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Abstract. The properties of kinematic ceto-dynamos are briefly reviewed. The mean field concept, 
including turbulent diffusivity, is defended against recent criticism. It is pointed out that although the 
Maunder minimum cannot be explained by kinematic dynamo theory alone, this does not invalidate 
dynamo theory in general. A special discussion is devoted to attempts to evaluate the coefficients of the 
mean field induction equation in the case of very large conductivity. The field then behaves intermittent, 
in the form of locally concentrated flux tubes, and the a-effect and the turbulent diffusivity may be 
determined by asymptotic techniques or with the help of an exact solution of the non-dissipative induction 
equation in Lagrangian co-ordinates. 

Magnetic cycles of main sequence stars other than the Sun are briefly discussed. Besides rotation, the 
depth of the convection zone is probably the most inftuencial parameter for period and amplitude of the 
stellar cycle. 

Observational programmes to advance the theory of the solar cycle must include the solar magnetic 
and velocity fields, over the entire Sun and on all scales. In particular the angular velocity as a function 
of depth should be studied further with the help of the p-eigenmodes. The knowledge of luminosity, 
radius and (or) temperature variations with the solar cycle would also stimulate the theoretical approach. 

1. Introduction 

D u r i n g  a discussion at the Sympos ium 'Basic Mechanisms  of Solar Act ivi ty '  in 

Prague  1975, one  of the theoret ic ians  made  the predic t ion  that  solar activity would  

be ra ther  low in the next  cycle. However ,  as you know,  we are present ly  witnessing 

a high m a x i m u m  of activity; the yearly m e a n  sunspot  n u m b e r  may  well reach its 

second highest  value since 1610. I m e n t i o n  the failure of this predic t ion  here  because  

it reflects our  i nadequa te  knowledge  of how the solar cycle works. It  is true,  there 

is a group of k inemat ic  d y n a m o  models ,  the so-cal led a w - d y n a m o s ,  which 

apparen t ly  explain much  of the observed long- t e rm and  large-scale behav iour  of 

solar magnet ic  fields. But  these models  are be ing  criticized on var ious grounds.  

I shall try, in Sect ion 2, to summar ize  the a w - d y n a m o s  and  their  difficulties, as far 

as the k inemat ic  theory  is concerned ;  some of the n o n - l i n e a r  problems,  which arise 

when  the Loren tz  force acts back u p o n  the fluid mot ion ,  are cons idered  in Section 3. 

O n e  par t icular  source of criticism is the use of 'first order  smooth ing ' ,  which, in 

the case of high electrical conductivi ty,  depends  on the condi t ion  v << I / r ,  where v, l, 

and  ~- are r.m.s, velocity, and  corre la t ion length and  t ime of the t u r bu l e n t  convect ive 

mot ions .  O n  the Sun we have ra ther  v ~ l/-c, with the consequence . tha t  'first order  

smoo th ing '  is i nadequa te  to describe the concen t ra t ion  of magne t ic  flux into nar row 

tubes  of large field strength.  A t t emp t s  to t reat  this s i tua t ion more  realistically will 

be discussed in Section 4. 
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For the understanding of the solar cycle it would be extremely useful to know how 
the basic stellar parameters influence the properties of the cycle. In Section 5 I 
therefore report  on o~o'dynamo models for main sequence stars. In Section 6 a few 
observational problems are discussed. 

This review is concerned exclusively with dynamo theory and its possible relev- 
ance to the solar cycle. As an alternative, oscillator theories, sometimes in combina- 
tion with a primordial field, have been proposed (Richardson and Schwarzschild, 
1952; Piddington, 1971; Layzer et al., 1979; Dicke, 1979). I do not discuss these, 
mainly because they are mathematically not sufficiently developed to be susceptible 
to criticism. 

2. Kinematic am-Dynamos 

Parker  (1955) suggested that the solar magnetic cycle is maintained by the combined 
action of differential rotation ('oJ') and cyclonic convection (or 'a-effect ') .  

A theoretical deduction of the latter effect, and also of the effect of turbulent 
electromagnetic diffusion, was subsequently provided by Steenbeck et al. (1966) and 
Krause (1967). How these effects are used to construct models of oscillatory mean 
fields which, in both hemispheres, migrate towards the equator has been summarized 
in the reviews of Stix (1976a, 1978a) and in the books by Moffatt (1978), Parker 
(1979), and Krause and R~idler (1980). 

The main characteristics of o~oJ-dynamos are the following: 
(a) They describe the behaviour of mean fields. Only these are subject to 

turbulent diffusion; and the a-effect  is a mean electric current, o-a B, parallel to the 
mean field, B. It is difficult to identify the mean field on the Sun, where the magnetic 
flux is concentrated into narrow tubes of large field strength. In default of ensemble 
averages, averages over a time span of 1 to 2 years seem to serve best (e.g. Stix, 
1976a, Figure 4). 

(b) A mean toroidal field is generated from an initial poloidal mean field by 
differential rotation. The o~-effect then causes a toroidal current, with a concomitant 
new poloidal field. The relative strength of the poloidal to the toroidal mean field 
componenents  is given by (a/Awr| 1/2, where Aw is a typical difference of angular 
velocities within the convection zone, and r| is the solar radius. For the Sun the ratio 
between the two field components has been estimated to 1 :100  (Steenbeck and 
Krause, 1969), although the magnitude of a is not well-known - see below. 

(c) The mean field propagates along the surfaces of isorotation (Parker, 1955; 
Yoshimura, 1975b), in the direction aVto x e,~, where e6 is the unit vector in the 
azimuthal direction. With oz > 0 in the northern, and o~ < 0 in the southern hemi- 
sphere this means that an inwards increasing angular velocity is required in order to 
explain the observed butterfly diagram. The same direction of field propagation is 
obtained when both a and aoglOr reverse their signs, but the phase relation between 
the poloidal and toroidal field components indicates Oo~/Or < 0 (Stix, 1976b). The 



T H E O R Y  O F  T H E  S O L A R  C Y C L E  81 

 t/t 
o b 

Fig. 1. Surfaces of constant angular velocity oJ, in a meridional cross-section through the Sun: (a) With 
Oto/ar < 0, as suggested by aw-dynamo models, (b) with Ow/Or > O. 

role of the angular velocity distribution in models of the solar cycle has been 
discussed further by Stix (1978b), in particular in the context of a tensorial a-effect.  

(d) Two physical time scales determine the period of the oscillatory field: The 
time rE/rh of turbulent electromagnetic diffusion (rh being the turbulent diffusivity), 
and the period of the dynamo wave, ]aVail -1/2. The condition of marginal dynamo 
instability expresses the equality of these two time scales. For the Sun estimates 
generally predict a period which is shorter than the observed 22 years by at least 
one order of magnitude, but again these estimates rest on a not well-known a ;  in 
addition, non-linear effects may lengthen the period (Stix, 1972; Kleeorin and 
Ruzmaikin, 1980) . -  Stationary solutions to the model equations of ato-dynamos 
also exist (Levy, 1972; P. H. Roberts, 1972; Stix, 1973; Yoshimura, 1978b). 
However,  in particular in a spherical shell such as the solar convection zone, the 
oscillatory aw-dynamo is the normal case (Deinzer et al., 1974). 

(e) The parity of the mean field excited by an aw-dynamo can be odd or even 
with respect to the equator. If a Oto/Or < 0 in the northern hemisphere, the odd 
parity is excited at smaller [a Oto/Or[ and is thus preferred. There is almost no such 
parity selection in models where the induction effects, Ato and a, operate at middle 
and high latitudes (e.g. Belvedere et al., 1980b). In order to avoid this degeneracy 
we must therefore assume, for a solar model, that the shear and the a-effect  are 
concentrated at rather low latitudes. Of course, this does not only lead to the desired 
odd parity of the mean solar field, but also produces the toroidal field, and with it 
the east-west oriented bipolar groups, at low latitudes, where they are observed. 

The above results (a) to (e) are obtained on the basis of a scalar a-effect.  It is 
however known that in general a is a tensor, as in Equation (1) below (e.g. Moffat, 
1978, Chap. 7). In the framework of kinematic theory, and using first order 
smoothing the a- tensor  has been determined by Krause (1967) for turbulence 
influenced by slow rotation, and having one additional preferred direction. The 
case of fast rotation has been included by Rfidiger (1978). Walder et al. (1980), 
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employing the same approximations, and following earlier treatments of Moffat 
(1970a, b, 1972), determined the o~-tensor for a sea of random waves in a stratified 
rotating fluid. The tensorial ~-effect has been incorporated into spherical dynamo 
models by Wei~3haar (1978), Busse (1979), and Busse and Miin (1979). They find 
oscillatory mean field solutions. These models however do not consider differential 
rotation, and thus are probably not applicable to the Sun. 

R/idler (1980) has recently given a comprehensive formulation of the tensorial 
a-effect,  as it occurs in a spherical geometry. In particular, the antisymmetric part 
of the o~-tensor, which is equivalent to a mean fluid motion, can provide a 'magnetic 
pumping'.  A similar effect occurs when the intensity of turbulence or r.m.s, velocity, 
varies in space. As noticed by R/idler (1968) and Vainshtein and Zel 'dovich (1972), 
not only an effective electrical conductivity, but also an effective permeability, 
lowered by an equal amount, must then be considered. Ruzmaikin and Vainshtein 
(1978) pointed out that this 'diamagnetism' of turbulence contributes an effective 
mean flow. In the deeper  part of the convection zone this flow, directed radially 
downward, could help to keep the buoyant magnetic field in the dynamo region. 
The diamagnetic effect also lengthens the period of o~co-dynamos (Ivanova and 
Ruzmaikin, 1976). 

The use of aw-dynamo models to explain the origin of the 22-year solar magnetic 
cycle has been criticized on various grounds. In particular, Piddington (1978, and 
further references therein) and Layzer e t  al .  (1979) dispute the concept of turbulent 
diffusivity. To some extent, this criticism is based on a misunderstanding: Of course 
7it must not be used in the equations governing the total magnetic field, B, or its 
fluctuating part, B'. Only the m e a n  field is affected by turbulent diffusion. This has 
been deduced for isotropic and slightly anisotropic turbulence (e.g. Krause, 1967); 
there can be no doubt  that the effect also occurs in strongly anisotropic turbulence 
such as in the Sun's convection zone. Another  misunderstanding is that the mean 
field used in dynamo theory is often confused with a smooth or 'diffuse' background 
field. Dynamo theory would be inapplicable, since on the Sun all, or almost all, 
magnetic flux occurs in highly concentrated form. However,  according to its 
definition the mean field is the a v e r a g e  field, rather than the field in between the 
flux concentrations. Even without such background field there would be a mean field 
if there exists an disbalance of positive and negative flux over a certain area. Even 
in the framework of linear theory the equilibrium ratio of the r.m.s, field strength 
to the mean field can be estimated to - R ~ / 2 ,  where R m  = i z o ' v l  is the magnetic 
Reynolds number (Br/iuer and Krause, 1973); we have R,~ >> 1 in the solar convec- 
tion zone. The 'curious' result of Layzer  e t  al .  (1979) that the r.m.s, field decays just 
as slowly as in the absence of turbulence is not new; this slow decay is the reason 
for the result of Br/iuer and Krause. 

The cornerstone of turbulent dynamo action is the mean electric field o ~ = u' x B'. 
Formally, we can always expand 8 in the following way: 

+ fl~ik OXk +"  " " " 
(1) 
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The coefficients a and fl have been computed under a variety of assumptions. 
The only serious approximation, and the only one which really deserves criticism, 
is the 'Second Order  Correlation Approximation'  (or 'quasilinear approxima- 
tion' in the terminology of Layzer et al., 1979). This constitutes a rather crude 
method of closure, in particular in the case of magnetohydrodynamic turbulence in 
a highly conducting medium. In Section 4 below I shall further discuss this point, 
and also comment  on two attempts to avoid this approximation. 

Other  assumptions which have been made to compute o~ and fl include: Global 
non-axisymmetric convection in a shallow layer, in the limit of slow rotation 
(Yoshimura, 1972); isotropic turbulence slightly influenced by rotation and a 
gradient of density or turbulence intensity (Steenbeck et al., 1966; Krause, 1967); 
or small amplitude random waves in a rotating medium (Moffatt, 1970a, b, 1972; 
W~ilder et al., 1980). Often such calculations yield too large values of a :  An 
application of Krause's (1967) formula 

1 6  2 2 ol = - T3~" v t~. V In (pv) (2) 

to velocities and scales obtained from a mixing length model of the Sun's convection 
zone (K6hler, 1973) gives a ~ 100 m s -1. A similar value is found from the helicity 
of global non-axisymmetric convection as computed by Gilman and Miller (1980). 
In contrast to this, the observed ratio of poloidal and toroidal field components 
indicates ~ ~ 1 to 10 cm s -1. In view of this discrepancy between required and 
computed o~ values it is little comfort that, at least, the sign of o~ seems to be the 
same in all cases: positive in the northern, and negative in the southern hemisphere, 
except possibly in the deepest part of the convection zone. 

Polar field reversals are an essential feature of the oscillatory ~w-dynamo (as 
opposed to the torsional oscillator model). Such reversals have been observed in 
1957/58 (Babcock, 1959) and in 1969/71 (Howard, 1974). Still, Piddington (1977) 
disputes this observational evidence. Another  reversal is expected to take place 
sometime during the present maximum of activity. In fact Dr Howard tells me that 
it has already been observed. Of course it would be desirable to measure the polar 
fields as longitudinal fields from an out of ecliptic spacecraft. The two ISPM's will 
measure the interplanetary field at high ecliptic latitudes. A safe extrapolation as to 
the polarity of the solar polar cap fields and a comparison with ground measurements 
will then be possible. 

A 'crucial aspect of turbulent dynamo t h e o r y ' . . ,  is 'the spatial separability of the 
o~ and ~o regenerative processes'. This statement by Layzer et al. (1979) is simply 
wrong. Many o~to-dynamos with co-spatial shear and a regions have been computed 
in the past, including the very first t reatment of dynamo waves by Parker (1955). 
Contrary to the original view of Steenbeck and Krause (1969) and Krause and 
R~idler (1971) these waves do not travel back and forth between the a and o) regions, 
but instead along the shear surfaces (Yoshimura, 1975b). This result has nothing to 
do with the neglect of a term curl (fi x B') in the equation governing B', as Layzer et 
al. (1979) seem to believe. Incidentally Krause (1967) has included this term in the 
case where the vector gradient O~i/OXk is constant. 
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The Maunder  minimum, i.e. the period from 1645 to 1715 when solar activity 
remained at a very low level, 'presents a serious difficulty for conventional dynamo 
theories, because if the surface fields are weak or absent for an extended period, the 
poloidal field cannot be regenerated, and the dynamo must be quenched'. In order 
to support this conclusion Layzer et al. (1979) quote Leighton's (1969) model of the 
solar cycle, which indeed depends on surface fields of finite magnitude. But although 
Leighton's model has much in common with o~to-dynamos (Stix, 1974), it differs in 
this particular point: ozto-dynamos are capable of maintaining a field at arbitrary low 
levels. In fact, in the kinematic approximation, where the Lorentz force is neglected, 
dynamo theory is strictly applicable only as long as the field amplitude is 
infinitesimal. Thus, we may simply adopt the view that during the Maunder minimum 
the solar dynamo was continously in opertion, but with a mean field so weak that 
very few toroidal flux tubes became strong enough to be buoyant and erupt through 
the photosphere. Of course, in its kinematic (linear) form, dynamo theory is 
altogether uncapable to predict a small field amplitude during the Maunder 
minimum, and a large amplitude during other periods of time. But this criticism does 
not invalidate dynamo theory in general. Attempts to include non-linear effects into 
the dynamo equations in order to simulate 'anomalous' periods of activity will be 
described in the following section. 

3. Non-Linear  Effects 

Kinematic dynamo theory, turbulent or not, is based upon the induction equation 
alone, which is homogeneous and linear and yields no information about the field 
strength. The Lorentz force acting on the fluid motion is neglected. Piddington 
(1978) believes that 'this passive field concept is a basic feature of dynamo theory'. 
Quite wrong. Many examples of nonlinear, or hydromagnetic, dynamos do exist, 
and mean-field equations for the non-linear case have been formulated, e.g. by 
Riidler (1976). 

In most non-linear models which have been applied to the Sun the induction 
equation alone has been used, and the feedback mechanism has been parametrized 
by a B-dependence of o~ or (and) to (Stix, 1972; Riidiger, 1973ab; Jepps, 1975; 
Yoshimura 1975a, 1978a, c, 1979; Ivanova and Ruzmaikin, 1977; Kleeorin and 
Ruzmaikin, 1981). Particular forms of the functional dependence ~(B) are a 
1 -~B  2 for weak fields, where ~ can be negative or positive, and o~ - - B  -3 for strong 
fields (Moffatt, 1972; Riidiger, 1974). The properties of linear o~to-dynamos are 
usually reproduced by such calculations. In addition, improvements such as a longer 
period of field oscillation can be obtained. Most extensive calculations of this kind 
have been carried out by Yoshimura. By a proper choice of the parameters 
describing the geometry and field-dependence of o~ and to, and introducing other 
parameters describing the eruption of buoyant magnetic flux or a feedback mechan- 
ism with time-delay he was able to simulate many characteristics of observed solar 
magnetic fields: the division of the poloidal mean field into two branches, one 
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travelling polewards, and the other equatorwards (Yoshimura uses the term 'quad- 
rupole' for this field-structure; in view of the parity, however, 'octupole' would be 
more appropriate); the occurrence of long-term variations such as a 55-year period; 
the occurrence of periods of weak mean fields and so presumably low surface 
activity, such as the Maunder minimum; the possibility of a transition from the 
oscillatory dynamo mode to a steady mode; and sporadic field reversals of these 
steady modes, simulating geomagnetic reversals. 

There is some observational evidence of a variation of the solar velocity field 
during the solar cycle. Howard (1976) reports a gradual increase of the equatorial 
rotation rate between 1967 and 1976, and recently a small torsional oscillation, of 
order 3 m s -1, superimposed on the differential rotation, has been discovered 
(Howard and LaBonte, 1980a; Scherrer and Wilcox, 1981). Such an oscillation may 
be explained by a mean Lorentz force. Using one of his a~o-model calculations, 
Yoshimura (1980) has demonstrated that this Lorentz force travels like a wave from 
high to low latitude, with a period of 11 years (Figure 2). Such nice reproduction of 
the observed feature does however not necessarily mean that all details of this 
particular model are correct: Any dynamo model having the correct period of 22 
years and the correct latitude migration of the field would give such a Lorentz force 
(which is of second order and thus must vary with half the period.) Also, we must 

0.8- 

~ 0.4- 
I - -  

<E 0.0 
.._1 

I l l  _ 0.l,- 
Z 

- 0 . 8 -  

0.8- 
IJ_l 
CI 
z3 0.4-  

y_ 
<E 0.0 
, i I  

U..I -O.Z, 
Z 

-0.8- 

IC~ :  ~ 
1969 7b 

I I I 1 I I 

K T i 3 i 
76 77 78 79 Y E A R  

I I I I I 

i 

Fig. 2. The shaded areas in the upper diagram show where four-rotation averages of the azimuthal 
velocity exceed the mean differential rotation by more than 1.5 m s -1 (the corresponding negative 
deviations are not shown). The lower diagram shows areas of positive azimuthal mean Lorentz force in 

an ao~-dynamo model, Adapted from Howard and LaBonte (1980) and Yoshimura (1980). 
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keep in mind that the part j ' •  B' of the mean Lorentz force should be taken into 
account, in addition to the term j • B considered by Yoshimura. 

Gilman and Miller (1980) have criticized a~o-dynamos in that they 'ignore the 
hydrodynamics altogether' or 'base the chosen motions on solutions to hydro- 
dynamic equations which a r e . . ,  severely approximated'. It is difficult to assess to 
what extent this criticism is justified. For example, the hydrodynamic treatment 
by Gilman (1976, 1978, 1979) of non-axisymmetric Boussinesq convection in a 
spherical shell leads to an angular velocity which is approximately constant on 
cylinders parallel to the axis of rotation, as indicated in Figure lb. It is true, none 
of the existing solar aoJ-dynamos makes use of such a cylindrical rotation law. But 
then, we cannot yet be sure whether the Boussinesq model correctly describes the 
Sun's differential rotation: One obtains, in addition to the equatorial acceleration, 
flux and velocity variations which exceed the observational upper limits; the argu- 
ment (Gilman, 1980, Figure 4) that a turbulent layer near the surface screens those 
effects from the observer has been studied by Stix (1981) who found that (at least 
for the velocity) this screening is probably not sufficiently effective. 

Other attempts to explain the Sun's differential rotation employ anisotropic or 
space-dependent transport coefficients, and some of them lead to angular velocity 
profiles which qualitatively resemble those used in aoJ-dynamos (Figure la; e.g. 
Belvedere etal., 1980a; Durney, 1981). In one case (Belvedere etal., 1980b) a solar 
ato-dynamo has been directly computed together with the profile of co. This model 
gives the correct latitude migration of the mean field, but on the other hand exhibits 
too-high-latitude fields and the concomitant degeneracy of parities (cf. Section 2). 
The fact that these results rest on an approximation of slow rotation (small Taylor 
number) seems to be not of grave consequence, as recent calculations (W. Schmidt, 
1980, private communication) indicate. It appears that compressibility more 
severely affects the law of rotation than has previously been thought (P. A. Gilman, 
1980, private communication). 

In their own numerical model Gilman and Miller (1981) simultaneously solve the 
equations for the evolving magnetic field and velocity, including the feedback of the 
field on the motion. With the exception of isotropic transport co-efficients (the 
thermal, kinematic, and magnetic turbulent diffusivities) they do not parametrize 
small scale motions. In particular, their induction equation - although describing the 
evolution of a mean field, because it uses the turbulent magnetic diffusivity- does 
not employ an a-term. Although they have not yet been able to successfully simulate 
the solar cycle, their model is a consistent hydromagnetic dynamo, and exhibits a 
number of interesting results. One is that the time-dependence of the motion field, 
which is generally neglected in kinematic dynamos, substantially inhibits dynamo 
action, i.e. increases the effective ohmic dissipation. Another is a strong feedback 
of even weak magnetic fields, with magnetic energy several orders of magnitude 
smaller than kinetic energy: a slight change in the motion, caused magnetically, 
grows, due to unstable (diverging) hydrodynamic solutions, to a large deviation, and 
the flow may turn to a state which is less favourable to dynamo action. 
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The main problem with such numerical calculations (as with conventional aoJ- 
dynamos) is that concentrations of magnetic flux cannot be adequately described. 
Such 'flux tubes' are observed; they should be described by the high wave number 
end of the magnetic spectrum. Figure 6 of Gilman and Miller (1980) shows that with 
decreasing magnetic Prandtl number, Q, i.e. increasing electrical conductivity, the 
spectrum becomes flatter; for O < 0.1 difficulties with spatial resolution are encoun- 
tered. I shall comment further on this problem in the following section. 

A special feature of non-linear systems is bifurcation. Consider e.g. the following 
system of ordinary differential equations: 

= - A  + D B  - C B ,  

/~ = -erB + erA , (3) 

= - u C + A B  

(Zel'dovich and Ruzmaikin, 1980), where A is the 0-component  of the vector 
potential of the poloidal mean field, B - - /~ ,  and C is proportional to the deviation 
of the a-effect from its kinematic value; D is the dynamo number, i.e. a dimension- 
less product of shear and a -effect, and er and u are positive constants. The solutions 
of (3) may remain in the neighbourhood of one of the three steady solutions 
(A, B, C) = ( + x / ~ -  1), + ~ -  1), D - 1) and (0, 0, 0) for some time and then 
change over to another. Such behaviour is called 'strange attractor'. Ruzmaikin 
(1981) in particular suggests that the Maunder minimum of solar activity can be 
described by a strange attractor to a singular point similar to the point (0, 0, 0) in 
the above example. 

4. Large Electrical Conductivity and Magnetic Flux Tubes 

Magnetic fields on the solar surface are observed as highly concentrated flux tubes. 
This is true not only for sunspots and pores, but also outside active regions where 
the field is confined to small areas, with diameters of order 200 km and field strengths 
of order 2000 G (e.g. Stenflo, 1976). The main reason for the concentration of 
magnetic flux is convection occurring in a fluid of large magnetic Reynolds number, 
i.e. large electrical conductivity. This effect has been numerically modelled for 
laminar (Galloway e t  a l . ,  1978) as well as turbulent flow; in the latter case, the field 
becomes 'intermittent'  (e.g. Kraichnan, 1976; Orszag and Tang, 1979), just as seen 
in the solar photosphere. Thus it is only plausible to assume that concentrated fields 
pervade the entire convection zone since the magnetic Reynolds number becomes 
even larger with depth, increasing from ~103 to ~109 (e.g. Stix, 1976a, Figure 1). 
We should keep in mind that we discuss here the interaction of the magnetic field 
with individual convection cells and are, therefore, concerned with the 'local' 
magnetic Reynolds number, R m  = txervl  where or is the 'molecular' conductivity 
(Spitzer, 1962), v and l are velocity and size of the cell, and/z  is the permeability. 
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The properties of individual magnetic flux tubes have been reviewed recently by 
Parker (1979) and Spruit (1980). Concerning the solar dynamo, their existence does 
not force us to abandon the mean field concept. As already emphasized in 
Section 2 above, the mean field is an average and therefore includes the contribu- 
tions of the flux tubes. If the magnetic field would vanish exactly in between the flux 
concentrations, we could consider the mean field as a distribution function for flux 
tubes. 

The problem is how to reliably compute the coefficients a and/3 in the expansion 
(1). Before considering a distribution of many flux tubes, we may see what happens 
with one isolated tube. In the kinematic regime, where the Lorentz force is 
neglected, the radius of the central flux concentration formed in a cylindrical 
container of convecting fluid will be of order  R~l/2ro, where ro is the radius of the 
cylinder (Galloway et aL, 1978). The maximum field strength is of order RmBo, and 
the profile is gaussian; B0 is the total flux across the container divided by its 
cross-section, and nearly all of this flux is concentrated near the axis. Childress 
(1979) has recently studied the consequences of a toroidal velocity in the cell in 
addition to the poloidal one which produces the central tube. The situation is 
illustrated in Figure 3: The azimuthal velocity was chosen such that the flow u 
possesses helicity, i.e. ~ u curl u d V ~ 0, where the integral is over the entire cell 
volume. In cylindrical co-ordinates (s, 4~, z), the component  azz of the a - tensor  is 
of particular interest. No 'first order  smoothing' (another name for the above- 
mentioned second order correlation approximation) was necessary in Childress' 
analysis. Instead he utilized the fact that - due to the large value of Rm - the field is 

confined to narrow zones at the boundaries of the cylinder, see Figure 3. Using 
boundary layer methods he describes the generation of a toroidal field, B~, of order 

Fig. 3. Poloidal and toroidal laminar flow in a cylindrical container (solid lines), and the resulting 
magnetic flux distribution (broken): A concentrated poloidal tube at the axis, and boundary layers of 
toroidal flux around the central tube and along the surfaces of the container. Schematically composed 

from Galloway et aL (1978) and Childress (1979). 
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R 1 / 2  D m .-,0 around the central flux tube. This field is then advected by the poloidal flow 
into the remainder of the volume, but, again due to the large value of Rm, is 
essentially confined into boundary layers of thickness foR 7.1/2. The integral 

d ro 

2 II  
c~zz - Borgd s (usB~ - u~Bs) ds dz (4) 

0 0 

has contributions only from the boundary layers. The dominant ones come from the 
top and bottom surfaces of the cylinder, and are of order U0 where U0 is essentially 
the velocity of the material rising along the axis. The contribution from the fluX rope 
itself is only of order R~I/2Uo. 

Cylindrical containers with rigid top and bottom surfaces do not exist in the Sun's 
convection zone, but flux tubes do occur. We may therefore speculate that the 

R ~1/2Uo contribution to the a-effect  from the central flux tube in Childress's model 
is more significant than the much bigger contributions from the surfaces. An 
a ~R~I/2Uo is also obtained in a different example (Childress, 1979), a two- 
dimensional flow of a convection role of infinite length. The result is consistent with 
numerical calculations of G. O. Roberts (1972), who considered magnetic Reynolds 
numbers as large as Rm = 64. 

Suppose the a-effect  in the solar convection zone would be reduced everywhere 
by a factor R2,1/2 in comparison to the original result of Krause (1967). Would it be 
still sufficiently large in order to regenerate the poloidal field? I have computed 
(Figure 4) the modified a as a function of depth, using the results shown in Figures 
1 and 7 of Stix (1976a). The maximum value is ~4  x 10 .3 m s 1. The critical value 

3 2 of the dynamo number, P = cd~oro/rl ,, which must be exceeded for dynamo action 
to occur, is of the order 103 in numerical calculations. Using A~o = 10 .6 s -1 and 
r |  this means that the diffusivity, tit, should be smaller than 
4 x  107m2s 1. The value obtained for isotropic turbulence, using first order 

Fig. 4. 

3 ( tota ls)  

2 

- I  

I i i i l I i i i l 0 

IO 5 o 
D E P T H  (107m) 

The a-effect  as a function of depth in the solar convection zone. The coefficient o~ is everywhere 
reduced by a factor Rm l/a, where Rm is the magnetic Reynolds number.  
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smoothing, and without any concern about flux tubes, is �89 = 109 m 2 S - 1  (Stix, 
1976a, Figure 7). Thus, a would be too small for dynamo action, unless the value 
of the turbulent magnetic diffusivity in the solar convection zone would also be 
reduced by the presence of magnetic flux tubes. Such a reduction would also 
favourably change the period, T, of the cycle models, which generally yield 
dimensionless frequencies s = 100: we would obtain T =  2zcr~/J'27h ~ 2 5  yr. We 
should however not be too keen to apply the results of Childress to the Sun: his flow 
is steady and incompressible, of special geometry, and is not subject to the feedback 
by the Lorentz  force. The latter has been included into a boundary layer t reatment 
by Galloway et al. (1978). Their  result, that the flow is gradually quenched when 
B0, i.e. the total flux across the cell, is increased, seems plausible; but they use the 
limit of small Reynolds number,  Re = Uod/v, where the Lorentz force is balanced 
by the viscous force. This does probably not apply to the Sun; there an equilibrium 
must be established essentially between the Lorentz  force, the pressure gradient and 
the inertia force (e.g. Vainsthein, 1979). 

In the limit of infinite conductivity (or magnetic Reynolds number) the a-effect  
obtained in the model of Childress tends to zero or non-zero values, depending on 

0 �9 , whether or not we accept the Rm-contnbut lon  from the top and bot tom surfaces of 
the cylinder. This question seems to be very critical for the solar dynamo, because 
the Sun comes close to the limit Rm ~ oo. It is therefore useful to note a few other 
results. In isotropic incompressible turbulence, with first order smoothing, we have 
a -~ 0 with Rm -~ oG since the fluctuations u' and B' of flow and field are in phase, so 
that the average u ' •  B' = 0 (Moffatt, 1974). This is still true (Deinzer, 1976) when 
compressibility and one preferred direction (rotation) is admitted; but a second 
preferred direction, stratification of density or turbulent intensity, leads to finite 
non-zero a, as demonstrated by Krause (1967) for slightly anisotropic turbulence 
and by W~ilder et al. (1980) for a sea of random waves. In order to avoid first order  
smoothing, 'Cauchy's integral' of the vorticity equation, 

Bi(X(a, t), t )=  Bs(a, 0) OXi/Oaj, (5) 

can be used to write down an exact solution of the induction equation in the case 
Rm = oo (Parker, 1971; Moffatt, 1974). To evaluate this solution the fluid-element 
trajectories X(a, t) must be known as functions of time, t, and initial position, a. 
Kraichnan (1976) computed such trajectories numerically. In the case of 'normal '  
turbulence, when the velocity covariance decays in time, he found that oe (t), being 
zero initially because the initial field in Equation (5) contains no fluctuations, tends 
to a finite value of order v0, the r.m.s, velcoity (see Figure 5). But again we cannot 
yet draw conclusions for the Sun: the treatment is for isotropic (although helical) 
and incompressible turbulence, and purely kinematic. As Kraichnan points out, the 
magnetic field in his calculations soon becomes intermittent. Thus it seems that the 
Lorentz  force may become important locally due to the formation of flux tubes. 

Kraichnan (1976) has also computed the coefficient of turbulent diffusivity; again 
in the 'normal case', he found that r/t approaches a finite value, of order vo/ko, where 
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Fig. 5. Coefficients a(t) ,  in units of Vo, and fit(t) and rh(t), in units of vo/ko, for normal  isotropic 
turbulence with maximal  helicity, in the case of infinite conductivity. Kt and ~t are the turbulent  diffusivites 
for a passive scalar and for the mean  magnet ic  field, respectively; Vo and ko are a characteristic velocity 

and wave number  of the turbulence. Adapted  from Kraichnan (1976). 

ko marks the peak of the energy spectrum. Figure 5 shows some of these results; ~Tt 
is some 40% smaller than the diffusivity, Kt, of a scalar quantity. Only for non-normal 
turbulence, with strong helicity fluctuations, r/, can be reduced substantially or even 
become negative. The problem of turbulent electromagnetic diffusion of mean fields 
has been extensively treated by Parker (1979, Chap. 17). 

Albregtsen and Maltby (1978) reported evidence that the intensity of sunspot 
umbrae, I,, in particular in the infrared, increases during the sunspot cycle. The 
increase of I,/Iphot is from 0.44 to 0.59, at 1.67 ixm, from one minimum to the 
following. As sunspots are the most prominent examples of magnetic flux tubes, this 
result indicates that flux tubes 'know' the epoch at which they appear during the 
cycle, or that they have a lifetime comparable to the period of the cycle, or that the 
efficacy of sunspot cooling varies during the cycle (as suggested by Albregtsen and 
Maltby). All these explanations are difficult to understand physically. We know of 
course that the spots originate at decreasing latitudes as the cycle proceeds, but why 
should this lead to varying intensities if, at the same time, there is apparently no 
systematic variation of the total flux of a spot? Or how can individual flux tubes in 
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the convection zone survive for years, with a memory of their initial conditions, when 
the turbulent convection continuously forms, reshapes, and shreds such tubes? On 
the Sun's surface, we observe that the age of flux tubes is at most a few months, and 
the decay is attributed to the action of turbulence (Meyer et al., 1974). And how 
should we understand variat ions of the cooling efficacy when the cooling mechanism 
itself is hardly understood (cf. Parker, 1979, Chap. 10)? 

The importance of Albregtsen and Maltby's observation for any theory of the 
solar cycle has been pointed out by Schmidt (1978), and SchiiJ31er (1980) has 
proposed a simple model incorporating the spot intensity variation as an effect of 
aging flux tubes. The model is an otto-dynamo, with a shear region near the bottom 
of the convection zone. There a toroidal field is generated from an original poloidal 
field, and is concentrated into a number of toroidal flux tubes. These become 
buoyant and leave the shear region sooner or later, depending on their field strength, 
and rise. The poloidal field also varies within a cycle. When it is stronger, the toroidal 
tubes are formed quickly, and emerge as 'young' flux at the surface. When it is 
weak, the process takes longer, and 'old' flux tubes appear. Heat exchange with the 
surrounding material, possibly by radiation, would make old tubes less dark. At the 
same time, convective motions separate smaller portions from the tube; these are 
distributed over a wider area and appear as ephemeral active regions. Some of the 
tubes, in particular at high latitudes, would thus be dissolved completely. SchiiJ31er 
suggests this as an explanation for the cyclic variation of the appearance of these 
regions (Martin and Harvey, 1979), and the related X-ray bright points (Golub et 

al., 1980, and further references therein). The occurrence of X-ray bright points has 
also been correlated directly to the sunspot intensity at 1.67 ~m (Maltby and 
Albregtsen, 1979). Figure 6 shows, as a function of time, a computed activity curve, 
together with the age of the emerging flux tubes. There is a slow increase of age 
during the descending phase of activity maximum rather than at the beginning of 
the cycle. 

A somehow related suggestion concerning the origin of magnetic flux outside 
active regions has been put forward by Golub et al. (1980). They also consider 
small-scale, intermittent magnetic flux in the convection zone as 'debris' produced 
by turbulent dissipation of a large-scale, dynamo-produced field. This dissipation 
would be greatest during the sunspot minimum, when oppositely directed toroidal 
fields annihilate each other. The observation that the number of X-ray bright points 
is largest around sunspot minimum, is thus explained. 

5. Stellar Cycles 

Main sequence stars later than F possess outer convection zones. Presumably they 
also rotate, although the rotation is generally too slow to be detected through 
spectral line broadening (e.g. Tassoul, 1978). The main ingredients of the solar 
ato-dynamo are differential rotation and helical turbulent convection, and are both 
caused by the influence of rotation upon convection. In spite of the possibly very 
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Fig, 6i The flux-tube dynamo of SchIfiJ31er (1980): The age (top) of the tubes varies in antiphase with 
the activity index (bottom), which represents the number and field strength of the erupting flux tubes. 

slow rotation of most late main sequence stars the rotational influence is probably 
important for the following reason (Durney and Latour, 1978): Later stars have 
deeper convection zones, extending into regions of higher temperature, and there- 
fore larger scale height, H. The turnover time, H / U  of convection elements of 
velocity U therefore increases, presumably more rapidly than the possible increase 
of the rotational period, P. The ratio H~ UP (the inverse Rossby number), indicating 
the strength of the Coriolis force in comparison to the inertia force, may therefore 
be of order unity or larger even for the slow rotators on the late main sequence. 

Figure 7 shows this ratio, as a function of spectral type (Gilman, 1980), and also 
the depth of the convection zone. The angular velocity of all stars is assumed to be 
the same as for the Sun; two values / /H of the ratio mixing length/scale height are 
considered, and convection extends deeper and the rotational influence becomes 
stronger for larger I/H. 

One possible cause of the solar differential rotation is a latitude-dependent 
convective heat transport coefficient (Durney and Roxburgh, 1971). Belvedere and 
Patern6 (1977) and Belvedere et al. (1980a, c) have used this idea in order to 
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compute models of differentially rotating solar and stellar convection zones. The 
unknown strength of rotational interaction with convection is obtained by calibrating 
the models for the solar case. The interaction coefficient is then assumed to be the 
same for all stars. Also, for stars later than the Sun, the angular velocity is essentially 
assumed to be constant. For these stars the differential rotation, shown in Figure 8, 
should therefore be considered as an upper limit. Using these results, and an o~-effect 
as used in solar ato-dynamos, Belvedere et al. (1980b, d) then computed models for 
stellar magnetic cycles. All these models generate oscillatory mean fields. Their 
period increases toward later stars, essentially due to the increase of the magnetic 
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diffusion time, d2/r/t. We have suggested (Belvedere et al., 1980d) that such a 
systematic period variation should be obtained in any stellar dynamo theory. It does, 
however, not transpire from the observations by Wilson (1978) of time-dependent 
Ca n-emission in stars; possible reasons are that the observations are too widely 
spaced in time (ca. 1 year) or of insufficient total duration (approx. 10 years). 
Theoretical oversimplifications such as neglect of non-linear effects may of course 
also be the reason for the disagreement. One particular influence which has not been 
discussed comes from stellar age. Younger stars have faster rotation and higher 
levels of Ca u-emission (Skumanich, 1972) than older stars of the same spectral type. 
It is thus conceivable that their dynamo has a shorter period, ]aVw1-1/2, due to 
stronger actions of differential rotation and o~-effect (cf. Section 2). 

The strength of stellar Ca ix-emission (Wilson, 1978) and of stellar X-ray surface 
flux increases towards later main sequence stars (Vaiana, 1980). The reason could 
be that these stars generate cyclic fields with larger amplitudes. Thanks to their 
deep convection zone, the dynamo possibly is based on stronger o~ and VoJ effects. 
Belvedere et al. (1980e) have used this idea, and plausible relations between the 
equipartition field of the turbulent flow and the dynamo-generated field in order 
to estimate the surface X-ray flux of main sequence stars. Their result agrees, by 
order of magnitude, with the observations. Another important factor-probably 
the most important-determining the field strength is magnetic buoyancy. It 
removes the field from a deep dynamo zone more slowly than from a shallow one, 
and amplification to a higher level is possible (Parker, 1975). 

6. Observational Problems 

In the preceding sections I have already mentioned some of the observations which 
are relevant to the theory of the solar cycle. Here I list a few more, but the list is 
certainly not complete. 

(a) Long time series of magnetograms of the entire Sun show how much, where, 
and on which scales, magnetic flux is generated by the solar dynamo- Yoshimura 
(1976a) has proposed a method how to extract information about the poloidal and 
toroidal mean field components from such magnetograms: 

277" 

1 I Bpo, = ~ B (0, b) d e ,  
0 

(6) 

27"r 

1 
B t o r = ~  f IB(O, r d r  

0 

(7) 

where B is the observed field; the integrals are over the whole longitude of a synoptic 
solar chart, and Bpo~ and Btor depend on latitude, O. As pointed out by Golub et al. 
(1980), the spectrum of emerging flux covers the range from 1023 down to below 
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1019 Mx, and only the smaller fraction of the total flux seems to be associated with 
active regions. This appears to be in contrast to the results of Howard and Labonte 
(1980b) who find most of the flux in active regions. High resolution magnetograms, 
covering all latitudes, and frequent observations of ephemeral active regions are 
necessary to settle this question which, as illustrated by SchliiJ]ler's dynamo 
(Section 4), is important for the theory. 

(b) In addition to the umbral intensity variation (Albregtsen and Maltby, 1978) 
and a variation of the ratio penumbra radius/umbra radius (Jensen et al., 1955; 
Antalov~, 1971), are there other properties of single spots which depend on the phase 
of the cycle? The answer to this question could help to clarify the role of concentrated 

flux tubes in the dynamo. 
(c) In order to understand the Sun's magnetic field we must observe the velocity 

field which induces it. Is there non-axisymmetric global convection, causing differen- 
tial rotation (Gilman, 1976, 1977, 1978) and a-effect (Yoshimura, 1972)? Even 
with very small amplitudes, of order i m s -1, such velocity fields would be important 
because they would indicate larger velocities at greater depth, partly screened by 
turbulent diffusion in the upper layer (Stix, 1981). What are the upper limits of 
axisymmetric meridional circulation and of heat flux deviations from the spherical 

symmetric mean? 
Does the angular velocity increase with depth, as indicated for the first 107 m by 

the rotational splitting of solar p-modes (Deubner et al., 1979)? The extension in 
depth of such information requires high spectral resolution of the k - w-diagram at 
small wave number k and high frequency to. Measurements should therefore cover 
periods substantially longer than a day. It has been emphasized in the recent report 
'Study of the Solar Cycle from Space' (Newkirk, 1980) that observations from a 
station in a full sunlight orbit would be particularly suited. The oscillatory velocities 
of p-modes and non-oscillatory motions of large scale could be observed with the 
same equipment. And the spectral resolution necessary to identify and utilize the 
p-modes and their rotational splitting would not be distorted by the side lobes of a 
window transform (which occur at Av = 12 I~Hz for a ground based observatory and 
at 180 izHz for a satellite in low latitude orbit). Uninterrupted observing runs of 
several days length may of course also be obtained from the South Pole, as the recent 
success of Grec et al. (1980) shows, but longer runs at any desired season can be 
measured from space. 

I have already mentioned Howard and LaBonte's (1980a) discovery that there 
seem to be deviations from the mean differential rotation in form of a torsional wave. 
These observations must be continued, and should be accompanied by a search for 
axisymmetric meridional circulation. 

(d) Does the Sun's luminosity, L, vary with the solar cycle, perhaps because the 
presence of magnetic flux tubes influences the efficiency of convective energy 
transport? The convection zone would thus become a temporal heat reservoir 
(Yoshimura, 1978a). Simulating such an effect through a variation of the ratio I /H 
of mixing length to scale height, Dearborn and Newman (1978) found 8L/L 
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0.26(1/H). The response is fast, and essentially is caused by the change of I /H in 
the outer, superadiabatic region of the convection zone (Dearborn and Blake, 1980). 
According to Sofia et al. (1979) the luminosity change should be accompanied by a 
radius change, with 6r|174 ~ O.0756L/L. Existing radius determinations would thus 
limit the possible variation of the Sun's luminosity to less than, say, 0.3%; much 
lower limits could be obtained by use of the SCLERA instrument (Hill and Stebbins, 
1975) for the radius measurements. 

Thomas (1979) has pointed out that the Sun's radius may change during the cycle 
even at constant luminosity if the temperature changes. The apparent decrease of 
surface temperature during the ascent of the present activity cycle (Livingstone, 
1978) is however obtained only from certain lines; other lines suggest a variation 
(in time) of the temperature variation with depth (Livingston and Holweger, 1981). 
Moreover, evaluation of photoelectric radius measurements from Mt. Wilson 
observatory indicates (R. Howard, 1980, private communication) that the solar 
radius oscillates with an amplitude of (0.07+ 0.03)arc sec, in antiphase with the 
solar activity, in contrast to Thomas' suggestion that magnetic flux tubes would add 
to the net pressure and so cause the Sun's outer layers to expand. Clearly, simul- 
taneous observations of the solar luminosity, its radius, and its mean surface 
temperature over at least one cycle are necessary. Made from space, the accuracy 
of such measurements could only win; in case of the luminosity (or solar 'constant') 
it is a necessity to go to space. 

(e) Observation of stellar activity cycles could substantially improve the theory of 
the solar cycle. Imagine you undertake a theory of stellar evolution without an 
observed HR-diagram! We now have strong observational indications (Wilson, 
1978) that stellar cycles do exist. Moreover, the Ca n and X-ray emissions indicate 
that the amplitudes of these cycles increase with rotation and toward later spectral 
types. As stated above in Section 5, this indicates that the stellar dynamos operate 
in the deep parts of the convection zones. Most urgently needed are however reliable 
observational values of the periods of stellar cycles. Periods can be theoretically 
determined from linear theory, and a comparison would show whether such theory 
is at all applicable. The stars observed by Wilson (1978) should therefore be 
monitored for at least another 10 years. Also, we should observe the X-ray emission 
for a number of stars repeatedly over many years in order to detect cyclic behaviour. 
In addition, other manifestations of activity of stars, like stellar flares, could be 
used to establish stellar cycles and to determine their periods. 

Unfortunately for almost all programmes discussed in this section success will 
come only after many years of observation. But, as the examples of Wilson (1978) 
and Howard and LaBonte (1980a, b) show, the result will be worth the effort. 
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