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Abstract. The generally accepted scenario for the events leading up to a two-ribbon flare is that a magnetic 
arcade (supporting a plage filament) responds to the slow photospheric motions of its footpoints by 
evolving passively through a series of (largely) force-free equilibria. At some critical amount of shear the 
configuration becomes unstable and erupts outwards. Subsequently, the field closes back down in the 
manner modelled by Kopp and Pneuman (1976); but the main problem has been to explain the eruptive 
instability. 

The present paper analyses the magnetohydrodynamic stability of several possible arcade configura- 
tions, including the dominant stabilizing effect of line-tying at the photospheric footpoints. One low-lying 
force-free structure is found to be stable regardless of the shear; also some of the arcades that lie on the 
upper branch of the equilibrium curves are shown to be stable. However, another force-free configuration 
appears more likely to represent the preflare structure. It consists of a large flux tube, anchored at its ends 
and surrounded by an arcade, so that the field transverse to the arcade axis contains a magnetic island. 
Such a configuration is found to become unstable when either the length of the structure, the twist of the 
flux tube, or the height of the island becomes too great; the higher the tube is situated, the smaller is the 
twist required for instability. 

1. Introduction 

T h e  g rea t  va r ie ty  of o b s e r v e d  flares can be  d iv ided  essent ia l ly  into two bas ic  k inds  

(Priest ,  1976). These  are :  (a) Small loop flares,* which m a y  be  c o n n e c t e d  with  new flux 

e m e r g i n g  f rom be low the  p h o t o s p h e r e  (Heyvae r t s  et al., 1977) and  (b) large 
two-ribbon flares, which m a y  ar ise  f rom a l a rge-sca le  m a g n e t o h y d r o d y n a m i c  

instabi l i ty .  In  this p a p e r  we l ook  at  the  la t te r  class and  discuss some  of the  p rev ious  

ideas  on the  subjec t .  

W o r k  on  exp la in ing  the  t w o - r i b b o n  flare is i tself  spl i t  into t h ree  d i f ferent  

app roaches .  O n e  m e t h o d  a t t emp t s  to show the existence of multiple equilibria 
sat isfying the  fo rce - f ree  equa t ion  

( V x B ) x B = 0  (1.1) 

and  the  poss ib i l i ty  of n o n - e q u i l i b r i u m  when  some  p a r a m e t e r  b e c o m e s  too  large.  T h e  

p r o b l e m  is cer ta in ly  non- t r iv ia l  and  the  gene ra l  a p p r o a c h  t a k e n  so far  is to assume 

tha t  the  bas ic  s ta te  d e p e n d s  on ly  on  two space  coord ina tes ,  the  th i rd  c oo rd ina t e  be ing  

a long the  l eng th  of the  a rcade  (Low, 1977a,  b;  Bi rn  et al., 1978a,  b;  H e y v a e r t s  et al., 
1979). Thus ,  in cyl indr ica l  coord ina tes ,  the  equ i l ib r ium magne t i c  field m a y  be  

wr i t t en  as 

( I  OA OA Bz (A) )  
B =  c30' Or'  

* Or compact flares. 
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where A is a function of r and O alone. Then (1.1) reduces to the non-linear equation 
for A, 

V2A + d(�89 
= 0. (1.2) 

dA 

The problem is to solve (1.2) subject to the relevant boundary conditions. One 
would like to impose the normal component of magnetic field, B,, at the photosphere 
and the amount by which the footpoints are sheared. Thus shear is here defined to be 
the difference of the z-component of the two footpoints; it is given by integrating 
along a particular line of force the equation 

dz r dO r dO 
Bz(A)  Bo OA/Or 

for a field line, with the result 

~r/2 

I [rB l 
z = LoA/or] A=eonst.  dO. (1.3) 

-~r/2 

The Equations (1.2) and (1.3) then form an extremely complicated, non-linear, 
integrodifferential problem (Heyvaerts et al., 1979). For this situation, in which both 
the shear and Bn are imposed, analytic progress has been made by Priest and Milne 
(1979), involving the presence of magnetic bubbles; although the example used was 
rather artificial, it does indicate that such multiple solutions can exist. In one case, the 
energy of a second equilibrium was found to be less than that of a first equilibrium 
when the shear reaches a critical value and so it was suggested that this may 
correspond with the onset of instability. 

Most authors, on the other hand, have so far considered only the simpler problem 
of prescribing the z-component of the magnetic field, Bz (A), rather than the shear 
(Low, 1977a; Birn et al., 1978a; Heyvaerts et al., 1979). 

Then (1.2) reduces to 

-V2A = AF(A), (1.4) 

where F ( A )  is some prescribed function. B~ (A) is increased by raising the value of A 
but this does not always result in an increased shear, as emphasized by Jockers (1978) 
and Priest and Milne (1980). 

On qualitative grounds, Van Tend and Kuperus (1978) show that non-equilibrium 
occurs if the filament current or its height exceeds some critical values; they suggest 
that the filament erupts to find another equilibrium. 

A second approach to two-ribbon flares is to study the magnetohydrodynamic 
stability of a basic equilibrium directly and this is most easily done with the energy 
principle of Bernstein et al. (1958). This method has been used by Low (1977b) and 
Birn et al. (1978b) to show that one of two possible equilibria is always stable. Also 
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Hood and Priest (1979a) treated the stability of a flux tube anchored in the 
photosphere. They demonstrated that the dominant stabilizing mechanism for 
coronal loops is photospheric line-tying and fotmd that a flux tube becomes kink 
unstable when it is twisted too much. This was suggested as the basic cause for the 
eruption of a plage filament at the start of a two-ribbon flare. Their analysis is extended 
in Section 4 to a more realistic preflare configuration, containing the; extra stabilizing 
effect of an overlying arcade. 

It should be noted that the first and second approaches complement one another. 
Although it is preferable to demonstrate instability directly by the second method, it 
can in practice only be used for relatively simple configurations. By contrast, the first 
method can deal with more complex equilibria and then makes the hypothesis that an 
instability occurs from one equilibrium to another; but, of course, a full stability 
analysis may subsequently demonstrate instability at a lower tlu'eshold. Further- 
more, although the second approach may show that an equilibrium is linearly stable, 
the first may imply the possibility of nonlinear instability. 

The third suggestion for producing two-ribbon flares involves instabilities due to 
current sheets and will not be discussed in this paper at all. Any interested reader is 
referred to Priest (1976), Tur and Priest (1976), Heyvaerts et al. (1977) and 
references therein. 

In Section 2 we discuss the energy principle and derive necessary and sufficient 
conditions for the stability of a cylindrically symmetric arcade to a wide class of 
perturbations. This principle is used in Section 3 to investigate two particular 
arcades. The next section investigates the stability of a flux tube contained within an 
arcade and the last section summarizes the results. 

2. Energy Principle 

In order to investigate the stability of a given magnetic field configuration, the 
linearized magnetohydrodynamic equations are first obtained by perturbing the 
basic state. The basic state is then said to be stable to infinitesimal disturbances if all 
the perturbations decay (or at least do not grow) with time. The two main approaches 
used in deciding the stability are the normal mode analysis and the energy principle 
derived by Bernstein et al. (1958). The two methods produce identical results but 
differ in complexity. The normal mode analysis provides a full solution to the 
problem and gives the growth rate, to, explicitly. However, when the basic state is not 
uniform the solution of the differential equations can be very difficlalt. The advantage 
of the energy principle is that it is easier to treat more complex basic equilibria and 
quite often one may easily find upper bounds on their stability. 

The change in the potential energy for a force-free magnetic field due to a 
perturbation ~ is 

{I V x (~ x B)I 2 - a (6 x B)V x (lj x B)} d~', (2.1) 8W 
J 
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Fig. 1. A typical cylindrically symmetric arcade. When  viewed along its length the field lines appear  as 
semicircles. The displacement of the photospheric  footpoints out  of the plane of the figure depends on the 

specific field components.  

where V • B = a B ;  and the stability is then governed by the sign of 8 W :  8W > 0 for all 
implies stability, but if there exists a ~ such that 8 W <  0 the field is unstable. 
Suppose, in particular, that the basic state is cylindrically symmetric and is given by 

B = (0, Bo(r), B~(r)),  

as shown schematically in Figure 1. The 'line-tying' effect of the dense photosphere 
on perturbations that are initiated in the corona will be modelled by making all 

1 displacements perpendicular to the field vanish at 0= +~- .  Now, if we have a 
complete set of basis functions that span the two-dimensional (0, z) space, we may 
write any perturbation ~ as a linear combination of them, namely 

~(r, O, z)  = ~ ~k,,(r)fk(O, z ) h , ( O ) ,  
k,n 

where the functions h, (0) satisfy the boundary conditions that 

~(r, 1 + ~ - ,  z)  = O. 

For simplicity, we choose individual components of the series in turn and minimize 
8W with respect to them. The stability conditions obtained are, thus, only necessary 
and sufficient to this restricted class (see Appendix A). In other words, we choose, as 
a trial perturbation, 

~(r, 0, z) = [s~r (r) cos (mO + kz) ,  - 6 o ( r ) ( B z / B )  sin (mO + k z ) ,  

r  sin (too + kz)]  cos hO , (2.2) 

where m is arbitrary and non-zero (i.e. not restricted to be an integer); also 

k = i 2 z r /L ,  i = 1, 2 . . . . .  

h = 2 n + l ,  n = 0 , 1 , 2  . . . . .  

B(r )  = (B2o(r) +B2z(r)) 1/2 , 

and L is the wavelength in the axial direction. 
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Minimizing 8 W  with respect to ~0 (see Hood  and Priest, 1979a), we find 

r{(krBo - mBz)~',(r) - (krBo + mBz)~r(r)/r} 
~o = B(m2 + h2 + k 2r2 ) , (2.3) 

where s d~ddr;  a dash denotes differentiation with respect to r. Then, after 
some algebra, 6 W  reduces to an integral over r alone, namely, 

oo 

6 W  =�89 I (F~:'r2 + 2H~r~'r+ G~:~) dr,  

o 

where 

(2.4) 

F = r((krBz + mBo) 2 + h2B 2) 
mZ + h Z + k 2r 2 

2 2 2 2 2 2 H = h  ( B ~ - B o ) + ( k  r B z - m Z B  2) 
m2 + h2 + k Zr2 , (2.5) 

G = - h2B]+ (mBo + krBz) 2-2rBoB'o-2B2o+ haB2+ (krBz - mBo) 2] 
r J" 

Minimizing (2.4) with respect to ~r leads to the familiar Euler-Lagrange equation 

(Fs = (G - H')s ; (2.6) 

and the stability of the basic state is then decided by determining the zeros of the 
solution to (2.6) (Newcomb, 1960; Hood  and Priest, 1979a, b). If ~; has no zeros then 
the initial equilibrium is stable, but if s has at least one zero then it is unstable. It is 
easily shown that a sufficient condition for stability is 

G - H ' > 0  for allr.  (2.7) 

When the arcade is not cylindrically symmetric a slightly different approach is 
needed. If the basic magnetic field is a function of both r and 0, we may only Fourier 
analyse ~ in its z-variation, 

~(r, 0, z) =Y~ (~lk(r, 0) cos kz +~2k(r, O) sin k z ) ,  (2.8) 
tl 

where k = 2~rn/L. Substituting (2.8) into (2.1) and integrating over a period in z 
gives 

= I {IV x E~I 2 + IV x Ez[ 2 -  aE~. V x E ~ -  aE2" ~7 x E2} r dr dO + 3 W  

+ k 2 ~ {1~2 x Ell 2 + 1~2 x Ezl21 r dr dO + 

+ k f 2e2" {El x (V x E2) - E2 x (V x El)  + or (El x E2)} r dr dO, 
, /  

(2.9) 
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where 

E1 = ~Xk X B and E2 = --(~2k • B).  

To decide on stability, we minimize (2.9), but the result forms a complicated, though 
linear, system of partial differential equations. 

3. Arcade Stability 

Consider first a simple cylindrically symmetric arcade, whose field components, 

B~ = f(r) + �89 df/dr, 

B 2= -~r  df fdr ,  (3.1) 

satisfy the force-free condition (Lfist and Schliiter, 1954). The function fir) is 
arbitrary apart from the restrictions that both B~ and B20 remain positive for all r. 
Note that we may introduce an arbitrary constant into fir) without affecting Bo and 
so the normal component at the photosphere. This constant may then be varied to 
describe the shearing motion of the footpoints. (However, one drawback is that not 
all such fields start from a potential field. The only cylindrical potential field is 

B = (0, 1/r, Bo),  

where B0 is a constant, Increasing Bo leaves the field potential and thus this field is 
stable to all perturbations, as is seen by putting o~ = 0 in (2.1).) 

3.1. C Y L I N D R I C A L L Y  S Y M M E T R I C  F I E L D  W I T H  A X I S  O N  T H E  P H O T O S P H E R E  

As an illustration, we assume the equilibrium magnetic field is given by 

Bo --- Bo(r/b )/(1 + r2b 2) , 

Bz = B0(a 2 + 1/(1 + r2/b2)2) alE . (3.2) 

Before attempting to solve (2.6) numerically we must expand about the singular 
point at r = 0 in order to find the behaviour of the solution there. The result is 

~:,--r for h # 0 ,  

which is independent of the values of h, m, and k. If h = 0 so that there is no line-tying 
and if m = 1, the solution that is small, in the Newcomb sense (Newcomb, 1960), is 

f , - 1 .  

Before attempting to search for instability, it was decided to seek perturbations 
that violate the sufficient condition (2.7), for stability. However, for all values of m, a, 
and k that were tried, the function ((7 - H ' )  is found to be positive. This implies that 
the field (3.2) is stable to the attempted perturbations. This result is in marked 
contrast to the analysis of coronal loops (Hood and Priest, 1979a), where instability 
was easily found. It is therefore useful to study the effect of line-tying on the functions 
F, G, and H for general cylindrically symmetric fields as follows. 
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For the coronal loop (Hood and Priest, 1979a), line-tying was governed by the 
parameter,  1rb/EL, and its effect could be diminished by increasing the aspect ratio, 
Lib.  In the present case of a coronal arcade, h is a fixed integer and so we need to find 
some other way to reduce the effect of line-tying. Putting k = qm, h := nm and r = x /q  
in (2.5) we find 

x ((xBz + Bo) 2 + nEB E) 
F =  l + n E + x  2 

2 2 2 2 2 2 x B ~ - B o + n  ( B z - B o )  
H =  

l + n 2 + x 2  

G = 1 { mZ((Bo + xBz) 2 + nZB2)_ 2xBoB'o- 2B2o Jr 
n2n E + (xBz Ba)2~ 

j . 

Since h is fixed, it can be seen that the effect of line-tying can be reduced by choosing 
large values of m (small n). Unfortunately, these approximate the function (G - H ' )  
by the positive definite term m 2(Bo + xBz)E/x. So the difficulty in finding an unstable 
perturbation is now understood: for small values of m (normally the least stable) 
line-tying dominates, whereas for large values of m, although line-tying is almost 
negligible, the field is again stable. The only hope for obtaining instability of (3.2) 
appears to be with some intermediate value of m but this has not been yet successful. 

Another  cylindrical arcade was examined. It has the generating function 

f =  a 2 + � 8 9  e -ErE~bE 

and the magnetic field components 

Bo = (r/b) e -rE~bE , 

Bz = (a 2 + (1_ rE/b E) e--ErE/bE)alE, 

where a 2 is a constant larger than or equal to 2 ! e-E 

Again for all the values of m, a, and k that we tried, it was found that this field 
satisfies the sufficient condition for stability and so is stable. 

3.2 .  CYLINDRICALLY SYMMETRIC FIELD WITH AXIS BELOW THE PHOTOSPHERE 

In the second paper of a series, Low (1977b) investigated the stability of a magnetic 
field in cartesian coordinates 

Bo(2(y/b + (1 -/.rE)/(1 +/. E)), -Ex /b ,  4/z/(1 + E ) )  
n = ( 3 . 3 )  xE /bE+yE/bE+2(y /b ) ( l _ l zE) / ( l+ t zE)+l  , 

with tt a parameter  used to describe the shear. If, instead, 'we use cylindrical 
coordinates, with 

r 2 = x E + (y + (1 - ~2)/(1 + ttE)) / , 

0 = tan -1 {x/(y + (1 - /~2)/(1 +/zE))}, 
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ct) ~ p,1 

i,,',,', , i ]  

b) ~ p=1 
l\ ' ,,, ', " ,1 ,l /' 

/ 
'x ., 

C) ~ p-1 

Fig. 2. The field lines for the cylindrical arcade, B =-(0 , - f ,  A 1/2)/(A + f2) whose axis is situated a 
distance, d= (1-tt2)/(1 +/z2), below the photosphere. (a), (b), and (c) show the rising motion as the 

parameter,/x, is increased. 

and then change to dimensionless variables 

= r/b,  B = 2 B / B o ,  a 1/2 = 2/.t/(1 +/z2) ,  

we obtain 
= (0, -~,  a 1/2)/(e2 + a ) .  

The field is then just cylindrically symmetric with its axis situated a distance, 
d = b (1 - tt 2)/(1 +/z 2), below the photosphere (x-axis). The variation of the position 
of the axis as/z increases is shown schematically in Figure 2, with a magnetic island 
appearing when/z  > 1. Unfortunately,  the line-tying conditions are rather compli- 
cated except for the special case of /z  = 1 when they make the perturbation vanish at 
0 = • �89 Low suggests the value/.t = 1 as the onset of the instability, but this was by 
no means verified. 

Low finds that for ~-< 1 the field is stable. To test for stability, he uses a 
perturbation of the form 

= (P, O, 0 ) ,  

where P and 0 are arbitrary functions of r and 0 but independent of z. He suggests 
that it is the line-tying of footpoints that stabilises the field; it may be easily shown 
that even if line-tying is neglected the basic state is stable to his perturbation. This 
indicates that the original perturbation was not general enough and that a z- 
dependence should have been included. However,  when this is done for /z  --< 1, we 
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find the field is still stable. For the particular field governed by /x  = 1 the field is 

given by (3.2) with a = 0 and this has already been shown in Section 3.1 to be stable. 
When ~ > 1, so that magnetic islands exist, we shall prove in Section 4 that the field is 

unstable. 

3.3. BIRN et al. 's FIELD 

Birn et al. (1978a) discuss possible equilibrium solutions to (1.4) when the form of 
B z ( A )  is prescribed to be 

B z ( A  ) = )t 1/2 e-A cosh (lpTr). 

They found that for A </~crit, a critical value of the parameter,  there exist two possible 

equilibrium states that bifurcate at h = hcrit. They have the form 

A = log (r cosh (pO)) ,  

where p is given by 

p = h 1/2 cosh (�89 

For h > ,L~it, no equilibrium exists and so they suggest that a two-ribbon flare begins 
when h increases beyond &tit. However,  the resulting shearing displacement of the 
photospheric footpoints has the form 

z = m x ,  

where 

1 m = sinh (~ p~-) ; 

thus, if we assume that the field evolves through prescribed shearing motions, it can 
be seen that increasing the gradient m causes h to increase up to the value of hcrit; 
then any further shearing makes 3, decrease, with the magnetic field taking on the 
characteristics of the upper branch solutions (see Figure 3, witlh l = 0). In other 
words, increasing the shear does not cause h to exceed ~crit and so does not lead to the 
onset of non-equilibrium. 

Now the question arises: is the field magnetohydrodynamically unstable for a 
critical value of (a) shear or (b)h ? In their next paper, Birn et al. (1978b) address this 
question and attempt to answer it by considering perturbations of the form 

1~= (~(x, y) + 6z~:z (x, y)) e ikz , 

or equivalently in cylindrical coordinates 

5 = (~(r, O)+ez~z(r,  0)) e ikz ( 3 . 5 )  

They show that the change in the potential energy may be written in the form of (2.9) 
with the last integral absent, which may be obtained by putting F,1 - Ez or E2 ~ 0. 

Following Low (1977b), we may now without loss o f  generality choose the 
axial component  of the perturbation, ~:z, identically zero, so that (2.9) becomes, 
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m 

f .75 

. ~  m =FrJk/2 
-0.25 -0.5 .- ' ' ' ' "  . . . -  

0 2 iX 
Fig. 3. The shear gradient, m, as a function of the axial parameter, A, for families of force-free solutions, 
specified by the parameter l. The dashed line corresponds to the locus of cylindrically symmetric arcades 
and is given by m =~rA 1/2. Note that for - 1 < l < � 8 9  these arcades lie on the upper branch of the 

equilibrium curves. (From Priest and Milne, 1980.) 

in Birn et al.'s notation, 

8W=SF f {IBzV l +k l  • Bzl  r dr dO, 

where 

f {IVaal z- zr"(a)lsa[Z}r dr dO 6F 
3 

and 

(3.6) 

6,4 = -6"  VA,  vr"(A) = d2(B2z(A)/2)/dA 2 . 

Since k 2 multiplies a positive definite term in (3.6), this seems to suggest that 
including any axial dependence is stabilizing. However, this is true only for the 
assumed form (3.5); more generally, one would expect that the least stable dis- 
placement is one that does not bend the field lines (or at least reduces the effect of the 
stabilizing magnetic tension). The above perturbation (3.5) cannot satisfy such a 
condition; proving stability to this perturbation does not prove stability to all 
perturbations, but if we can show instability we certainly have a useful result. 

With these reservations, we may minimize 8F, subject to a suitable constraint, and 
obtain the Euler-Lagrange equation 

V 2 ( S A )  + rr"(A )SA = - tzSA . (3.7) 

The sign of 8F is then the same as that of/Xmin, the minimum eigenvalue of (3.7). In 
cylindrical coordinates (3.7) becomes 

OSA~. 1 028A, d 2 / l ~ , ~ 2 z ~  
lr ~r( r -'~-r / ' V - ~ - ' ~ - v ' ~ t 2 r ~ z t ~ ' ]  8A +I~6A=O" (3.8) 
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For the second magnetic field considered by Birn et al. (1978a) with 

A = log (r cosh (pO)), 

B z  = p e  - A  , 

(3.8) possesses separable solutions with 

6A =f(r)g(O). 

Solving the relevant equation for f(r) with the boundary conditions 

6A finite at r = 0 ,  

8,4--> 0 as r--> oo, 

we find that f(r) is just a Bessel function 

f ( r )  = ] a ( 4 - ~  r) , 

where a is the separation constant. 
The equation for g(O) reduces to the Sturm-Liouville equation 

dZ g/d8 2 + (2pZ/cosh 2 (pS) + a2)g = O, 

with boundary conditions 

g = 1 at 0 = 0 (normalization) ,~ 

J dg/dO=O at 0 = 0 ,  

g = 0 at 0 = �89 (line-tying). 

123 

(3.9) 

The solutions yield the value of p. as a function of a. It transpires that, for a 2 > 0 ,  Id.min 
is positive which implies that 8F  > 0; but when a 2< 0,/Xmi, < 0 and so 8/: < 0. 

To find the sign of a 2 and hence of #n~i., we solve (3.9) and (3.10) with a 2 = 0 and 
then use Sturm's comparison theorems (Ince, 1944, Chapter 10; Hood  and Priest, 
1979b). When a 2 = 0 we do not expect to satisfy the extra boundary condition (3.11) 

1 at 0 =~Tr. However,  if g(�89 we may deduce that a 2 > 0 ,  whereas if 1 g(~r)  < 0 
then a 2 < 0 .  Now the solution to (3.9) and (3.10), with,a 2= 0, is just 

g(O) = 1 -pO tanh (pO) . 

So (3.11) is satisfied when p is equal to Pc given by 

1 1 ~pcrr tanh (~pccr) = 1. (3.12) 

For  p < Pc we find a 2 > 0, which implies that 8F is positive. Similarly, for p > Po 8F 
is negative. The condition (3.12) corresponds exactly to the point Aerit at which the 
two solutions merge (Figure 3). Thus 817 is positive on the lower branch and negative 
on the upper branch. Therefore,  returning to the expression (3.6) for we see that the 
lower branch is certainly stable to perturbations (3.5) with E -= E2 ,(as found by Birn 
et aL (1978b)). Also the upper branch will be unstable only if 8F  dominates the 
remaining terms in (3.6); if line-tying in the radial and azimuthal directions is 

(3.1o) 

(3.11) 
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neglected and k = 0 then we may choose a perturbation that is incompressible 
(V. ~ = 0) and so produce instability. Unfortunately,  when line-tying is included, the 
minimising perturbation is compressible and the sign of 8 W is no longer given by the 
sign of 8F. The minimising equation is complicated and so we calculated 8 W for 
several different types of perturbations. For  all choices we found that 8 W  was 
positive, even for large values of the shear gradient, m. 

3.4. MORE GENERAL FIELD 

The magnetic field of Birn et al. is a special case of the more general solutions to the 
force-free equation generated by Priest and Milne (1980). They have 

B z ( A )  = A 1/2(A)1+1/I 

and 

A = -Fo(O)(I /r)  t . 

The field components are 

--1--1 r dFo 
nr  = 

l d O '  
B o = - r - l - l F o ,  B z = + h l / 2 r  -1-1 lEo[ '+1/1, (3.13) 

where Fo satisfies the differential equation 

d2Fo/ d02 + 12Fo + h  ( l + 1)lFolFol 2/~ = 0 .  (3.14) 

(As l ~ 0 we recover the solution of Birn et al. from (3.14).) 
The fields display the same general features as before, namely there exist two 

solutions for h < ~crit  and no solution for h < hcrit. Thus we may expect the stability 
properties of our wide class of fields to be similar to those of the particular case (l ~ 0) 
of Birn et al. (1978a, b). They showed that, for their class of perturbations (3.5), the 
expression 8F in (3.6), for all basic states, is positive on the lower branch and  negative 
on the upper branch. These results may be verified for our class of fields as follows. 

Consider first the stability of the critical solution when h = hcrit. Expand this 
solution, using the fact that ~ is a maximum at h~rit to write 

A = hc r i t (1  - -  ~ 2  _1_ . . . .  ) ,  

Fo = Fcrit(0) + 8F1(0) .  

To order 8, (3.14) becomes 

d2F1/dO 2 + (l 2 + h=it(l + 1)(l + 2)lFord2/')fl = o .  (3.15) 

However,  the Euler-Lagrange equation (3.7) is separable; its P-dependence, when 

~--- ~tcrit , is 

d2g/dO 2 + (a 2 + Acri t ( l  + 1)(l + 2)]Fcritl2/l)g = 0 .  (3.16) 

Since (3.15) and (3.16) are identical when a 2= 12 and the boundary conditions are 
the same, we conclude that a 2 must equal l and so is positive, this implies that 6F  > 0 
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and so (for this class of perturbation) the critical basic state, defined by Fcrit(0), is 

stable. 
Now consider the lower branch. From (3.6) the integral may be written as 

8 F  = f {[VSAIZ-rr"(Acrit)16AlZ+ ["/'/'"(merit)- ~'"(A)]ISAI2} r dr dO 

= ~ F e r i t  + 6F1,  

w h e r e  merit  is the critical basic state defined by Acrit .  We have shown above that 8Ferit 

is positive and so stability of the lower branch certainly holds if 6F1 is positive. A 
sufficient condition for stability is therefore 

7 r ' ( A c r i t  ) ~ "rrn(A) for all r and O. 

From tile definition of ~r"(A) in Section 3.3, this condition reduces to 

hcritlFcrit[ 2/l >- h [Fo [2/1, (3.17) 

where both F~it and Fo satisfy (3.14) with the respective values of merit and h. From 
the numerical solution to (3.14), (3.17) is always found to be satisfied; analytically, 
this result may be established approximately by considering the first two terms of the 
Taylor 's series for Fo, 

Fo( O) = Fo + (1 - Fo)402 / Tr 2 , 

Fo(~Cr) = 1, F~(0) = 0. Substitution into which satisfies the boundary conditions 1 
(3.14) determines the constant Fo from 

8(1 - Fo)/'n "2 + 12Fo = A (- l)(1 + I)F~ +2/l . (3.18) 

For * A <he,it, (the approximation to the actual critical value, hcrit), (3.18) has two 
solutions, whereas for h > h* * crit there are no solutions. When h =/~ crit, (3.18) has one 
solution denoted by F o c r i t .  If I is negative the lower branch solutions have Fo greater 
than F0 =it and so have Fo (0) greater than or equal to Fcrit(0) for all values of 0; (3.17) 
is therefore satisfied and so the lower branch solutions are stable to this class of 
perturbation. A similar argument holds if I is positive, for then F0 is less than Fo e~it. 

One feature of our more general set of equilibria is that, for a given l, there is 
always one value of m for which the configuration becomes a cylindrically symmetric 
arcade and this has the advantage that the energy principle of Section 2 may be 
applied. This case of cylindrical symmetry occurs when Fo = 1 and so (3.14) gives the 
value of h for which it occurs as 

,~ = - I/(1 + l) . 

From (1.3) the shear is 

z : m x ,  

where x is the horizontal photospheric distance and m, the shear gradient, is given by 

1 ~ 1 /2  
m ~ q T A  . 
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For the particular case l = -21-, (3.14) was solved analytically by Priest and Milne; 
the two solutions are 

Fe(O) = (1 + (1 - A) 1/2 cos 0) 1/2 . 

The lower branch solutions are given by the positive sign and the upper branch by the 
negative sign. f c r i t  = 1 when :t =Acrit = 1 and it can easily be shown that the 
inequality (3.17) holds for this basic state. In this ease the cylindrical arcade lies 
exactly at the bifurcation point, Acrit = 1. According to Figure 3, reproduced from 
Priest and Milne, when -�89 < 1 < 0 the cylindrical arcade lies on the lower branch and 
when - 1  < 1 < -�89 it lies on the upper branch. 

Thus we may test the stability of an equilibrium on the upper branch by taking this 
cylindrical field. Substituting these fields into (2.5) we find that the sufficient 
condition for stability, (2.7), holds for all values of I and m considered. This analysis 
shows that there are certain fields which lie on the upper branch and are stable to all 
perturbations of the form (2.2). Therefore, although two fields can satisfy the same 
boundary conditions, it is not safe to assume that the field with the higher energy 
(larger shear) will necessarily be linearly unstable and erupt to reform as the field 
with the lower energy. 

4. Stability of  a Twisted Flux Tube within an Arcade 

In many cases before a two-ribbon flare occurs, the site contains a long, winding, 
plage filament, which is situated near the 'magnetic inversion line' and within a 
magnetic arcade. Frequently motions are observed along the length of the filament, 
suggesting that the magnetic field is directed along the filament and forms a (possibly 
twisted) flux tube that is embedded within an external arcade; the ends of the flux 
tube are tied in the photosphere. This configuration readily leads itself to analytic 
treatment and in this section we derive sufficient conditions for its instability. 

We model the flux tube, within which lies the filament (Figure 4) by a cylindrical 
structure, line-tied at its ends and surrounded by a magnetic arcade. A vertical 
section through the structure is shown in Figure 2c; the weak curvature of the tube 
normal to the plane of Figure 2c is neglected. The axis is located at a distance, d, 
above the photosphere and the form we adopt for the magnetic field is simply the 
cylindrically symmetric field of uniform twist, namely 

B~=O,  Bo=Bo(r /b) / ( l+r2/b2) ,  Bz =Bo/( l+r2/b2) ,  

with the distance r measured from the flux tube axis. In this analysis the form of 
the external field is not important. In order to model the effect of the line-tying of the 
dense photosphere on the arcade, the perturbations are assumed to vanish when the 
azimuthal coordinate 0 = cos -1 ( -d/r)  for r-> d. However, by replacing this line- 
tying condition with the stricter condition that all perturbations vanish at r = d, we 
may obtain sufficient conditions for instability. In other words, if the stricter 
conditions gave instability, then the line-tied field is certainly unstable, but if it only 



M A G N E T I C  I N S T A B I L I T Y  OF C O R O N A L  A R C A D E S  127 

tying 

Fig. 4. A possible prettare configuration consisting of a weakly twisted flux tube anchored at its ends and 
located within a magnetic arcade. The plage filament is assumed to be located along the flux tube. 

gives stability nothing can be deduced about the line-tied structure. However,  we 
may obtain lower bounds on the stability as follows. If the external field is the same as 
the flux tube (i.e. uniform twist) and we neglect the stabilizing effect of line-tying, 
then when this structure is stable so is the line-tied structure. 

Consider first the situation when the flux tube is not tied in directions normal to the 
plane of Figure 2c. The energy principle derived by Newcomb (1960) is then directly 
applicable, a minimization of the potential energy, 6 W, gives the Euler-Lagrange 
equation (2.5) and (2.6) with h 2= 0. The least stable case has been shown by 
Newcomb to occur when m = 1 and for this field the function, F, vanishes identically 
when k = - l / b .  To analyse the stability we put k = - l / b  +~ and expand the 
perturbation in powers of S (for &2<< 1) as follows: 

where 

and 

~r(r) = ~:o(r) + 65~(r) + . . . ,  

F = 32F0(r) + ~3Fl(r) + - - - ,  

H = 8Ho(r) + 8:Hl ( r )  + . - . ,  

G =SGo(r )+32Gl ( r )+"  �9 ", 

Fo = B~r 3/(1 + r2/b 2) 3, Ho = - 2(B~/b  )r2/(1 + r2/b 2) 3 

Go = 4(B20/b ) r ( -1  + r2/b 2)/(1 + r2/b 2) 4 �9 

The Euler-Lagrange equation has a boundary layer structure near 6 = 0 and so we 
stretch the radial coordinate by putting, r = 61/2bx. To lowest order,  namely 0(65/2), 
(2.6) then reduces (for x2<< 8 -1) to 

d(x3d~o/dx) /dx  + 4x3s% = 0 
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and the solution that is finite at the origin is 

~o = A Y l ( 2 x ) / x ,  

in terms of the Bessel function, J1, of first order.  This vanishes when 2x equals the 
first zero of J1, namely 3.83. Since the solution vanishes somewhere, we may deduce 
from Newcomb's analysis that the arcade containing a magnetic island (Figure 2c) is 
unstable, even though the arcade overlying the central flux tube is line-tied. A similar 
result for an isolated flux tube with no arcade outside was obtained by Anzer (1968). 

The above analysis has assumed that the flux tube containing the filament has an 
infinite length, whereas in practice its ends are anchored in the photosphere 
(sometimes in a sunspot). Let  us now, therefore,  include the stabilizing effect of 
line-tying at the ends o) r flux tube. Such an effect has already been studied by Hood  
and Priest (1979a) when the flux tube is not surrounded by an arcade (tied at the 
photosphere) but extends to infinity in the radial direction. Thus in order to obtain 
sufficient conditions for instability we just have to modify their analysis to include the 
stabilizing effect of a solid boundary at a radius d. 

Following Hood  and Priest (1979a), for a flux tube of length 2L and typical width, 
2b, the functions (2.5) are given by 

(BZ/b 2)[((kb + 1)  2 + h 2b2)r 3 + h 2 r 5] 
F -  

( l+r2/b2)2(1+(kZ+h2)r  2) , 

(BZ/b 4)r3(ao + alr2/b 2 + azr4/b 4) 
G - dH/dr  = (l+r2/b2)3(l+(kZ+hZ)r2)2 , 

where ao, a~, and a2 are the following constants: 

ao = 3k4b 4 + 2k3b 3 + (6h2bZ- 1)k2b 2 + 2h2kb 3 + h2b2(3h2b 2 + 4) ,  

al = k6b 6 + 2kSb 5 + (3h2b 2 + 4)k4b 4 + (4hZb 2 + 2)k3b 3 + 

+ (3h4b 4 + 11 h2b 2 -1 ) kZb  z + 2hZ(h2b 2 + 1)kb 3 + h4b4(hZb z + 7) ,  

a2 = k6b6 + 2kSbS +(3hZb 2 + 1)knb4 +4h2k3b5 + 

+ h2(3h2b 2 + 1)kb 3 + h 6 b  6 , 

and h = ~r/2L. We integrate (2.6) from the axis, r = 0, out to the bounding radius, 
r = d, and can deduce that, if ~r is zero before this distance is reached, then the 
filament is unstable (Newcomb, 1960). The results obtained by considering different 
twists, ~, and heights, d, are shown in Figure 5. 

Here  we have plotted the twist, ~, that is sufficient for instability, as a function of 
the wavenumber,  k. For  ~ greater than some critical value, ~crit, there exists a range 
of values of k for which the tube is unstable. To the right of each curve the 
equilibrium is definitely unstable. Because the conditions derived are only sufficient, 
we may not state that the region to the left of each curve is stable. However,  the 
region to the left of the curve, d = ~ ,  is stable to perturbations of the form (2.2). This 
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Fig. 5. Sufficient conditions for the amount  of twist, ~ ~ 2L/b, required to produce instability of a flux 
tube embedded  in an arcade. The  flux tube has length L and its axis is si tuated at a height d above the 
photosphere.  For ~ greater  than some critical value, (~erit, (i.e. to the right of each curve), the equilibrium 
is unstable for a range of wavenumbers ,  k. (For all values of d, a sufficient condition for stability to (2.2) is 

that the twist, qb, be less than that shown for d = oo.) 

curve gives us a lower bound on the critical twist for these perturbations and the 
relevant curve, for a given height, supplies the upper bound; thus, for example, when 
d = 3b, the configuration is stable to perturbations (2.2) when q~ < 3.3r and has 
certainly become unstable by the time qb > 4.2~-. Moreover, a stronger result for 
stability to all kink (m = 1) perturbations can be proved, namely that when ~ <~ 2r 
the flux tube is certainly stable (Appendix B). 

Thus the filament may become unstable in two possible ways. In the first case, if the 
length or twist of the flux tube is increased while its height remains fixed, the effect 
of line-tying is reduced so much that ultimately instability ensues; e.g. for 
d = 5b, (~cr i t  = 3.6~r. On the other hand, if the height increases, while the length 
and twist remain fixed, the stabilizing effect of the arcade that overlies the filament 
is gradually reduced until again the structure becomes unstable,, e.g. for qb = 5~-, 
dcrit = 2.16b. 

In general a more complicated relationship between these two possibilities hold in 
that tfie filament may rise as it is twisted. Since we have derived only sufficient 
conditions for instability, the onset of the eruption may take place at somewhat lower 
thresholds than we have obtained. 

5. Conclusion 

In this paper we have attempted to analyse the magnetohydrodynamic stability of 
force-free arcade configurations that may erupt and initiate a two-ribbon flare. We 
used the energy method of Bernstein et al. (1958) and found that the stabilizing 
influence of photospheric line-tying is so effective that it is extremely difficult to obtain 
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instability! Cylindrically symmetric arcades with their axis lying on the photosphere 
are completely stable for a wide class of perturbations. The nonlinear force-free 
equilibria of Priest and Milne (1980) contain two branches of solutions and the lower 
branch was shown to be stable to this class. On each upper branch, one of the 
solutions is cylindrically symmetric in type and so is stable; thus, although a lower 
branch solution exists with a lower energy, the upper solution is not necessarily 
(linearly) unstable. 

We have been led to  consider more complex equilibria than a simple sheared 
arcade; this is partly because it seems so remarkably stable and partly because the 
presence of a plage filament may indicate a magnetic field that is predominantly 
along rather than across the long axis of the arcade. In a vertical section across the 
arcade these more complex equilibria contain magnetic islands; the three-dimen- 
sional configuration is that of a long magnetic flux tube imbedded in an overlying 
arcade. If line-tying at the ends of the tube is neglected, the configuration is unstable. 
When such line-tying is included, instability occurs provided the length, twist or height 
oftheflux tube is too great; in particular, the higher the tube is situated, the smaller is 
the twist required for instability. 

Limitations of the analysis include the fact that the conditions for instability are 
only sufficient; a more comprehensive stability analysis should be able to reduce the 
thresholds we have obtained and analyse more complex magnetic configurations. 
Furthermore, the filament has been regarded as a tracer of the field eruption while 
neglecting the departure from a force-free state that the filament may cause. This 
neglect is possibly justified for a plage filament, where the magnetic field strength is 
so much greater than in a quiescent filament. The view taken in this paper is that the 
filament eruption is due to an instability of the whole magnetic structure surrounding 
the filament. However, the alternative possibility, especially for quiescent prom- 
inences, is that the instability is driven by the filament itself; this has shown up as a 
characteristic of a recent prominence model (Milne et al., 1979) when the shear angle 
is too great. 
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Appendix A 

To include the effects of line-tying we require that all perturbations vanish at two 
values of the azimuthal coordinate, i.e. 0 = • 7r/2. If we neglect this condition, we 
wish to be able to recover the analysis derived for cylinder of infinite length. Thus we 
may express any function of the three coordinates, and in particular the radial 
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coordinate of the perturbation, ~, as 
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~r(r,O,z)= ~ ~ {~.,,(r)cos(mO+kz)+ 
n = 0  l = 1  

+ n.,l(r) sin (mO + kz)} cos (2n + 1)0 + 

+ {~:*/(r) cos (mO + kz) + n*,l(r) sin (mO + kz)} sin 2nO, 

k =2~rl/L and m is arbitrary. To find expressions for the particular 

(A.3) 

Substituting just one component  of the series (A.3) into (2.1), integrating first over z 
then over 0 and using the results (A.1), we may show that 

(~ W ( ~) = ~ Wn , l (  ~n,l ) -'~ r Wn,l('lln,l) , 

= Z Z ~.,l cos (2n + 1)0 + 11.,t cos (2n + 1)0�9 
n l 

where 
coefficients, we note that 

L 
�9 L I (m0+  )cos (m0 

0 

L 

= L  

0 

L 

I s in(mO+~-z)  cos (mO+~-z )dz=0 .  
0 

Similar results exist for cos (2n + 1)0 and sin 2nO and it can be shown that 

zr /2  L 

2 
~ ' d ( r ) = L  f { I ' r ( r ' 0 ' z ) c ~ 1 7 6  

- r  0 

similar expressions exist for ~7.,l(r), ~.*z(r) and ~7*.t(r). In this manner we may obtain 
expressions for the azimuthal and axial components (o(r, O, z) and ~z(r, 0, z). Thus a 
typical component  of the series for the vector ~ is 

(~r,.,l(r) cos (mO + kz), ~0,.,l(r) sin (toO + kz), ~z,.,l(r) sin (mO + kz)) • 

x cos (2n + 1)0 + (rlr,.,l(r) sin (mO + kz), rlo,..l(r) cos (mO + kz), 

rtz..,t(r) cos (mO+kz)) cos (2n +1)0 .  

This we denote by 

~.,l cos (2n + 1)0 + Ii.,1 cos (2n + 1)0, (A.2) 

so that the perturbation ~ may be written as 
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where 

8W.,l(G,t) 

8 W , . z ( ~ , . ~ )  = 
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co 

f rdr{r 
0 

+ [k (~oBz - r - (~:rB0)'] 2 + 

+-~((r~rB~)' + m(~oB~ - h2 ~zBo)) 2 +-'~ (~oBz - ~zBo) 2 - 

- B / rnB~ ~" - a  [ - ( & B z - G  o)~ r ~]r 

oo 

2 2 

-~- f r dr { ~ (mBo + krB, )2 + h 2BZo -~  + 
0 

+ ( -  k(rloB~ - rt~Bo) - (rlrBo)') 2 + 

1 h z 
+-~ ((rnrB~)'- m(noB~ - n~Bo))2 +-~  (noBz - n~Bo) 2 -  

-oz [ (rloB~ -rhBo)  ( m  Bo + kB~) rl~- 

- rt~Bz (-k(rloBz - rl~Bo) - (rl~Bo)') - 

-71"r Bo((r71,B~)'- m(noB~ - 7/~Bo))] }.  

The important fact is that the integrals, 8W(~,,,t) and 8W(~ln, t), are in no sense 
coupled and we may minimize each integral separately and obtain the Euler 
Lagrange equation (2.6). In fact the minimum value of the two integrals is identical, 
as may be seen by minimizing 6 W,,~(~,,t), then putting ~/r = (r, rt0 = -~0 and ~Tz = - G .  

Now the question of stability may be answered; for, if at least one 6Wn.t(~,~,~) is 
negative, then 6W(~) can be made negative by choosing all the other ~,,t to vanish. If 
all the 6W,,t are positive, 6W(~) need not be positive since the cross terms may be 
negative. However, to consider stability to the perturbations (A.2) alone, we 
minimize each 6W,~,t(~,,z) in turn and note the resulting sign. In fact, it can be shown 
that n = 0 is the least stable of these particular perturbations. Note that for force-free 
fields we may choose, without loss of generality, ~ perpendicular to the magnetic field 
B, since the parallel component does not provide a contribution to the potential 
energy. 
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It is important to notice that the methods of Section 2 deal with stability only to the 
particular perturbations 

G,l cos (2n + 1)0 + ~Tn,z cos (2n + 1)0. 

The full series (A3) for al l  possible perturbations has not been treated; it leads to 
cross product terms in 6W which do not all vanish and give rise to an infinite 
sequence of coupled Euler-Lagrange equations which have not been solved. In 
Hood and Priest (1979a) a similar method was used to analyse the stability of a flux 
tube to particular perturbations and it was wrongly claimed that necessary and  
sufficient conditions for stability to al l  perturbations had been obtained. Rather, the  
stability conditions in both Hood and Priest (1979a) and the present paper are 
necessary and sufficient only for the chosen class of perturbations. This means that 
when instability has been proved the conditions are sufficient, whereas when stability 
has been established the conditions are necessary. A full analysis could be conducted 
by either solving the infinite sequence of Euler-Lagrange equations or working with 
the partial differential equations that result from minimizing (2.9). 

Appendix B 

It is possible to derive a simple sufficient condition for the stability of a line-tied flux 
tube of finite length, 2L, to al l  possible kink (m = 1) perturbations. We may write any 
kink perturbation as 

= Y'. ~n(r)e  i~ , (B.1) 
n 

where k = 2n~- / (2L ) .  This is the form used by Newcomb (1960) but it is important to 
note that the line-tying conditions, on a tube of finite length, namely 

~(r, 0, • = 0,  (B.2) 

c a n n o t  be satisfied by each individual term of (B.1). (B.2) implies that a linear 
combination of the basis functions are required such that 

~(r, O, ~ L  ) = ~ ~ , ( r )  e i~ = O . 
rl 

Newcomb showed that, for the perturbation (B. 1), the potential energy 8 W  from 
(2.1) may be written as 

3 W  = Y, 6 I V , ,  (B,3) 
n 

where 
s 

6 w,, = J {IV x (G x B ) f -  o~(G x B) .  V x (~, x B)} d , .  

The total potential energy 6 W  is positive if the minimum value of each 6 W ,  is 
positive. If the minimum value of one 6 W n  is negative, this does  no t  necessarily imply 
instability. 
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Using  N e w c o m b ' s  analysis ,  we m a y  min imise  each  8Wn in tu rn  and  de r ive  

oo 

f {F~"2+ G , 2 8Wn = ( - H ) ~ : r } d r ,  (B.4) 

0 

w h e r e  a dash  d e n o t e s  d i f fe ren t i a t ion  wi th  r e spec t  to  r and  the  funct ions  F,  H ,  and  G 

a re  given by  (2.5) wi th  h = 0, m = 1, and  k = 2n~r/(2L). T h e  func t ion  F is pos i t ive  

and  G - H '  m a y  be  wr i t t en  as (Newcomb ,  1960) 

k 2r 2k  2r 
G - H '  = ~ (krBz + Bo) 2 + (1 + k2r2) 2 ( k2r2B2-  BE).  (B.5) 

Thus  a sufficient cond i t i on  for  s tab i l i ty  is tha t  (B.5) is a lways  pos i t ive ,  which  is t rue  if 

k 2 >- (BE/(r2B2),  for  all r 

or ,  in o t h e r  words ,  

4nETr2/(2L) 2 >- (qb/2L) 2 , for  all r .  (B.6) 

In  genera l ,  qb is a func t ion  of  r wi th  m a x i m u m  va lue  qb . . . .  say, and  so 

~ m a x  ~ 2r r .  (B.7) 

In  pa r t i cu la r ,  the  un i fo rm- twis t  field has  ~m~x = ~ .  
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