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Abstract. An infinite family of q-clans, called the Subiaco q-clans, is constructed for q = 2 ~. 
Associated with these q-clans are flocks of quadratic cones, elation generalized quadrangles of order 
(q2, q), ovals of PG(2, q) and translation planes of order q2 with kernel GF(q). It is also shown that 
a q-clan, for q = 2 ~, is equivalent to a certain configuration of q + 1 ovals of PG(2, q), called a 
herd. 
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1. In troduct ion  

In PG(2,  q) an oval is a set of  q + 1 points, no three collinear. A hyperoval is 
a set of  q + 2 points, no three collinear. Hyperovals exist only when q is even. 
Since PGL(3 ,  q) is transitive on the ordered quadrangles of  PG(2,  q) we can map 
any hyperoval  to an equivalent hyperoval containing the fundamenta l  quadrangle 
{(0, 0, 1 ) , (0 ,  1,0) ,  ( 1 , 0 , 0 ) ,  (1, 1, 1)}.From this we can represent every hyperoval,  
7-/, on the fundamental  quadrangle in PG(2,  q) by a permutation, f ,  o f  GF(q),  with 

f ( 0 )  = 0 and f ( 1 )  = 1: 

7-[ = { ( 1 , t , f ( t ) ) l t E  GF(q)} t_J {(0 ,0 ,  1) , (0 ,  1,0)}.  

Permutations that describe hyperovals in this way are called o-polynomials. (See 
[7] for a reference to the above work, noting that the word oval is used for hyper- 

oval.) 
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acknowledges the support of a University of Western Australia Research Scholarship. 
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We define trace: GF(q)--+GF(2),  where q = 2% by 

2e--I t race(x)  = x + x 2 +  x 4 + . . . +  x . 

A fact we shall frequently use is that the quadratic equation ax 2 + bx + c, a, b, c • 
GF(q) ,  a 7~ 0, is irreducible over  GF(q) if and only if b 7~ 0 and trace((ac)/b 2) = 
1. 

2. Herds 

2.1. NORMALIZATION 

Let C = {At It E GF(q)} be a family of  2 x 2 matrices with entries in GF(q).  We 
define the quadratic form Qst as 

Q s t ( x , y ) = ( x  y ) ( A ~ - A t ) ( X ) . y  

Following Payne [16], [15], [1], we have C being a q-clan i f  Qst is anisotropic for 
all s ~ t. 

If  C = {At [t C GF(q)}  is a q-clan, so is C'  = {At - Aol t  • GF(q)};  so 
without loss of  generality we let A0 equal the zero matrix 0. Also if 

As = t • OF(q), 
¢ d ' 

are the matrices of  a q-clan then so are the matrices 

A :(a 0 d , t • GF(q);  

hencewi th°ut l °ss° fgeneral i tyeachAt isupper tr iangular ' I fAt=(  a~O c,bt) 
then 

Qst(X, y) = (as -I- at)x 2 + (bs -'1- bt)xy -l- (Cs n L ct)y 2. 

As we shall only be concerned with fields of  characteristic 2, the above can be 
rewritten as: Qst is anisotropic for all s ~ t if  and only if 

trace ((as + at)(Cs + ct)'~ = 1 for all s # t. \ (bs + bt) 2 / 
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Since Qst is anisotropic for s # t, we have b~ 7 6 bt for all s ¢ t. So t ~ bt is a 
permutation; we may relabel the subscript so that bt = t 1/2. We have 

0 a l  2 0 a l  2 ' 

is also a q-clan with 

Xo O, A~ ( a~ tl/2 ) ( 1  1 )  = = , and also A] = . 
0 e t 0 e~ , 

So without loss of  generality, al = 1. 
Let a = c] (since Q01 is anisotropic, trace(a) = 1). Define f :  G F ( q ) ~ G F ( q )  

by f ( t )  = at and g:GF(q)--*GF(q) by 9(t) = ct/a. Then f ( 0 )  = 9(0) = 0 
and f ( 1 )  = 9(1) = 1. Since Qst is anisotropic for all 8 76 t, we have, with 
f(O) = g(O) = 0 and f ( 1 )  = 9(1) = 1, 

( a ( f ( s )  + f ( t ) ) (g ( s )+  g(t))~ = 1 for all s 7~ t. T~(f,  g): trace \ s + t  / 

Conversely, assuming T~(f , g), then if At = ( f~t) t '/2 ) aa(t) , then C = {At lt 

GF(q)} is a q-clan with 

(11) 
A0 = 0 and A1 = 0 a 

where trace(a) = 1. We use this normalization in the next section. 

The main theorem of the next section shows one motivation for studying q-clans. 
Others follows: elation generalized quadrangles from q-clans [14], [9]; flocks of 
quadratic cones from q-clans [23]; translation planes from flocks [5], [25]. 

2.2. EQUIVALENCE OF HERDS AND q-CLANS, q EVEN 

THEOREM 1. Let q be even. Let f,  9: GF(q)-+GF(q)  with f(O) = 9(0) = 0 and 
f (1 )  = 9(1) = 1. Then 7-~( f , 9) is true if and only if g is an o-polynomial, fs is an 
o-polynomial for all s E GF(q) where 

L(x)  = f (x )  + a89( ) + 1/2 
I + a8 + 81/2 

and trace(a) = 1. 
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Proof. (=,) Suppose T~(f,g) is true. We also suppose that f (0)  = 0 and 
f (1 )  = 1. The function f is one-to-one since i fx  # y and f (x)  = f(y) then 

a(f(x) + :(y))(g(x) + g(y)) = 0, 
x + y  

contradicting T~(f ,g  ). Let 7-[ be the set of points ((1, t, f(t))lt  e GF(q)} t3 
{(0, 1,0), (0, 0, 1)}. Since f is one-to-one no line on (0, 1,0) meets 7-/in more 
than two points. Clearly no line on (0, 0, 1) meets 7-/in more than two points. We 
show that no three points of {(1, t, f(t)) It ~ GF(q)} are collinear. 

Suppose x, y, z E GF(q) are distinct and that the points ( 1, x, f (x ) ) ,  ( 1, y, f ( y ) )  
and (1, z, f(z))  are collinear. Then 

f (x)  + f(y) f(x)  + f(z) f(y) + f(z) 
x + y  z + z  y + z  

- b, say. 

Since trace is additive we have 

trace(ab(g(x) + 9(Y))) + trace(ab(g(x) + 9(z))) = trace(ab(g(y) + g(z))). 

But this is contrary to T~(f~ g). So 7-/is a hyperoval. As f (0)  = 0 and f (1)  = 1, f 
is an o-polynomial. 

Since T~(f, 9) is true if and only if T~(g, f )  is true, g is also an o-polynomial. 
We now look at trace(b(f(x) + f(y))(f ,(x) + f ,(y))/(x + y)) where b = 

a + s -1 + ~-1/2: 

trace 

b(f(x) + f(y)) .f(x) + asg(x) + 81/2x 1/2 
1 + a ~  +,~1/2 

x + y  
1+ as + s~/2 ,] J , 

x # y  

= trace ( a ( f ( x ) +  f(y))(g(x)+ g(y))) 
x + y  

+ trace (f(x) + f (y) )2  + sll 2 x 7 ~ y 

= trace (a ( f ( x )+  f(y))(g(x)+ g(y ) ) ) , x  ~ y, sincetrace(X 2 + X ) = 0 .  
x + y  

So Tb(f, fs) is true if and only if T~(f ,g)  is true. Since fs(0) = 0 and f , (1)  = 1 
for all s E GF(q), f8 is an o-polynomial. Putting x = 0 and y = 1 in ~( f ,g ) ,  we 
see that trace(a) = l. 
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( ~ )  Let 

f , (x )  = f (x )  + asg(x) + ,51/2xl/2 
1 + a,5 + sl/2 

for some a with trace(a) = 1. Suppose that f ,  is an o-polynomial for all ,5 E 
GF(q). 

Fix x 7 ~ y. Then ( 1, x, f s ( x ) ) ,  ( 1, y, f~(y))  and (0, 1 ,0  ) are not collinear for all 
,5 E GF(q). So f~(x) ¢ f~(y), giving f~(x) + fs(y) ¢ O, that is, 

f ( x )  t- f (y )  + ,5(ag(x) + ag(y)) + ,51/2(xl/2 'Jc yl/2) # 0 

for all ,5 E GF(q). 

The above equation is a quadratic in ,51/2. Hence this implies that 

trace ( ( f ( x )  + f (y) ) (ag(x)+ ag(y))~ = 1, 
\ x + y  ] 

Thus T~(f, g) holds. [] 

A herd of ovals in PG(2, q), q is even, is a family of q + 1 ovals {O, [ s E 
GF(q) U {oe}}, each containing (1, 0, 0), (0, 1, 0) and (1, 1, 1) and with nucleus 
(0, 0, 1), with 

O~ = { (1 , t ,g ( t ) ) l tE  GF(q)} U {(0, 1,0)}, 

Os = {(1, t ,  f~(t))lt  E GF(q)) U {(0, 1 ,0)) ,  ,5 E GF(q), 

where 

fs(t) = fo(x) + asg(x) + sl/2x 1/2 
1 + as + ,51/2 

for some a where trace(a) = 1. 
Thus the last theorem says that, for q even, a q-clan, C, gives rise to a herd of 

ovals of PG(2, q), which we shall denote by H(C), and conversely. 

Remarks. 1. The 'only if' part of the theorem is due to Payne [14], although 
not explicitly stated there. The proof given here is new, and, in particular, does not 
involve generalized quadrangles. 

2. We have provided a proof of the existence of Payne's [14] hyperovals 
that does not involve the use of generalized quadrangles, as desired by Cherowit- 
zo [3]. 

3. This theorem is used in [22] to classify 32-clans by computer. Results are 
also obtained there for q-clans, q even, q small. 
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4. The sufficiency half of the proof needs only the hypothesis that each fs is a 
permutation. 

3. Elation Generalized Quadrangles 

Let 

G =  {(a ,c ,b )  la, b E GF(q)2, c E GF(q)} 

with multiplication defined as 

(a ,c ,b ) (a ' , c ' ,b ' )=(a+a ' ,c+c '  + b o a ' , b  + b'),  

where 

L e t C  = {Atl t E G F ( q ) } b e a q - c l a n w h e r e A t  = (a'o 
\ 

GF(q). 

ct ,at, bt, ct E 

We have the associated 4-gonal family ([19]) {A(t) I t E GF(q) tO {oe}} given 

A(t) = {(a, a~-~tar, bta)I a E GF(q)2},t  E GF(q). 

The centre of G is 

z =  {(0,c,0) Ic E OF(q)). 

For t  E GF(q) tO {o¢} the tangent space at A(t) is 

A*(t) = A(t)Z. 

The construction of the generalized quadrangle from C is as follows: Points: 
(i) elements g E G; (ii) cosets A*(t)g,t E GF(q) tO { ~ } , g  E G; (iii) a new 
symbol ( ~ ) .  Lines: (a) cosets a(t)g,t  E GF(q) tO { ~ } , g  E G; (b) symbols 
[A(t)], t E GF(q) tO {cx~}. Incidence: point ( ~ )  is on the q + 1 lines [A(t)]; point 
A*(t)g is on the line [a(t)] and on the q lines, a(t)g, contained in a*(t)g; point g 
is on the q ÷ 1 lines A*(t)9 which contain 9; there are no other incidences. 

This gives an elation generalized quadrangle, GQ(C), of order (q2, q), q even, 
whenever C is a q-clan. 

by 

A ( ~ )  = {(0,0,  b) E G I b E  GF(q)2}, 
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4. Flocks of Quadratic Cones 

Let (.9 be an oval in PG(2, q). Embed PG(2, q) in PG(3, q), and take a point v 
of PG(3, q) not in the embedded plane PG(2, q). The union of points of the lines 
incident with the point v and the oval O is a cone with vertex v and base (.9. 
The lines of the cone are sometimes referred to as the generators of the cone. A 
quadratic cone is a cone where the base O is a (nondegenerate) conic. A flock of 
a cone is a set of q planes partitioning the cone minus the vertex v into disjoint 
ovals. If all the planes of the flock meet in an (external) line we say that the flock 
is linear. There exists linear flocks of a cone in PG(3, q) for all q. The only flocks 
of cones in PG(3, q), where q = 2, 3, and 4, are the linear flocks [23]. 

Let/C be a quadratic cone in PG(3, q) defined by 

XoX1 : X 2. 

The q planes, 7rt, with t E GF(q), of a flock U which do not contain the vertex 
(0, 0, 0, 1) of/C, can be described by the set of equations 

atXo + etX1 -}- btX2 q- X3 = 0 for  t E GF(q). 

THEOREM 2 ([14], [23]). Let q = 2 e. We have 

.T = {atXo + ctX1 + btX2 + X3 = 0 I t E GF(q)}, 

being a flock of a quadratic cone IC if and only if given bt 7 ~ b= whenever s 7k t, 

trace ((as  + at)(cs + ct))  
(bs+bt)  2 = 1 f o r a l l s y ~ t .  

Remark. Thus 

l( / C =  0 ct t E G F ( q )  

is a q-clan, for q = 2 ~, if and only if 

. ~ ( C )  = { a t X  0 -4- ¢tXl  -I- btX2 -}- 2 3  ~-- 0 I t  E G F ( q ) )  

is a flock of/C. 

5. Translation Planes 

We now briefly sketch the construction of a translation plane from a flock of a 
quadratic cone, which was independently done by Thas [5] and Walker [25]. 
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Let ~ '(C) be the flock of a quadratic cone,/C, of the q-clan C. Embed/C into the 
Klein quadric, Q, in PG(5, q), and let A be the polarity of PG(5, q) arising from 
Q. Then f~ = [_J~,e~-(c)(A(zri) fq Q) is an ovoid of Q. 

Let S be the spread of PG(3, q) corresponding to ~2 by the Klein correspondence. 
Let 7r(C) be the translation plane of order q2 with kernel GF(q) obtained from S 
by the Bruck-Brose construction. 

6. Known q-Clans for q Even 

We will list the known q-clans for q = 2 e. The q-clan associated with the linear 
flocks [23] for even q: 

(tt) 
CI: A t =  0 a t  ' 

where a E GF(q) and trace(a) = 1. The herd H(C1) consists of q + 1 (nonde- 
generate) conics. The elation generalized quadrangle associated with this q-clan is 
isomorphic to H(3, qa) [19]. 

The q-clan of Fisher-Thas-Walker-Kantor-Payne [5], [25], [8], [14] for q = 
2e~ e odd: 

t t 2 ) 
C2: A t  = 0 t 3 " 

The flock associated with this q-clan is linear when q = 2. The herd H(Ca) consists 
of q + 1 non-conical translation ovals if q > 2. 

The q-clan of Payne [14] for q --- 2 e, e odd: 

t t 3 ) 
C3: A t  = 0 t 5 " 

The flock associated with this q-clan is linear when q = 2. The herd H(C3) consists 
of two Segre-Bartocci ovals (see [20]) and q - 1 Payne ovals [14], for q > 8. When 
q = 8, C3 is equivalent to C2, 

The q-clan, C4, associated with the flock of De Clerck and Herssens [4] for 
q = 16. The herd H(C4) consists of 17 Lunelli-Sce [10] ovals (see Section 8.1). 

Payne [16] has shown that given an elation generalized quadrangle GQ(C) 
associated with a q-clan, one can construct 'new' flocks via the GQ(C). These 
new flocks are constructed by recoordinatizing one of the lines incident with the 
point labelled (oo) of GQ(C). These flocks may be isomorphic to the original 
flock though. In fact, the number of nonisomorphic flocks that are constructed 
by recoordinatizing GQ(C) is the number of orbits of the automorphism group 
of GQ(C) on the lines incident with (c~). This shows that nonisomorphic flocks 
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can have isomorphic GQ(C)'s, For q even each of the above q-clans give rise to 
a unique flock, except for the q-clan C3. This gives the nonlinear flock, 9t'(C5), 
of Payne [16] for q = 2 e with e > 3 constructed by recoordinatizing GQ(C3) to 
obtain C5. (Of course, C3 and C5 are equivalent.) 

There are also some q-clans for q = 64 and q = 256 that appear in [22]. 
In [24] Thas gave as an open problem the construction of q-clans associated 

with nonlinear flocks for q even, q square. The first example, C4, of such a q-clan 
was found for q = 16 by De Clerck and Herssens [4]. The main result of this paper 
is the construction of an infinite family of q-clans for all q even, which includes C4 
forq = 16. 

7. The Subiaco q-Clans 

7.1. THE C A S E q =  2 e wHERE e IS ODD 

THEOREM 3. Let q = 2 e, e odd. Let 

X 2 -~- X x l /2  X 4 -~- X 3 
f ( x )  = (x 2 + x + 1) 2 + and g(x) = (x 2 + x + 1) 2 + xl/2" 

Then 

0 g ( t ) ]  t E GF(q) 

is a q-clan. 
Proof. We show that the matrices 

f(t) t 1/2 ) 
0 9(t) ,t e GF(q), 

form a q-clan by showing that ( f (x )  + f(y))(g(x)  + g(y)) /(x  + y) has trace 1 for 
all x ~ y; noting that trace(l) = 1 whenever q = 2 e for e odd. From now on we 
assume x # y: 

( f ( x )  + f ( y ) ) (g (x )+g(y ) )  
x + y  

1 ( X 2 + X  X 1/2 y2..l_y ) 
x + y (x 2 + x -F 1) 2 + -F (y2 + y + 1)2 + yl/2 

X 4 + X 3 y4 + y3 ) 
× 1)2 +x n+ (v2+ y+ 1)2 +yl/2 
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l ( (X 2 .~ X)(X 4 _~_ X 3) (X 2 _.}_ x)(y4 q_ y3) 

• + y \  

X2_Jr_X (y2 + y)(y4 + y3) 
+(x  Y)l/2(x2 + x + 1) 2 + (y2 + yq_l)4 + 

(X 4 + X3)(y2 + y) y2 + y 
(x 2 + x + 1)2(y 2 + y + 1) 2 + (x + y)l /2(y 2 + Y+ 1) 2 

X 4 + X3 y4 + y3 ) 
+(X + y) l /2 (g  2 + X + 1) 2 + (X + y)l /2(y 2 + Y + 1) 2 + (X -1- y) . 

We can express this last line as 

A + B + I  

where 

1 
A -  

x + y  
(X q-- X)(X 4 --[- X3) 

(X 2 + X + 1) 4 
+ 

(x 2 + x)(y4 + y3) 

(X 2 q- X q- 1)2(y 2 + y + 1) 2 

and 

B _ 

+ 
(y2 + y)(y4 + y3) 

(y2 + y + 1)4 
(X 4 + X3)(y 2 + Y) 

"~ (X 2 "Jr- X "~- 1)2(y 2 q- y + l) 2)  ' 

1 f X 2 + x y2 + y 
(x + y)l/2 ~ (x z + x + 1) 2 + (y2 + y + 1)2 

X 4 + X 3 y4 + y3 '~ 
+ ( x  2 + x + l )  2 + ( y 2 W y T 1 )  2 ) "  

Hence, we have 'reduced' the problem to showing that A + B has trace zero, as 
trace(l) = 1 for e odd. Since all elements of trace zero are of the form X + X 2, 
this is equivalent to showing that A + B = X + X 2 for some expression X.  Since 
trace is additive, we have 

trace(A + B) = trace(A + B) + trace(B + B 2) = trace(A + B2). 

(By showing A + B 2 has trace zero, instead of A + B, we can eliminate the x 1/z 
terms from the latter.) 

Now 

a + B 2 1 ( ( x  2 + x)(x 4 + x 3) + (x 2 + x)(y4 + y3) 
-- X..~y~k ( J - ~  X "~ 1) 4 ( X 2 - t - x + l ) 2 ( y Z + y W 1 ) Z  
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(y2 qt_ y)(y4 -}- y3) (x 4 _~_ x3)(y2 q_ y) 

-{ (y2 q_ y q_ 1)4 q- (X 2 q- X + 1)2(y 2 -~ y q- 1) 2 

a:4 .~_ X 2 y4 q_ y2 x 8 _~_ X 6 

-{- (x 2 + x q- 1) 4 q- (y2 q_ y + 1)4 q- (x 2 _{_ x -Jr- 1) 4 

y8 + y6 "~ 

-k (y2 q_ y 7 1)4 ) 
1 { X 8 q_ X 2 y8 q_ y2 

x + y ~(x2 + x + l)4 + (y2 + y +  l) 4 

(X 2 ..~ x)(y4 ..~ y3) .at_ (X 4 ..~ 373)(y2 q_ y)'~ 
+ 

(372 q_ x -{- 1)2(y 2 qt_ y + 1)2 ) 

Since x 8 + X 2 -- (374 _{_ X2)(X 2 _{._ X + 1) 2 all the terms can be placed over a 
common denominator, giving: 

1 ( ( x  4 q_ x2)(y2 q_ y q_ 1)2 + (y4 q_ y2)(x2 q_ x -k 1) 2 

x + y ~, (x 2 q- x q- 1)2(y 2 -{- y + 1) 2 

(X 2 _.}_ x)(y4 _~ y3) ._[_ (X4 _~ X3)(y2 2t_ y)'~ 
+ 

(x 2 + x q -  1)2(y 2 q - y + 1 )  2 ] 

We expand, group, noting that x 3 + y3 = (x + y)(x 2 + xy + y2), and divide by 
37 + y to obtain: 

(x + y)3 + x + y + x2y2(x + y) + 372y2 + xy(x  2 + xy + y2) + 37y(37 + y) 

(X 2 -{- X + 1)2(y 2 + y + 1) 2 

With some cancellation we continue with: 

x 3 + y3 + x + y + x3y 2 + x2y 3 + x3y + xy 3 

(X 2 --}- X q- 1)2(y 2 -~ y q- 1) 2 

+ v)(37 2 + 37 + 1)(u 2 + v + 1) + (37 + v) 2 
(x 2 q- x + 1)2(y 2 q- y q- 1) 2 

37 + y (37 + y)2 
= + 

(X 2 q- 37 q- 1)(y 2 + y + 1) (X 2 + X + 1)2(y 2 + y + 1) 2 

which is of the form X + X 2 where 
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X = 
x + y  

(x 2 + x + 1)(y 2 + y + 1)" 

W. CHEROWITZO ET AL. 

[] 

7.2. THE CASE q = 4 e, WHERE e IS ODD 

THEOREM 4. Let q = 4% e odd, with w E GF(q) satisfying w 2 + oJ + 1 = O. 
Let 

X2(X 2 "1- ¢OX "}- OJ) 032xl/2 
f ( x )  = (x 2 + w x +  1) 2 + and 

Then 

S t = JAr  = [ 

O)X(X 2 "[- X "+ t.d 2) 022xl/2. 
= (X z + w x + I ) :  + 

( f(t) tl/: ) } 
o ~g(t) t ~ GZ(q) 

is a q-clan. 
Proof. The proof is similar to that of Theorem 3. For brevity we denote f and 

g by 

N l ( x )  w2xl/2 Ng(x) 
f ( x )  - D(x )  2 + and g(x) - D(x)  2 + w2x 1/2, 

where 

V(x) = ~ : + ~ x + I , N A x ) = ~ : ( x 2 + ~ + ~ ) ,  and 

N / x )  = ~ox(x 2 + x + ~,~). 

We show that trace(co(f(x) + f ( y ) ) ( g ( x ) +  g(y) ) / (x  + y)) = 1 for all x # y. 
From now on we assume x # y, so: 

x + y ( f ( x )  + f (y ) ) (g (x )  + g(y)) 

w ( N j ( x )  w2xl/2 
x + y \ D ( x )  2 + + - -  

N f (y )  
D(y)2 + w2y 1/2) 

( N g ( x )  ~2x l /2  Ng(y) ) 
× \ D ( x ) 2  + + D(y)------ 5 + ¢02y 1/2 

w ( N ] ( x ) N g ( x )  
x + y \ D(x )  a + 

NS(x)N~(y) + NS(y)N~(~) NAy)NAy)~ 
D(x)2D(y)2 + D(y)4 

+ 1 ( N f ( x )  N f(y) 
(x + y)~/2 \D(.)2 + D(V)2 

Ng(.) N.(y) ~ .~2. 
- - +  D---(-(-~ + D--~ / + 
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We can express the last line as 

A + B + w  2 

where 

A - w (N f ( x )Ng(x )  Ny(x)Na(y ) + Ny(y)Ng(x) Ny(y)Ng(y)'~ 
x + y \ D(x)  4 + D(x)2D(y) 2 + D(y)  4 ,1'  

and 

B _ 

Ns(v) 1 ( N f ( x )  + _ _  
(x + y)l/2 \ D ( x ) 2  D(y)2 + D(x)2 + D(y)2J" 

As w 2 has trace 1 in GF(q), q = 4% for any e odd, we have reduced the problem 
to showing that A + B has trace zero. As trace(A + B) = trace(A + B 2) this is 
equivalent to showing that A + B 2 has trace zero: 

A + B 2 1 [wNI(x)Ng(x)  + N f ( x )  2 + Na(x) 2 
- x + y \ D(x)  4 

+ NS(y) + N (y) 
+ D(y)4 

wNf(x)Ng(y)  +_ wNf(y)Ng(x)'~ 
+ D(x)2D(y)2 J" 

Now wNf(x)Ng(x)  + Nf (x )  2 + Na(x) 2 simplifies to x2(x 2 + oa2x + 1)(x 2 + 
wx + 1) 2 = x2(x 2 + co2x + 1)D(x) 2. Then the expression, placed over a common 
denominator D( x )i D( y ) 2, becomes: 

X2(X .qt_ 0.~2a: _~_ 1)(y2 + wy + 1) 2 + y2(y2 + w2y + 1)(x 2 + wx + 1) 2 

x + y D(x)ZD(y): 

w2x2y(x2 + wx + w)(y 2 + y + off) + w2y2x(y2 + wy + w)(x 2 + x + w2)'~ 
-t 

D(x)2D(y) 2 ) 
By expanding the terms we get 

1 (o.)2x4y 3 + O.32z4y 2 + Od~gay + W2x3y + b)2z2y 

x + y ~ D(x)2O(y) 2 

w2x3y 4 + w2x2y 4 + wxy 4 + ~2xy3 + w2xy2"~ 

+ D(x)2D(y)2 ),, ' 
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and then grouping to obtain 

1 {w2x3y3(x + y) + w2x2y2(x2 _1_ y2) _[_ w x y ( x  3 -t- y3) 

x + y ~ D(x ) :D(y )  2 

~2xy(x2 q_ y2) + w2xy(x + y)'~ 

+ D(x)2D(y)2 ) " 

Divide by x + y and simplify to get: 

x3y 2 --b x2y 3 + wx3y + wx2y + caxy 3 + wxy  2 --[- x 3 + o32x2 "[- x ~ y3 + w2y2 + y 

(x 2 + wx + 1)2(y 2 + wy + 1) 2 

(x + y)(x 2 + wx + 1)(y 2 + wy + 1) q- x 2 -~- y2 

(x 2 + w x +  1)2(y 2 + w y + l )  2 

x + y (x + y)2 
= (x 2 + ~ x + l ) ( y  2 + ~ y + l )  + (x 2 + w x + l ) 2 ( y  2 + ~ z y + l )  2, 

which is of the form X + X 2. [] 

7.3. EXISTENCE OF SUBIACO q-CLANS 

THEOREM 5. Let d E GF(q), q even, such that d 2 + d + 1 ~ 0 and trace(1/d) = 1. 
Let 

d 2 q- d 5 + d 1/2 
a 

d(1 + d + d2) ' 

and 

f ( x )  = d2(x4 + x) -~- d2(1 + d + d2)(x 3 + x 2) 
(X 2 + dx + 1) 2 -~ z l /2 '  

d4x 4 + d3(1 + d 2 + d4)x 3 q- d3(1 + d2)x dl/2 xl/2" 
g(x)  = (d 2 + d 5 + dl/2)(x 2 q- dx + 1) 2 + d 2 q- d 5 + d 1/2 

Then 

s=s = 0 ag(t) t GF(q) 

is a q-clan. 
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Proof. This proof is similar to the proof of Theorem 3 and the proof of Theorem 4. 
We start by showing trace(a) = 1 for all q even: 

trace(a) = trace(a 2) 

( d9 - l -d3+l  ) 
= trace \ d(-~ ~-- d ~ 1)2 

(d) ( d 4 )  ( d8 ) 
= trace +trace d +  d 2 + d + l  +trace d2+ (d 2 + d + l ) :  

So trace(a) = trace(l/d) = 1. 
In this form the equations will become quite unwieldy, so initially we will 

simplify f and g to 

NI(x) xl/2 
f ( x )  - D(x) 2 + 

and 

1 Ng(x) 
g(x) = d2 -1- d5 + dl/2 D(x) 2 + 

dl/2 

d 2 + d 5 + dl/2 
xl/2. 

We now show for GF(q), q = 2% that the matrices 

f(t) t 1/2 ) 
t e GF(q), 

0 ag(t) ' 

form a q-clan. We do this by showing that T~(f, g) is true. That is we show 
a(f (x)  + f(y))(g(x)  + g(y))/(x + y) has trace 1 for all x ~ y. From now on we 
assume that x ¢ y, so: 

( f (x )  + f(y))(ag(x) + ag(y)) 
x + y  

1 f Nl(x) 
X + y \D(x) 2 + xl/2 -1- D(Y) 2 + yl/2 d(1 + d + d2)D(x) 2 

+ 
d 1/2 Ng(y) d 1/2 

d(1 + d + d2) xl/2 -~- d(1 + d + d2)D(y) 2 + d(1 + d + d 2) 
yl/2) 

1 ( Ny(x)Ng(x) Nl(x)Ng(y) 
x + y d(1 + d + dZ)D(x) 4 + d(1 + d + d2)D(x)2D(y) 2 
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(X + y)l/2 Ny(x) 
+ dl/2(1 + d + d 2) D(x) 2 + 

Nf(y)Na(Y) 
d(1 + d + d2)D(y) 4 

+ 
d(1 + d + d2)D(x)2D(y) 2 

(z + y)l/2 Ni(y) 
+ d U 2 ( l + d + d  2) D(y)  2 

(x + y)l/2 No(x ) (x + y)l/2 No(y ) x + y ) 
+ d(1 + d + dZi D(x) 2 + d(1 + d + d 2) D(y) z + dl/2(1 + d + d 2) / " 

If we let E l , . . . ,  E8 correspond to the first eight terms inside the brackets of the 
above expression, we can express the last line as 

1 
( E l  + E2 + E3 + E4 + E5 + E6 

x + y  \ 

x+y+ d + d 2) ) + E7 + E8 + d1/2(1 • 

We will do a further substitution on the above line to obtain 

1 
A + B + 

dl/2(1 + d + d 2) 

where 

1 
A - - - ( E l  + E2 + E4 + E5) 

and 

B _ 
1 

x + y (E3 + E6 + E7 + Es). 

Now 

( ) trace dl/2(1 + d + d 2) 
( 1 )) 

= trace d(1 + d 2 + d 4 

= trace + trace 1 -~ ~ ~ d 4] 

(1) ( d )  
= trace + trace 1 + d + d 2 

( d 2 )  
+trace 1 + d 2 + d 4 

= trace( ) = 1 
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So it is now left to show that A + B has trace zero. Since trace(A + B) = 
trace(A + B2), this is equivalent to showing that A +/32 has trace zero. 

NI(x)2 
A + B 2 - x+yl E1 + E2 + E4 + E5 + d(1 + d 2 + d4)D(x) 4 

Nf(y)  2 Ng(x) 2 
+ 

d(1 + d 2 + d4)D(y) 4 d2(1 + d 2 + d4)D(x) 4 

G ( y )  2 

+ d2(1 4) 
[ 1 

-- / E 2  + E5 + 
x + y  \ 

d(1 + d + d2)Nl(x)Ng(x) + dNy(x) 2 + Na(x) 2 
d2(1 + d 2 + d4)D(x) 4 

d(1 + d + d2)Nl(y)Ng(y)+ dNy(y) 2 + Ng(y)2'~ 
+ d2(1 + d 2 + d4)D(y) 4 ) " 

After much simplification we obtain: 

1 ( E2 + E5 
x + y  

d5(1 + d + d2)x s + d6(1 + d6)x 7 + dS(1 + d6)x6+d8(1 + d6)x 5 
q 

d2(1 + d 2 + d4)D(x) 4 

dS(1 + d6)x 4 + d6(1 + d6)x 3 + dS(1 + d + d2)2x2 
+ d2(1 +d2+d4)D(x) 4 

+dS(1 + d + d2)y 8 + d6(1 + d6)y 7 + dS(1 + d6)y 6 + dS(1 + d6)ff 5 
d2(l+d2+d4)D(y)4 

+ dS(1 + d6)y 4 + d6(1 + d6)y 3 + dS(1 + d + da)2y2~ 

d2(l+d2+d4)D(Y) 4 ] 

Using 1 + d 6 = (1 + d 2 + d4)(1 + d 2) with more simplification, dividing by 
D(x) 2 (or D(y)2), and then placing over a common denominator, we obtain: 

1 (E2 + E5 + 
x + y  

d3xS+d4(1+d2)xTWd3(1+d2)x6+d6(1+d2)x5 
D(x) 4 

_[ d3(1 + d2)x 4 + d4(1 -t- d2)x 3 + d3x 2 
D(x) 4 
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d3y8+d4(l+d2)yT+d3(1 + d2)y 6 + d6(1 + d2)y 5 
D(y) 4 

+ d3( 1 + d2)y 4 + d4(1 + d2)y 3 + d3y2~ 
D(y) 4 ] 

1 ( E z + E 5  + d3(x4+d(l+dZ)x3+zX)D(x)2 
x + y \ D(x) 4 

+ d3(y 4 + d(1 + d2)y 3 + y2)D(y)2~ 
D(y) 4 ] 

1 ( NAx)N~(y) 
x + y d(1 + d +  d2)D(x)2D(y) 2 + 

NAy)N~(x) 
d(1 + d + d2)D(x)ZD(y) 2 

+ d3(x 4 + d(1 + d2)x 3 + x 2) d3(y 4 + d(1 + d2)y 3 + y2)) 
D(x)2 + D(y)2 ] 

1 (dS(1 + d3)(1 + d)x4y 3 + d6(1 + d + d2)x4y 2 + dS(1 + d + d2)x4y 
x + y ~ d(1 + d + d2)D(x)aD(y) 2 

dS(l+d3)(l+d)x3y4-l-d6(1 + d + d2)x2y 4 + dS(1 + d+ d2)xy 4 
4 

d(1 + d + d2)D(x)2D(y) z 

dS(1 + d + d2)3x3y 2 + d6(1 + d + d2)x3y + dS(1 + d)(1 + d3)xy 2 
+ 

d(1 + d + d2)D(x)2D(y) 2 

dS(1 + d+ d2)3x2y3+d6(1 + d + d2)xy 3 + dS(1 + d3)(1 + d)x2y 
+ 

d(1 + d + d2)D(x)2D(y) 2 

"~ d3(x 4 + d(1 -q- d2)x 3 + x2)D(y) 2 d3(y 4 + d(_l+ d2)y 3 + y 2 ) D ( x ) 2 ~  
D(x)2D(y)2 + D(x)2D(y)2 ,]" 

After some substantial simplification, dividing by d(1 + d + d 2) where appro- 
priate and grouping, we obtain: 

_ _  ( d3x2y2(x 2 + y2) + d4x2y2(x + y) + d4xy(x 3 + y3) + dSxy(x 2 + y2) 
\ n(x)aD(y) 2 x + y  

_}_ d4(1 -J- d2)xy(x + y) --F- d3(x 4 --1- y4) _.[_ d3(x 2 _{_ y2) ..}_ d4(l  _.1_ d2)(x 3 ..1_ y3)~ 
D(x)aD(y) 2 ] 
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We divide by x + y and collect terms to obtain: 

dnx3y + dnxy 3 + (d 5 + d3)x2y + (d 5 + d3)xy 2 + d3x3y 2 + d3x2y 3 
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D(x)2D(y) 2 

d3x 3 + d3y 3 + d4(1 + d2)x 2 + d4(1 + d2)y 2 + d3x + d3y 

D(x)2D(y) 2 

(d3x + d3y)(x 2 + dx + 1)(y 2 +dy  + 1) + d6x 2 + d6y 2 
(x 2 + dx + 1)2(y 2 + dy + 1) 2 

d3x + d3y 
(X 2 qt_ dx + 1)(y 2 + dy + 1) 

d6x 2 + d6y 2 
+ (x 2 + dx + 1)2(y 2 + dy + 1) 2' 

which is of the form X + X 2. [] 

We call S the Subiaco q-clan. We call the ovals of H(S) the Subiaco ovals and 
the resulting hyperovals the Subiaco hyperovals. We also call the flocks 9t'(S) the 
Subiaco flocks, GQ(S) the Subiaco elation generalized quadrangles, and 7r(S) the 
Subiaco translation planes. 

The q-clan S ~ is a Subiaco q-clan for q = 4 ~, e odd (see Section 8.1). Hence the 
herd of ovals H(S'), the flocks of the quadratic cone it'(St), the elation generalized 
quadrangles GQ(S'), and the translation planes 7r(S ~) from the q-clan S' are all 
Subiaco, for q = 4 ~, e odd. For q = 2 ~, where e is odd, we can let d = 1, hence we 
find S" = S1. This gives a family of o-polynomials of the herd H(Sl ) over GF(2) 
for q = 2 ~, e odd. 

The construction of S" for q = 2~,e odd was the first q-clan to be found. 
This was followed by the construction of S ~ for q = 4 ~, e odd. From these two 
constructions it was possible to generalize to construct S. 

8. Concluding Remarks 

8.1. THE SUBIACO q-CLANS 

In [18, 4.4] it is shown that if d and d' are elements of GF(q) with t race(I /d)  = 
trace(1/d ~) = 1, for q = 2 ~, then Sd is equivalent to Sd,. In [18,2] it is shown 
that S is equivalent to S', for q = 2~,e = 2 (mod4) , e  # 2. In [1], [17], [18] the 
automorphism group of GQ(S) is calculated. For q = 2, 4, GQ(S) - H(3, q2). For 
q = 8, GQ(S) ~ GQ(C2). For q = 16, GQ(S) ~- GQ(C4) by results of [4]. For 
q _> 32, GQ(S) is new (although for q = 32, 64, 128,256, they appear in computer 
results of [22]). This can be seen from the automorphism groups. Alternatively, 
no previously known q-clans C gave rise to a generalized quadrangle GQ(C) with 
subquadrangle on (co) and (0, 0, 0) isomorphic to 772(O), for (.9 a Subiaco oval. This 
follows from the results on the Subiaco hyperovals that follow in Section 8.4 for 
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q _> 64. For q = 32, note that while the Subiaco hyperovals are Payne hyperovals, 
the ovals of the Subiaco herd, H(S), are not equivalent to the ovals of the Payne 
herd, H(C3). 

As H(S) contains no ovals that give rise to regular hyperovals, by [6], [11] 
we have all the ovals being from Lunelli-Sce hyperovals for q = 16. Since the 
Subiaco 16-clan is equivalent to C4, it follows that H(C4) consists of 17 Lunell i-  
Sce ovals. 

8.2. THE SUBIACO FLOCKS 

In [1], [17], [18] it is shown that each Subiaco q-clan, S, gives rise to exactly one 
Subiaco flock of a quadratic cone in PG(3, q), up to isomorphism, by showing 
that the automorphism group of GQ(S) is transitive on the lines on (c~). This also 
determines the stabilizer in PFL(4, q) of the Subiaco flock in PG(3, q). 

8.3. THE SUBIACO PLANES 

In [1, VII] the automorphism groups of the Subiaco planes zr(S) are studied. 

8.4. THE SUBIACO HYPEROVALS 

In [18, Cor. 5.4] it is shown that all Subiaco hyperovals in PG(2, q) are equivalent 
for q = 2 ~, e ~ 2 (mod 4). Also in [18, 6.1,6.4] it is shown that there are two orbits 
in PG(2, q), for q = 2e,e - 2 (mod4).  

For q -- 2, 4, 8, the Subiaco hyperovals are regular. For q = 16, they are 
Lunelli-Sce hyperovals [10]. For q = 32, they are Payne hyperovals. For q = 64, 
they are the hyperovals discovered by Penttila and Pinneri [20], with groups of 
orders 15 and 60. For q - 128, 256, they are the hyperovals discovered by Penttila 
and Royle [21]. 

In [12] it is shown that the stabilizer in PFL(3, q) of a Subiaco hyperoval in 
PG(2, q) is cyclic of order 2e, for q = 2 ~, e ~ 2 (mod 4). In [ 18, 6.13] the stabilizers 
in PFL(3, q) of the Subiaco hyperovals in PG(2, q) for q = 2 ~, e = 2 (mod4) are 
computed (one is C5 ~ C2~, the other is C5 ~ C~/2). 
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