or 0.0 for a compar ison.  These values 

result  in maximum dimensionless  velocity ampli tudes of  about  0.015 in the x- and 0.05 

in the y-direction.  This is well below the Alfvdn velocity, which is of  order  unity or larger 

in dimensionless  units. In Figure 1, we display the location of  footpoints  that  initially 

o 
(-x]-  

C 
...) 

(1) c~ 

2 

CD 

0 

rootpoLnt zosLtLon ot t=0,10, . . .  

-3.0 -2'.0 -1'.0 0.0 !'.0 2'.0 3,0 
d L s t o n c e  Ln x 

Fig. 1. Location of footpoints at t = 0, 10, 20,..., 70 in the photospheric plane that at t = 0 form a straight 
line at y = 0. The footpoints are moved according to (4) with W~o = 0.06, Wyo = 0.2. The dashed lines 
represent trajectories of individual footpoints starting from y = 0. These trajectories are straight because 

the ratio vx/vy is the same constant everywhere in the photospheric plane. 

form a straight line y = 0 in the photospher ic  x, y-plane if they are moved according 

to (4). 
Even though v x is small  compared  to vy, the convergent  componen t  of  the footpoint  

mot ion  makes  a fundamental  difference in the results of  the simulation. In the next 

section, we therefore compare  the simulation results obta ined in the case of  a simple 

shear with a case where v x does not  vanish. 

3. Loss of Stability 

It is not  s traightforward to see what  changes a converging footpoint  mot ion imposes  

on the coronal  magnetic field configuration compared  to a situation where the footpoints  
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of the field lines are only sheared. If  there is no shear motion at all and we neglect the 

influence of  the small p l a sma  pressure for a moment ,  then if By vanishes and the field 

is a potential  field initially, it remains  so. In a low-fiplasma,  a shear therefore is necessary 

to enable the system to accumulate  free energy beyond the energy of  a potential  field, 

which has the minimum energy for given boundary  condit ions.  A shear of  the footpoints  

alone, however,  seems to be insufficient to drive a simple arcade unstable or towards  

a loss of  equilibrium (Klimchuk,  Sturrock,  and Yang, 1988 ; Biskamp and Welter, 1989). 

In Figure 2, we compare  the evolution of  the field-line project ion onto the x, z-plane. 

pc:enLL~L B o~ t " !0.0 

L- O.CO0, O- 0 . 0 5 0 .  H- 0 .655 

:.,3 -C.5 ~'.0 O.S 
dLstonce Ln x 

potengLoL Rot L " 20.0 

~. L" 0.000. O" 0.050, H- 0.504 

! .0  -I.0 -0.5 0".0 0.5 
dLsLonCe Ln x 

potent;eL Rot t - 30.0 

~ 0.000, 0- 0.050, ~,- 0.66B 

~.0 -1.0 -O.S c~O 0.5 1'.0 
dLsLonc~ Ln x 

mocentLoL Rot t " lO.O o~tenLLoL R OL t - 20.0 poLentLot A OL t - 30.0 

L- C.CDO, O- 0.050 H- 0.E97 ~ ~- 0.000, D- 0.050, H- 0 6 ~ = L- O.OOD, D o 0.050 H- 0.557 

2 
- �9 - - -. . '. - J . '  - ' . s  T. . .  ~'.0 - .  - ,. ?. . s  O~ O0 05 O 0 0 O0 O~ I 0  o5 oO D I 0  

dLstonce Ln x dLstonce Ln x d L ~ t o n c e  Ln x 

Fig. 2. Field lines projected into the x, z-plane for run A (top) and B (bottom). In run A, the footpoints 
were only sheared in the y-direction; in addition to the shear, run B includes a convergent component of 
the footpoint motion. Both cases were run with S m = oc. The poloidal magnetic flux per unit distance in 

the y-direction in between adjacent field lines is AA = 0.05 in the dimensionless units. 

Accord ing  to (2), these are jus t  the contour  lines of  the flux function A = const.  Note  

that  in our convention,  A = 0 cor responds  to the innermost  field line close to the origin 

and the magnetic flux function A increases for the field lines further out until A = 1 for 

the field line at infinity. The longest field line that  does not  intercept the top or side 

boundar ies  of  our computa t ional  domain  corresponds  to about  A = 0.75. 

In the sequence at the top of  the figure the footpoints  are only sheared according to 

(4) with wxo = 0 (run A), the bo t tom sequence also includes a converging footpoint  
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motion (run B). The parameters of the two runs are otherwise identical and have 
S m = oc. By t = 30, an initially straight line in the photosphere along the 2-axis has been 
distorted so that it forms a shear angle of 80 ~ and 86 ~ with the C-axis in run A and B, 
respectively. The results are only presented until t = 30, but run A without converging 
footpoints was continued until t = 100 without finding any instability or loss of 
equilibrium. By this time, the shear angle has increased to about 87 ~ . 

In both cases shown in Figure 2 the shear of the footpoints causes By to rise and the 
resulting increase in the magnetic pressure inflates the field lines. In equilibrium, the 
differential toroidal magnetic flux in the y-direction between two neighboring field lines 
projected into the x, z-plane is (e.g., Birn and Schindler, 1981) 

By(A)V(A) = Y(A), (5) 

where 

V(A) = f dl 
I VA I (6) 

/~ -- c o n s t ,  

is the associated differential flux-tube volume, i.e., the volume of a magnetic flux tube 
of unit flux, and Y(A) is the total shear displacement parallel to the y-axis between the 
two footpoints of the closed field line on which the flux function has the value specified 
by the argument A. Note that the integration in (6) extends along the projection of the 
field line with A = const, in the x, z plane, so that V(A) is also equivalent to the 
differential area between field-line projections in that plane. 

At least intuitively, the inflation of the field lines can be understood by arguments 
given by Jockers (1976) and Sakurai (1989). As Y(A) grows due to the shear motion, 
at first By(A) rises while the projected field lines and, hence, V(A) remain relatively 
unchanged. When a shear angle of about 45 ~ is reached, the magnitude of By(A) is of 
the order of the magnitude of VA. The requirement for a pressure balance (3b) prevents 
By(A) to increase any further so that a continued enhancement of Y(A) in (5) now causes 
primarily V(A) to rise. In the two-dimensional projection, the length of a field line 

depends on the width of the flux tubes below so that V(A) rises both by enhancing the 
length of the projected field lines and by pushing the field lines further apart. 

In run B, the evolution is somewhat different because the field lines are also squeezed 
together due to the converging footpoint motion. One would, therefore, expect the field 
lines to rise somewhat faster in this case if V(A) was to increase in the same way as in 
run A. From Figure 2, however, we find that the peak heights of related field lines in 
both runs are nearly identical. We conclude that in run B, the differential volume V(A) 
does not increase as quickly as in run A, where the footpoints are not converged. Since 
the shear displacement Y(A) at any given time is almost the same in both runs, By 
obviously continues to grow in run B, even after a shear angle of about 45 ~ has been 
reached. This increase in B~ can be understood qualitatively because the resulting 
enhancement of the magnetic pressure gradient 7B 2 compensates in the vertical di- 
rection the increased downward tension force which is due to the stronger curvature of 
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the field-line projections. In horizontal direction it balances the increased gradient of B~. 
Biskamp and Welter (1989) have demonstrated that in a sheared two-dimensional 

arcade, the component of the magnetic field along the shear direction evolves, after some 

time, selfsimilarly and they have suggested that this evolution is responsible for the 
stability of sheared arcades. In Figure 3 (a), we recover this evolution of B~, for run A. 

a) b) 
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0.0 0.2 0~.~ 0.6 

R 

g 

g 
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g 
cm 

0.8 0.0 0.2 0.~ O.B 0.8 

R 

Fig. 3. Relation between By and the magnetic flux function A for run A (panel a) and run B (panel b). Note 
that A increases from A = 0 for the innermost loop of the arcade until A _~ 0.8 for the outermost loop of 

the simulation box. 

In this figure, the data points By(A) from nearly all grid points of the two-dimensional 
simulation box are superimposed. For a given time, almost all these data points fall onto 
a single curve, which is evidence of the fact that the magnetic field configuration is very 

close to an equilibrium even though we employ a time-dependent code. Only on field 
lines with a large value of the flux function A some discrepancy from a unique relation 
By(A) is seen, which stems from upward propagating waves launched by the sudden 
start of the photospheric shear motion at t = 0. As the time proceeds, Bj, evolves in a 
self-similar manner in the sense that the relation between Bj. and A for t > 30 becomes 
almost independent of time even though the field lines continue to rise and By accordingly 
undergoes temporal changes in space. 

Furthermore, in run A without converging footpoints the time-asymptotic relation 
between By and the magnetic flux function A is close to linear. If we again neglect the 
small thermal pressure, this is equivalent to the formation of a force-free equilibrium 
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j = c~B where, using (2) and (3b), 

~z = jy  _ A A  _ 0 B ,  ' 

B,.  B v OA 

turns out to be a global constant. The same field configuration would arise for identical 
magnetic boundary conditions from a variational procedure in which the magnetic 
energy is minimized for a given total magnetic helicity of the system (Woltjer, 1958; 
Sakurai, 1979). The magnetic field configuration in run A therefore seems to automati- 
cally approach a state of minimum energy given the magnetic helicity imposed by the 
footpoint shear. As a resistive instability preferentially destroys magnetic energy rather 
than magnetic helicity (see, e.g., Berger, 1984), Biskamp and Welter (1989) concluded 
that the sheared arcade is probably stable with respect to such an instability. 

The equivalent relation between toroidal magnetic field B, and the value of the flux 

function A for run B is displayed in Figure 3(b). We note that B y ( A )  does not become 
time-independent nor does By approach a linear relationship with A. Especially for small 
values of the flux function A, that is, on the innermost loops of the arcade close to the 
origin, By continuously grows in time and B y ( A )  becomes strongly curved after t -~ 20. 
The possibility of a resistive instability can, therefore, not be ruled out if the footpoints 
are not only sheared but are also converging towards the photospheric neutral line. 

The differences between run A and B are most apparent in the evolution of the current 
densities. As discussed above, in run A without converging footpoints, jy = e B y ( A )  

varies almost linearly with the flux function A after some time and its contour plot in 
Figure 4(a) therefore closely resembles the representation of the field line in Figure 2(a). 

This is different for run B with converging footpoints for which jy is strongly concen- 

trated on the innermost field lines. As a result, a thin current sheet is eventually formed 
that extends upwards from the photospheric neutral line (Figure 4(b)). Moreover, the 
spatial maximum ofjy increases almost exponentially with time in the latter case, while 

it settles to a constant value in case of run A (Figure 4(c)). 
The growth of the current density is due to the converging footpoints and can roughly 

be understood on the basis of the following arguments. In the vicinity of x = 0, the 

footpoint motion in the x-direction is approximately 

vx(x ,  z = O) ~- - XWxo (7) 

according to (4). The time it takes a point in the photosphere to be convected from its 

initial position x o to some x then is 

t (x,  Xo) : 
d x '  

.)  ~x(x ' )  
X o  

which yields after integration 

x (O~-  Xoe  . . . .  o~. (8) 
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The values of the magnetic flux function A are simply convected in the photosphere so 

that for x ~ 0 

A ( x ,  z = O, t) = A ( x e  w:~ z = O, t = 0 ) .  

Consequently, B z = g A / O x  and j y  "~ 0 2 A / ( O x )  2 increase roughly as exp(w~o t) and 

exp(2w~ot), respectively. Similarly, the width of the current sheet decreases approxi- 

mately in,mrsely proportional to the magnitude of B~. By t -- 30, the half width of the 

current sheet has dropped to D ~ 0.04. 

The compression of the current sheet indicates the possibility that the configuration 

becomes unstable to a resistive tearing mode. In Figure 5 we demonstrate that the 

p~'.enktoL Rot t - 30.D B~ ott " 30.D J~ cs L " 30.0 

L = 0.000, D" 0.010, H* 0.100 Q L- 0.710, 0- 0.050, H= 1.929 Q L- 0.570, 0- S.OCD H- 50o110 

it 
i i! o I 1 1 5 c o o 05 o oo ~ ~s ~ IO o'.15 

dtstonce Ln • d~tonce kn x dLstonce Ln x 

Fig. 5. Projected field lines (left column) and contours ofB v (center column) and jy (right column) at t = 30 
(top row) and t = 30.6 (bottom row). The configuration at t = 30 was obtained from run B without resistivity. 
At t = 30, a finite resistivity corresponding to S m = 1000 was introduced, the velocity was reset to zero, and 
the footpoints were fixed at their momentary positions. The differences in the contour levels are AA = 0.01 

(left column), AB,. = 0.05 (center column), and A~. = 5 (right column), respectively. 

magnetic field configuration obtained at t = 30 in run B by the combined action of 

footpoint shear and convergence is indeed resistively unstable. For  this purpose, we 

adopted the magnetic field and density at this instance as the initial configuration for 

a new run. Starting from a plasma at rest, the footpoints were kept fixed at their new 

initial position and a finite magnetic diffusivity corresponding to S m = 1000 was 
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assumed to allow for a resistive instability to grow. While this run was performed 

primarily to test the resistive stability of the configuration, it can also be interpreted as 

simulating an actual evolution that has led to a point where a microinstability sets in 
and suddenly increases the effective resistivity to an anomalous value. A similar experi- 

ment starting from the magnetic field configuration of run A at t = 30 did, es expected, 
not show any signature of an instability. 

The top row of Figure 5 shows B and jy at the time the magnetic diffusivity was 

switched on. As can be seen in the bottom row of Figure 5, the typical characteristics 
of a tearing instability (Furth, Killeen, and Rosenbluth, 1963; White, 1983) become 

visible only 0.6 time units later: the formation of a magnetic x-line in the invariant 
y-direction at some height above the photosphere and the formation of a closed 

magnetic island above. This x-line is closely associated with a maximum of the current 

density jy. In Figure 6 (a), the appreciable acceleration of the plasma into the region of 

the magnetic island is shown, which also is typical for the tearing mode. 

4 -  
N 

Z'~, S - 

"2- 
o 

g 

a) Vx ,z  o t t  - 30 .5  

0 . 2 0 0 -  

. . . .  , \ \ t  t/z, . . . .  

. . . .  , \ \  . / , . ,  , 

. . . . . . .  < , , - ,  . . . . . . .  

-o.~s -o:~o -dos o'.oo dos oi~o 
d; .s tonce x 

b)  V s o t  t - 30.5 
N L--0.022, D- 0.005, H- 0.011 
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u~ 

' R f " ~  ' \  

4- 

= 
4 -  
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Fig. 6. Velocity field in the x, y-plane (a) and contours of constant vy (b) at t = 30.6, associated with the 
field represented in the bottom row of Figure 6. The dashed line indicates the separatrix, i.e., the magnetic 

surface of field lines that pass through the x-line. 

A rough estimate of the tearing mode growth time is also in agreement with the rapid 

evolution after the magnetic diffusivity is switched on. With an Alfv6n speed close to 

unity and a current sheet width of D -- 0.04, the Alfv6n transit time across the current 
sheet is ZA = D/VA = 0.04. The assumed diffusivity in dimensionless units is r/= 0.001 
which gives a diffusion time of rm = D2/rl = 1.6. As a result, the growth time of the 
tearing mode turns out to be ~ = 0.25 so that the bottom row of Figure 5 repre- 
sents the field after somewhat more than two linear growth times. 

Note that while the poloidal field evolves to small scales in the vicinity of the x-line, 
By is of order unity all over the reconnection region. As a consequence, the poloidal and 
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toroidal field diffuse differently, so that By c a n n o t  be maintained constant along those 
field lines that intercept the diffusion region. The resulting field-aligned gradients of By 
then lead, according to (lb), to an acceleration of the plasma in the y-direction. 
Figure 6(b) displays the resulting flow, which is concentrated more or less on the 
magnetic separatrix defined by those field lines that pass the vicinity of the magnetic 
x-line. Both, the magnetic and the velocity field therefore have essential y-components 
in our case and the overall topology, even though it is only two-dimensional, ties in 
closely with the concepts of general, finite-B reconnection developed recently by 
Schindler, Hesse, and Birn (1988) and Hesse and Schindler (1988). 

4. Nonlinear Evolution 

The results of run B, discussed in the previous section, have shown that a transition from 
a stable to a resistively unstable regime can be achieved by a combination of shear and 
converging photospheric motions. As this change is obtained within the constraints of 
ideal MHD, the onset of the instability requires the occurrence of an anomalous 
resistivity, perhaps generated by a microinstability. On the other hand, the initial 
configuration, and subsequently the early stages of the evolving configuration, are found 
resistively stable. It, therefore, seems possible that the resistively unstable regime could 
be reached even if some resitivity were present during the entire evolution. To investigate 
this possibility, we performed run C with the same parameters, in particular the same 
photospheric boundary velocity, as for run B, except that a finite magnetic diffusivity 
t/= 0.001, or correspondingly S,,, = 1000, was assumed right from the beginning of the 
run. Figure 7 displays the projected field lines at various times of the evolution. The 
instability sets in at about ,  _~ 25, when a magnetic island forms and begins to grow. 

Note, that the magnetic diffusivity is present also at the bottom boundary and causes 
the magnetic field lines to slip slightly relative to the photospheric plasma flow imposed 
as boundary condition. The velocity difference due to this slippage is approximately 
(Mikic, Barnes, and Schmack, 1988) 

/)slip D 

It is particularly crucial in our case with converging footpoints because D here is a typical 
scale across the current sheet and decreases exponentially in time as we have seen above. 
If there was no tearing instability, the field-line motion in the x-direction would 
eventually be stopped by the magnetic diffusion if vstip becomes as large as the plasma 
flow in x-direction, i.e., if 

Vx ~ /)slip ~ ~ exp(wxot) �9 

For the parameters of run C, this condition would be reached at 

t -~ - -  In -~ 40 
Wxo 
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Fig. 7. Field lines projected into the x, z-plane for run C. The parameters are the same as for run B except 
for S,,~ which has a value of 1000. The poloidal magnetic flux per unit distance in the y-direction in between 
a pair of field lines plotted in the figure is AA = 0.05 in the dimensionless units for t = 0 and 20, and AA = 0.03 

for t = 40 and 60. 

for a typical magnitude of the convergent velocity v,_ of 0.01 dimensionles s units. As the 
tearing mode sets in already at t _~ 25, the effect of a field-line slippage in the photosphere 
probably is less critical than the above estimates might suggest. 

The plasma dynamics in the vicinity of the reconnection region is no longer controlled 
by the converging footpoint motion, but is primarily governed by the evolution of the 
tearing instability. In Figure 8, vx is plotted along a horizontal line through the x-line 
at various times after the onset of the instability�9 The figure shows that the plasma flow 
velocity towards the x-line grows considerably beyond the speed with which the 
footpoints are forced to move towards the photospheric neutral line (dashed line in 
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Fig. 8. Velocity component v.,. for run C along a horizontal line in the x-direction at the height of the x-line, 
at various times after instability onset. The dashed line shows, for comparison, v x at z = 0, i.e., the convergent 

velocity component of the footpoint motion. 

Figure 8). The instability which is indirectly brought about by the slow convergence of 
the footpoints, obviously accelerates the plasma towards the x-line independently from 
the footpoint motion. In Figure 9, we show the full velocity field obtained when a 
quasi-stationary reconnection state is reached. From the x-line, the plasma is 
accelerated upwards to velocities of 0.088VAo. At the center of the magnetic island 

N 

%q--  

x2 

V x , z  o t t  - 5 0 . 0  

0 . 0 8 8 -  

. . ,  1 ' i l t  ........ 1 , , ,  ~ ' . I .  

-I.0 -O'.S 0.0 O'.S 1.0 
dLstonce x 

VS o t t  - 80.O 

o L--O.O<7, O- 0.005, H- 0.0~7 

- / \ 

I " 

l.O -! ,0 -O.5 O'.O O'.S 
dLstance x 

Fig. 9. Velocity vectors in the x, z-plane and contour lines of v,. for run C at t = 60. The dashed line indicates 
the separatrix field line. The difference of the value of v,. between two contour lines is Avy = 0.005. 
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(drawn dashed in Figure 9), however, the upward velocity has already declined again 

to about 0.02-0.03 VA0. Note also the enhancement of vy on the surface of the magnetic 

island due to reasons discussed in the previous section. 

The tearing instability changes the magnetic topology by creating a pair of x- and 
o-lines. In the presence of a finite By, the o-line becomes the center of a helically twisted 
flux tube lying horizontally above the photosphere. The field lines that intercept the 

x-line constitute the separatrix surface, part of which forms the surface of the flux tube. 

Figure 10 sketches a field line immediately before and after the reconnection process, 

C 

A 

O "~\v'e 
j - f  

/ / . . / . -  xs 

Zo) 

Fig. 10. Approximate geometry of a field line immediately before it is reconnected (A -A ' )  and its 
fragments after the reconnection (B - B') and (C - C'). The reconnection occurs along the x-line and the 

closed field lines (C - C') are twisted on a magnetic surface around the o-line. 

as it is selfconsistently modelled in our simulation. A similar reconnection geometry has 

been qualitatively proposed by Pneumann (1983) and by van Ballegooijen and Martens 
(1989). A field line (A - A ' )  that is convected towards the separatrix surface forms after 

the reconnection process part of a helical field line (C - C ' )  and of the small loops 
(B - B ' )  underneath the flux tube. 

The figure also defines some geometrical distances, the temporal evolution of which 

we shall investigate in the following. We denote by A ,  (t) the value of the magnetic flux 
function A on the field line that is just about to undergo reconnection at a given time t. 
Then the contour line A(x ,  z, t) = A ,  (t) represents the separatrix in the x, z-plane and 
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it intercepts the photosphere  at x = _+ X , .  The total shear displacement of  a field line 
with its footpoints  at + X ,  at time t is denoted by Y,  and is determined from integrating 
(4) in time. It could be looked upon as the shear of  a field line immediately before it is 
reconnected.  Figures 11 (a) and 1 l(b) show the time development  of  these two quantities: 

~) b) 
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Fig. II. Time variation of X,  (a), Y, (b), Z ,  (c, solid) and Z o (c, dashed) as defined in Figure 10. The 
dotted line in (c) indicates the height of the spatial maximum of jy. (d) shows the poloidal flux per unit 
distance in the y-direction AAfluxtub e and the toroidat flux ~n,• of the helical flux tube as function of time 

in dimensionless units. 

X ,  remains almost  constant  after an initial rise to X ,  ~ 0.06 while Y,  increases steadily 
with time. The height Z ,  o f  the x-line as a function of  time is displayed by the solid 
curve in Figure 1 l(c). It stays more or less constant  at a height of  about 0.1 dimension-  
less units while the height Z o of  the center o f  the helical flux tube (dashed curve in 
Figure 1 l (c))  continuously rises at roughly 0.02 times the Alfv6n speed�9 This velocity 
is compatible  with the upward plasma velocity shown in Figure 9. Note  that the current 
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density jy (dotted curve in Figure 1 l(c)) assumes its maximum always slightly below the 

magnetic x-line, probably because of the asymmetry imposed onto the tearing mode by 

the presence of the photosphere. From the x-line, the plasma can be freely accelerated 
only in the upward direction but not downwards, where the photosphere stops any 
plasma flow. The downward velocities below the x-line that we obtain in our calculation 
are smaller than the inflow velocities towards the x-line and we find no signature of a 
shock system below the reconnection region as invoked by Kopp and Pneumann (1976). 

In Figure l l(d) we show the poloidal flux per unit distance in the y-direction, 

A A f l u x t u b e  = A ,  - A ( x  = 0 ,  z = N o )  of the helical flux tube (solid curve) and the toroidal 
flux in the ),-direction I~ t lux tube  = i A  < A ,  By dx dz where the integration is over the flux 
tube area. Both quantities grow after some initial stage almost linearly with time. In 
particular, the reconnection rate d/dt(AAnuxtube) assumes an approximately constant 
value after t >-- 40. The reconnection rate, on the other hand, has to coincide with the 
poloidal flux transported through the separatrix surface at the photosphere by the 
footpoint motion in the x-direction: 

d d 
- -  (AAnuxmbe) = (Bzvx) (x = X . ,  z = 0) - - -  ( A A p h o t o s p h e r e )  . 
dt dt 

( 9 )  

The transport of poloidal flux in the photosphere, however, is completely controlled by 
the initial and boundary conditions of our model. For small x, both Bz(x, z = 0) and 
vx(x, z = 0) are proportional to x so that the right-hand side of Equation (9) becomes 
proportional to X 2 . The magnetic field geometry therefore may adjust itself to the 
reconnection rate by adopting an appropriate value for the separatrix footpoint 
coordinate X . .  Obviously, an increased reconnection rate will yield an increase in X .  
as can be observed in run C for t -< 40. For later times, the constant value observed for 
X ,  is a consequence of the stationarity of the reconnection rate. 

Another important quantity linked with the stability of the helical flux tube is the 
field-line twist of the nested magnetic surfaces that are wound around the o-line. This 
parameter controls the stability of the flux tube with respect to a kink instability and 
its capability to confine the flux-tube plasma after it has radiatively cooled. To avoid 
a kink instability, the flux-tube twist must not exceed a certain threshold value (e.g., 

Hood and Priest, 1981) while a certain amount of twist is necessary in order to prevent 
cool and dense plasma in the flux tube falling back onto the photosphere (Priest, Hood, 
and Anzer, 1989). Both of these effects, however, depend on the three-dimensional 
structure of the flux tube and cannot properly be taken account of in our present model. 

Here, we shall express the field-line twist in terms of the winding length 

dl (10) 
= B / A )  r ' 

A -- cons t .  

which is the distance in the y-direction for a closed field line to undergo a twist of 2re 
on the magnetic surface imbedded in the flux tube and specified by the value 
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A = const. < A ,  of the flux function. Note that the integration in (10) becomes singular 
as the flux function value A approaches A ,  so that (10) is useful only on magnetic 
surfaces well inside the flux tube which are close to an equilibrium. On these field lines, 
Ywindi,g is equal to the ratio of the infinitesimal toroidal and poloidal flux in between 
two neighboring magnetic surfaces and is therefore conserved under ideal conditions 
(van Ballegooijen and Martens, 1989). In Figure 12, the winding length is plotted versus 
some measure of the distance of the respective magnetic surface from the o-line. 

Fig. 12. 
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Winding length Yv~,inding of the flux-tube field lines as a function of the distance between the o-line 
and the highest point of the field line in z-direction. 

Figure 12 shows that Ywind ing  grows with distance from the tube axis and the flux tube 
is twisted more extensively in its interior and is more relaxed on its outer surfaces. We 
also see from Figure 12 that Ywi,ding gradually increases in time and is obviously not 
conserved exactly on each flux tube. This effect is due to the finite diffusivity in our model 
which causes the flux tube field lines to release their twist and enhance Ywinding 
accordingly. These features indicate that the flux tube becomes more stable as it evolves, 
so that a possible kink instability should operate in the early stage if at all. We should 
note, however, that this argument is not conclusive, because the stability properties of 
a flux tube imbedded in a configuration of line-tied field lines above the tube are certainly 

different from those of an isolated flux tube. 
As another natural consequence of the near-equilibrium structure of the helical flux 

tube, we find a maximum of the density at the center of the flux tube which is shown 
in Figure 13. Note that in equilibrium and when the temperature is constant along field 
lines (which is trivial in our isothermal simulation) the density is inversely proportional 
to the differential flux tube volume given by (6). For a sheared arcade, we expect p(A) 
to decrease in accord with the discussion in Section 3. Initially, the effect of the shear 
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Fig. 13. C o n t o u r  levels o f  the  dens i ty  p o b t a i n e d  for  run  C. The  d a s h e d  line indica tes  a line o f  m i n i m u m  
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i nc remen t s  in In p, A (ln p) = 0.03. 

will be to decrease the density by a larger amount the smaller the loop is. In the case 
of converging footpoint motions, however, compressing tension forces become impor- 
tant and p(A) cannot decrease as freely. The tension forces of the poloidal field of the 
flux tube here cause a local maximum for the density of about p _~ 0.71 close to the o-line 
while a minimum of the density o fp  _ 0.47 is obtained at t = 60 just inside the separa- 
trix. Note that the beginning of this evolution is already visible at t = 20, well before the 
onset of the instability. 

5. Summary and Discussion 

On the basis of time-dependent, resistive and nonresistive MH D  simulations, we have 
studied the evolution of two-dimensional coronal arcade structures under the influence 
of plasma motions at the photospheric boundary. These motions lead to a deformation 
of the magnetic field structure above the photosphere through the effect of line-tying on 
the magnetic field lines. The motions at the boundary included components both parallel 
and perpendicular to the axis of the arcade structure. On the Sun, the motion of the 
magnetic footpoints is forced by the convection of the massive and highly conducting 
plasma underneath the photosphere. It is therefore quite natural to expect a divergence 
(~vx/~x + OVy/@) (z = 0) r 0 of the photospheric surface velocity. Note, however, that 
due to the boundary conditions that we have chosen, there is no flux cancellation in the 
photosphere, i.e., B~ integrated over the photospheric half plane to the right or the left 
of the neutral line remains a constant. Our boundary conditions also exclude an 
emergence or a submergence of magnetic flux as proposed by Priest (1990) since we 
assume v~ = 0 in the photospheric plane�9 
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For the example studied we found that a photospheric shear motion, parallel to the 
axis of the arcade structure, leads to an evolution in which the instantaneous configu- 
ration stays close to a force-free equilibrium, j = eB, with a uniform ratio e between j 
and B. Such an equilibrium represents the minimum energy state for the given boundary 
conditions with prescribed helicity and thus indicates its stability. No loss of equilibrium 
was found either for this case, consistent with earlier results on sheared configurations 
(Klimchuk, Sturrock, and Yang, 1988; Biskamp and Welter, 1989). 

The results were altered when a velocity component toward the axis of the arcade 

structure was added to the photospheric footpoint motion. While, again, no loss of 
equilibrium was found, the configuration entered a regime which was found to be 
unstable to a resistive tearing mode. The resistive stability was tested by switching-on 
a finite resistivity. The tearing/reconnection regime could also be entered when finite 
resistivity was present during the entire evolution. 

The key to the tearing mode that develops due to the footpoint motion seems to be 
the formation of a thin current sheet. As we showed in Section 3, the width of the current 

sheet decreases almost exponentially as D ~ ex p ( -  Wxot), where Wxo = -Ovx/~?x at 
x = z = 0, and accordingly the momentary tearing-mode growth time varies as 

--- D 3/2t/ 1. To a first approximation, we expect the instability to start if X/ZA rD 

becomes sufficiently small so that the time of the instability onset scales with the 

magnetic diffusivity and with the converging footpoint velocity as t ,-~ ln(t/)/Wxo. 
The formation of a current sheet in our model bears some resemblance to the 

development of tangential discontinuities proposed by Parker (1972) as a heating 
mechanism of the coronal plasma. Even though the photospheric velocity is smooth, the 
line-tied magnetic structures evolve such that exponentially decreasing scales are pro- 
duced. In our case, however, the divergence (~vx/~x + ~vy/ay) (z = 0) r 0 of the photo- 
spheric boundary velocity plays a decisive role, while Parker (1972) explicitly considers 

a non-divergent footpoint motion. 
It has long been argued, based on solutions of the stationary problem (3b) obtained 

with the generating function method, that a two-dimensional arcade may loose its 
equilibrium if the toroidal magnetic field By, or likewise the toroidal current jy can be 
enhanced sufficiently (Jockers, 1976, 1978; Birn, Goldstein, and Schindler, 1978; Birn 
and Schindler, 1981; Low, 1977, 1982; and others). In this method, B~/2 + p in (3b) 
is expressed as 2F(A) where the functional form ofF(A) is assumed to remain invariant 
and 2 is varied so that a continuous family of solutions of (3b) is obtained. If we again 
neglect the small plasma pressure for simplicity, )~ controls the magnitude of By. The 
existence of a critical value for the magnitude parameter 2, beyond which solutions to 
(3b) could not be found, was taken as evidence for the existence of a nonequilibrium 
once By exceeds a certain threshold. As we found in Section 3, however, in the structures 
considered, By cannot be enhanced to an arbitrary magnitude by a shear of the 
footpoints alone, but a convergent component of the footpoint motion may lead to a 
continuous increase of By and jy. The consideration of a converging footpoint motion 
may provide a connection to earlier work that has utilized the generating function 
method. A formal connection can be established by assuming a footpoint motion as in 
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(7) and by introducing new coordinates x' = x exp(wxot ), z' = z exp(wxot ) according 
to (8). In these transformed coordinates there is no more converging motion of the 

field-line footpoints. The problem of finding a sequence of equilibria that satisfy (3b) 
then relates to a similar problem without converging motion in the new coordinates with 

8 A'A = - e  2wx~ ~ By, 

where A' is the Laplace operator with respect to the new coordinates and the small 
thermal pressure is again neglected for simplicity. If By(A) is fixed, then the flux 
function A in the new coordinate system more and more approaches a potential field 
because the converging motion enhances the gradient 7 'A  with respect to the new 
coordinates over By. If, however, we assume instead the shear-displacement Y(A) of the 
field lines is fixed, we also have to rescale By : 

By(A) = y(A)( ; ~@A~ ) 1)  = 

.= y(A)e2W~ot( i dl' ~ -1 
[V'A[/ 

= e ~ . ~ O % ( A ) ,  

in order to conserve the magnetic flux in the y-direction. This finally gives 

A' A 2,, ot , 0 = - e  x B y , B y  (11) 

instead of (3b). In accordance with the references given above, critical values for the 
parameter 2 = exp(2Wxot) exist for certain functional forms of B~(A), beyond which a 
solution to (11) does not exist. The critical parameter value here relates to a critical time 
after the beginning of the converging footpoint motion. However, the analogy cannot 
be drawn too far: we found in Section 3 that By(A) does not evolve self-similarly if the 
footpoints converge but changes its functional form, which contradicts the assumption 
of an invariant By(A) made in the generating function approach. Our simulations thus 
could not demonstrate that a cessation of equilibrium can be forced by footpoint 
motions, whereas the transition into a resistively unstable regime was clearly 
demonstrated. 

After the instability has set in, a helical flux tube is formed and a more or less 
quasi-stationary state arises with a constant reconnection rate and a linear increase of 
the magnetic flux trapped in the flux tube. It turns out that the convergent component 
of the footpoint motion besides controlling the time for the onset of the instability seems 
to determine the distance X .  between the photospheric neutral line and the footpoint 
of those field lines that go through the magnetic x-line underneath the flux tube. As one 
expects the field lines connected to the x-line to be heated by the dissipation in the 
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diffusion zone around the x-line, their footpoints could be the site of enhanced He 
luminosity. The distance between the Ha-ribbons thus formed on either side of the 
photospheric neutral line should then be 2X,  and should st W almost constant in time 
during the quasi-stationary phase of the evolution. 

The shear component of the footpoint motion, on the other hand, controls the twist 
of the helical flux tube and thereby its stability with respect to a kink instability. The 
relation between the shear and the flux tube twist causes the twist to decrease with 
distance from the center of the tube. If therefore the shear is so large as to produce a 
kink instability of the flux tube, this will already occur when the flux tube is still thin. 
Conversely, if the flux tube is stable initially, it will probably remain so during the 
quasi-stationary phase. In order to find out how close the flux tube formed by the tearing 
mode is to a kink instability, we intend to perform three-dimensional simulations &the  
model investigated here. 

Another potential shortcoming of the present calculations is the neglect of gravity and 
a proper energy balance. The gravity term in (lb), if normalized like the other terms, 

would be (f ioLo/Ho)p where H o denotes the according atmospheric pressure scale 
height. Compared to the pressure term in (lb), the gravity term is negligible if the vertical 
scale of the density variation in our model does not exceed H o, which in the corona has 
a typical value of 50 000 km (Priest, 1982). Preliminary calculations which include a 
gravity term with an initial density variation of Po e x p ( - z )  do not show essential 
differences from the results presented here, even for a ratio Ho/Lo = 1. 

Our model calculation is far too simple to represent a specific active solar 
phenomenon in greater detail. The present work bears considerable resemblance and 
was in fact motivated by the model for the formation of solar prominences proposed 
by van Ballegooijen and Martens (1989). In our view, however, the virtue of the present 
calculations leads beyond this specific mechanism. They prove that thermal energy 
sources are not necessary to drive a simple, initially stable magnetic field configuration 
towards an instability and that this can be achieved by line-tied motions alone. 
According to the spatial scale that we assume, the processes considered here may serve 
as a basis for the formation of a filament or the generation of flares and nanoflares. 
Concerning the formation of a filament, an interesting result of our simulation is the 
natural enhancement of the density inside the flux tube that after cooling could constitute 
the dense filament plasma. 
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