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Abstract. It has been widely conjectured that solar flares are energized by the magnetic energy stored in 
complex active regions. Paradoxically, however, in attempting to show that magnetic changes cause or 
characterize flares, solar magnetic observations have produced equivocal results. 

In previous attempts at resolving the paradox, it has been contended that magnetic measurements are 
simply imprecise or that magnetic theories of flares are incorrect. We present an alternative explanation: 
the present use of magnetograms to examine active region structure through numerical integration of 
miscellaneous field lines (under various force-free assumptions) provides qualitative information only and 
does not utilize the quantitative information available. Therefore, we propose a new approach to the 
analysis of rnagnetograms which is illustrated with a highly symmetrized example that permits integration 
in closed form. The proposed approach exploits the cellular structure of the flux of field lines present in a 
complex active region. The various topological connectivities distinguish parent and daughter flux cells. A 
function F is developed expressing the flux partitioned into the daughter cell of interconnected field lines 
in a potential field. This F is a function of the location, strength, and relative motions of the photospheric 
sources. Then dF/dt is used as an EMF in the direct calculation of the stored magnetic energy available for 
flare production. In carrying out this program the flux partitioning surface (separatrix) is calculated along 
with its line of self-intersection (separator). The separator is the location of the principal energy release 
site. 

1. Introduction 

Past attempts at correlating solar magnetic changes with solar flares have been only 
marginally successful. This is highly unfortunate in view of the fact that most flare 
theories tap magnetic energy as the driving mechanism for the flare. The indications 
would seem to be that the magnetic measurements are not sufficiently accurate or 
frequent or that flares are not derived from a dissipation of magnetic energy. Here we 
suggest that the magnetic data must be analyzed in a new way which accounts for the 
cellular nature of magnetic flux connectivity. Therefore,  we will briefly review the 
relation of flares to magnetic fields, describe how solar magnetic fields have been 
interpreted, and discuss the relation between the topology of individual field lines 
and the cellular topology of flux surfaces. With these rudiments in mind, we shall 
proceed to calculate the cellular fluxes of a complex bipolar spot pair as a function of 
spotgroup separation. The calculation is done for the special limiting case where the 
spot pairs are colinear and of equal spot strength and will make use of the magnetic 
point charge model. Having demonstrated exact solutions for the cellular fluxes in 
this special case, it is suggested that solar magnetic field codes be further developed 
to compute the cellular fluxes in more general arrangements. 

We shall conclude by showing a simple relationship between magnetic flux and 
energy changes which follows from electric circuit theory. The relationship will be 
used in discussing the energy requirements of flares. 
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A. FLARES AND MAGNETIC ENERGY CHANGES 

There are a number of observations indicating a decrease of magnetic energy during 
large flares (Evans, 1959; Howard and Severny, 1963; Gopasyuk et  al.,  1963; 
Zvereva and Severny, 1970) and a later recovery to near its previous interflare value. 
Indeed, in the 3 + flare of 16 July 1959 Howard and Severny (1963) report  that the 
magnetic energy in the longitudinal magnetic field dropped almost 90%. While this is 
quite impressive, the same data show a 45% decrease in energy on 15-16 July 1959 

which is not associated with a major flare. 
The relation of flares to magnetic field changes have been reviewed by Rust (1976) 

who cites many examples where photospheric fields seem not to have changed when 
flares occurred. He cautions, however, that most sunspot field measurements are 
typically in error by 10-20% or 500 G which could easily mask expected changes. 
Rust (1976a) concludes that large flares are associated with the development of a 
strong transverse field B• parallel to the "neutral line' where BII = 0. This conclusion 
is based on vector magnetogram measurements and photographs of penumbral 
fibrils. Since as noted the BII measurements (which are simpler than Bz measure- 
ments) are imprecise, it appears that some advances are required in observational 
procedures and /or  interpretation before unequivocal flare related magnetic field 

changes can be firmly established. 

B. A N A L Y S I S  O F  S O L A R  M A G N E T I C  F I E L D S  

The study of magnetic field structure above bipolar sunspot pairs has been of interest 
for many years (e.g., Sweet, 1958a, b) because of a hypothesis that flare energy could 
be stored in a current system induced through the superposition or mutual intrusion 
of bipolar spot pair fields. Sweet (1958a) considered two bipolar spot pairs (4 spots) 
under the assumption of translational symmetry (infinitely long sunspots) making the 
problem two dimensional and obtaining estimates of the parameters describing the 
neutral current sheet assumed to form between spot pairs. 

The analysis of solar fields was greatly advanced by Schmidt's (1964) introduction 
of a magnetic point charge method of computing potential solar fields and fluxes 

given the photospheric magnetic charge distribution or Bll. 
Skylab observations (Sheeley et  al.,  1975) made it further apparent that the study 

of coronal potential magnetic fields above active regions was a valuable approach. In 
this approach one considers a pair of active regions rather than spot pairs as magnetic 
sources. The structures are essentially similar to spot pairs differing only in scale. 

More recent progress in the structure of solar fields includes the mapping of the 
separatrix structure for coplanar but non-colinear bipolar spot pairs (Bratenahl and 
Baum, 1976), calculation of the field structure above three active regions in the point 
charge analogy (Sheeley et  al., 1975), and the insertion of current sheets into bipolar 
regions using complex variables (Tur and Priest, 1976). Sakurai and Uchida (1977) 
suggested an ingenious approach in which sunspots are treated as solenoids and 
individual field lines are computed for various arrangements of pairs of solenoids. 
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The lines thus obtained are quite similar to those which have been obtained from 

Schmidt codes but the program has a difference in that flux balance is assured in the 
region of computation since the total equivalent magnetic charge is set to zero. 
Sakurai and Uchida's method also allows the positioning of current sheets between 
pairs of magnetically non-connected bipolar spot pairs. This is equivalent to moving 
two bipolar pairs together under conditions of infinite plasma conductivity thereby 
excluding reconnection. The current sheet thus obtained corresponds to a calculated 
amount of energy (~ 1031 ergs) above the potential energy. It may be noted that this 

energy is an overestimate or upper limit since no flux transfer is allowed during the 
buildup of sheet current. 

C. M A G N E T I C  T O P O L O G Y  A N D  M A G N E T I C  F L U X  

There exists considerable evidence that major flares tend to occur in magnetically 
complex regions (Svestka, 1976a) but recent X-ray observations show illuminated 
loop structures which prompted Spicer (1977) to propose the simple loop structure as 
the basic flare topology. Rust (1976b), however, views these loops as illuminations of 
selected parts of the general active region field. Ribes (1969) found that flares are 
correlated with an increase of one polarity flux and a decrease of the opposite 
polarity flux. This seems inconsistent with the concept of a simple flux loop where we 
expect flux conservation and implies that magnetically complex regions should be 
considered. Accordingly, we have studied the field of bipolar spot pairs not only from 
the point of view of discrete field lines, but have shown the cellular nature of flux in 
this arrangement. A perspective view of the three-dimensional flux cells were 
presented in Bratenahl and Baum (1976, Figure 2) for one general case. That case is 
redrawn here as Figure 1 to show the flux topology of two bipolar spot pairs in the 
plane of the photosphere. Cells i and 2 are termed parent cells while 3 and 3' are the 
two parts of the daughter cell. The intersection of the separatrix with the pho- 
tosphere is shown as the darkest pair of closed oval lines. The separatrix is the surface 
separating the parent and daughter flux. The separatrix intersects itself along an 
arched curve above the photosphere called the separator (not shown) which is the 
field line joining the points ' a '  and 'b'. The points "a' and 'b" are true x-type neutral 
points on the photosphere but there is a non-zero field component everywhere else 
along the separator. The separator is a generalization of what is a neutral line (B -= 0) 
in two dimensions. The lighter lines are individual photospheric field lines linking the 
north (N) and south (S) spots. 

From Faraday's law, the induced voltage Vs along the separator measures the rate 
of flux transfer from parent to daughter cells. 

With the solar magnetic codes (e.g. Schmidt, 1964), it is common practice to 
compute the total flux and flux disbalance of a solar region and to develop contour 
maps of the line of sight magnetic field (Bll). However,  these analyses do not compute 
the flux within the various cells defined by the separatrix since the separatrix itself is 
not computed. It should be apparent from the separatrix shown in Figure 1 as well as 
from the pioneering work by Sweet (1958b, Figures 2, 3, and 4) that the separatrix 
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Fig. 1. The magnetic topology of two bipolar spot pairs arbitrarily arranged. The darkest curves are the 
separatrix at the photosphere and the lighter lines are discrete field lines. The separatrix divides the flux 
into cells 1, 2, 3, 3' in which lines have differing connectivity. Points "a' and 'b' are x-type neutral points 

(H-~ 0) and are the foot points of the separator field line. 

passes through sunspots so that the flux of any given spot involves more than one 

connectivity. Hence,  in determining flux transfers during flares, it is necessary to 
measure those fluxes which reside in parent  and daughter  cells. Further,  it seems 

entirely reasonable as a first step to know the cell flux content in the potential case 
which represents the energy ground state of the spot fields. Therefore,  in this paper  
we will derive fields, fluxes, and the separator  height for colinear bipolar spot pairs 
using the point charge analogy. While spot pairs are rarely arranged in a colinear 
fashion, it has occurred, for example,  during a flare of 7 September  1973 (Wu and 
Smith, 1977). Further,  preliminary observations at this laboratory (Baum et al., 

1976) indicate that magnetoplasma processes above non-colinear bipolar solenoid 
pairs are quite similar to those above colinear pairs. Hence,  it is appropriate  to study 
the colinear problem as a guide for further interpretation and experimentation.  

2. Approach 

Figure 2 shows the magnetic topology of the system under study. We consider two 
bipolar pairs or four magnetic poles of which two are north and two are south 
polarity. Further,  they are arranged in the colinear order NSNS along the Z-axis.  
Using the point charge analogy, the field is cylindrically symmetric  ( independent of 
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Fig. 2a-b. (a) Four point sources of magnetic flux are assumed to be colinearly aligned with fields in the 
order NSNS. The overall topology is schematically shown with the separatrix as the darker lines. The 
separatrix defines flux cells which are labelled 1 through 4, the configuration is cylindrically symmetric tin 
0) about the z-axis with the separator (line of neutral points) located along (0, 0, Z)  = (Po, 0, 0). The 
distance Pl from p = 0 to the separatrix in cell 1 is used to compute the flux in cell 1. (b) The vector 
contribution of the magnetic fields at point P from spots 1 through 4. Point P is illustrated here in the plane 

in which Pl is to be computed (i.e. midway between spots 1 and 2). 

O) a n d  t h e  r a d i a l  c o o r d i n a t e  is l a b e l l e d  p.  T h e  o u t e r m o s t  s p o t  p a i r s  a r e  s e p a r a t e d  b y  

t h e  d i s t a n c e  Z 0  w h i l e  t h e  i n n e r  p a i r  h a v e  a s p a c i n g  aZo w h e r e  a is a n y  r e a l  p o s i t i v e  

f i n i t e  n u m b e r ,  a -- 1 c o r r e s p o n d s  to  e q u i d i s t a n t  s p a c i n g .  T h e  s e p a r a t r i x  w h i c h  is 
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shown as the heavy solid curves in Figure 2a appears  to divide the flux into four cells 
labelled 1-4. We shall find that cells 3 and 4 contain equal flux and may be considered 

as two parts of the same cell. This is true even when the fluxes in cells 1 and 2 are not 
equal. If the spots are labelled 1-4 as in Figure 2b, then cell 1 contains flux linking 

spots 1 and 2, in cell 2 flux links spots 3 and 4, in cell 3 flux links spots 2 and 3 and in 

cell 4 flux links spots 1 and 4. Note that the flux in cells 3 and 4 represent  
interconnected (perhaps reconnected) flux if spots 1-2 and 3-4 are 'parental  pairs'  

(Bratenahl and Baum, 1976). In calculating these fluxes we will compute &~ = 
Bn �9 dS,,, where &, is the flux of cell n, B ,  is the vector magnetic field in cell n and S~ 

is a vector normal to the appropriately chosen surface S~. For example,  in computing 

&3 the surface $3 is chosen as a circular disk located in the plane Z = 0 and with radius 
p0 which is the height of the separator.  With this choice of $3 the flux &3 can be 
calculated knowing only the horizontal (z) component  of the magnetic field in cell 3, 
B3z. Similarly, Ol will be calculated through the surface S1, which is a disk lying in the 

plane z -- - ( 1  + a)(z0/2)  and with radius p~. The flux integrations will always begin or 

end at a point on the separatrix (e.g. p0, pt). 
Using the point charge analogy, we will assume that each spot contains magnetic 

flux +&0 and that in spherical coordinates centered on a spot, 

I B.dA=+&0,  (1) 

where A is a hemispherical surface. Further,  B = (K / r2 )p ,  where P is a radial unit 
vector and K is a constant so that the integration of (1) over a hemispherical surface 
results in 

K = • (2) 
2Ir 

Hence,  at any radius r, 

~b0 
Br = :t:2~.r2. (3) 

In Figure 2b we show the contributions at point P of B from all the sources. Since the 
flux can be calculated knowing only the horizontal field Bz, we construct 

4 1 ~ b o ,  
- - -  cos  g ' i .  (4) Bz  = ,:~V Bi cos  g i  - 2 7 , : ~  r,~ 

In addition it is necessary to know B~ on only two planes which we choose midway 
between spots as z = 0 and z = - ( 1  + c~)(Z0/2). 

3. Solution and Results 

In this section we will explicitly construct the horizontal component  of the magnetic 
field, locate the neutral point, give a general expression for field lines and compute  
cellular flux partition functions called F and G. 
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Using Equation (4) and noting the symmetry about z = 0, we can construct the 

horizontal field on the plane z = 0: 

or 

l(4~oCOS ~1 &0co2s gt2) 
Bz = -~\ rl r2 

4~oZof (2+0:1) a 
Bz = ~ ' - l [ p 2  t_ Z~o~'~/2)213, ,  2 [p2 + ZoT~/2)213/2 } . (5) 

Equation (5) can be solved for the height of the neutral point by setting Bz = 0 with 

the general result 

(0:/2) 2 (1 + 0:/2)2] U2 

0 0  

(12+0:)2/3 0:2,,3 J 

which is plotted in Figure 3a for 0 < a -< 4. Referring to the cylindrical coordinate 
system of Figure 2a, we now know that the points (p, 0, Z )  = (P0, 0, 0) lie on the 

separatrix and in fact are the coordinates of the separator. In order to find the flux in 
cell 1, it is necessary to find an expression for the points (p,O,Z)= 
(Pl, 0 , - [ 1  +0:](Z0/2)) which can be done provided the equation for the separatrix 
can be found. The general expression for field lines in the colinear point charge 
model is known (Smythe, 1950; p. 13, Equation (1)). In the case under study here, 
the field lines are given by lines of constant C, where 

2 ]  
C =  __ 0:/0~ 2 2/1/2 0:\ "12 "11/2 

{ ( Z  2 } +p ~ {[Z-(I+2)ZoJ +p2 } 

0:Z 
(7) 

{ (Z  q-~)24-102} t/2 { [Z  q- ( l  q- 2)Z012 q- p2} l/2" 

Now, knowing any point on the separatrix (e.g. the neutral point) we can evaluate C 
and subsequently, numerically solve Equation (7) to obtain the coordinates of any 
other point on the separatrix such as (pl, 0, - [1  +0:]Zo/2). This was done and also 
appears in Figure 3a as pl/Zo. Note that pl -> p0 for the range 0 < 0: -< 4 and that both 
p, and p0 increase nearly linearly with 0: for 2 <~ c~ -< 4. 

For the calculation of fluxes, we further require the horizontal field on the plane 
Z = - (1  + 0:)(Z0/2). Symmetry now gives 

= c o s  c o s  c o s  < 
- ~-ri 2 77"r3 27rra 
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Fig. 3a-b. (a) Normalized separatrix heights calculated from the point charge model are plotted as a 
function of c~. a is shown in Figure 2a. The lower curve, Po, shows the height of the separator as a function 
of a whereas the upper curve, Pl, shows the height of the separatrix midway between spots 1 and 2. (b) The 
normalized calculated cellular fluxes are plotted as a function of c~. ~b0 is the flux in the half space (y -> 0) 

from a single spot. ~b 1 is the flux in cell 1 and &3 is the flux in cell 3. 
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where for BI~ we use Equation (8) and for B3~ and B% we use Equation (5). The 
fluxes of Equation (9) are integrable giving 

[ 

2 1+7 + 7o 
--(D4 = - -  Og 2 P0 2 112 

=- F( q$o, p~ a) 
Zo' 

r<,+i,o , . , , . ,  
t \ 2 /  

(10) 

and 

\ Z o /  J 

~2-~ 

(pi~2] 1.'2 
J 

(4 + 1) 

I ' :  

\Zo ]  J 

=Ca/, pl ~) (11) t 0, Z ,  

Equations (10) and (11) are plotted in Figure 3b from which it is evident that &l > ~b3 

for a ~ 0.67. In this case the parental flux exceeds the interconnected or daughter  
flux (Bratenahl and Baum, 1976). The opposite is true for a <~0.67. Since the 
separatrix partitions the spot flux q$o into two parts, we know that 

t~4 § (~1 ~ ~ 1  § (~3 ~ ~ 3  § (~2 ~ t~2 § t~4 ~ t~0 (12) 

for the spots 1, 2, 3, 4 respectively, and therefore F + G ~ O0. This nontrivial result 

involving the use of (6), (7), (10), and (11) has been checked to computer  accuracy for 
0 <  a_<4. The component  fluxes &i (i = 1-4) have now been calculated in the 

complex geometry  of Figure 2a, but it remains a challenge to compute them in a more 
general configuration such as Figure 1. Finally in Figure 4 we present a numerical 
solution to Equation (7) which shows the computed field lines (equally spaced in flux) 
for the case a = 1. 

Throughout  the preceding sections we have treated only the special case of two 
bipolar spotgroups where all spots are of equal strength and increase at the same rate. 
There are, of course, other cases. For example,  Heyvaerts  etal. (1977) propose a case 

where one spot pair emerges into the flux of a pre-existing spot pair. While neither 
experimental  nor computer  simulations are yet complete, we presume that the mode 
of interaction will be quite similar to the symmetric case described here. The main 
difference we expect is that the separator  inductance will initially be very small, later 
approaching the value of the symmetric case. The plasma physics and process of flux 
transfer should be quite similar to that described here. 
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Fig. 4. 
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Field lines calculated from the point charge analogy for the case a = 1. The lines are equally 
spaced in flux. 

4. Discussion and Conclusions 

Let us compute the flux change needed to satisfy the solar flare energy requirement  in 

reconnection models (Bratenahl and Baum, 1976a; Heyvaer ts  etal., 1977). Consider 
that as current I flows along the arched separator  its path defines an inductance 
L ~- 1 0 H  (Baum et al., 1978) since from Figure 3a the separator  height will be about  
equal to the sunspot spacing for c~ -  1. Now on combining AU, n = �89 2 with the 

relation A~b = LI, the magnetic energy may be expressed as 

A U ~  = A~b 2 / 2 L ,  (13) 

a result which seems to have been introduced by Bratenahl  et al. (1976). Equation 
(13) defines the available flare energy stored as the separator  current L A4~ is the 
stored flux corresponding to L Previous energy analyses of solar flares, e.g. Schmidt 
(1964), have not studied the stored energy AUra. As in Schmidt 's case, solar 
measurements  yield the (vector) sum B + AB, where B is the 'background '  magnetic 
field mainly emanating f rom the sunspots and AB is the 'per turbat ion '  magnetic field 
mainly due to (stored) currents in the solar atmosphere.  Consequently,  flux 
measurements  yield the sum 4 = ~b + A~b of background and excess stored flux. Now 
forming the product 4 2, as Schmidt did numerically, we find 

4 2 = ~b 2 + 2@A~ + A4~ 2 (14) 
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and the formal expression for magnetic energy 

U,,~ = cI)2 / 2 L  (15) 

is not very meaningful since (15) contains the stored energy available for flare 
production 

.;1Um = dq5 2/2L (161) 

as well as a cross product term and a background term ~b2/2L which is only 
dimensionally the spot flux energy since the appropriate subphotospheric inductance 
associated with the parental spot pair is unknown (L is the inductance of the 
superphotospheric current system). This is equivalent to a lack of detailed knowledge 
of the subphotospheric current distribution. Therefore since (15) contains relatively 
large background terms, it is not surprising that (115) has not been used for 
meaningful flare correlated energy changes. What is needed is a measurement of AB 
or A~b rather than the previously mentioned sum measurements. Shortly we shall see 
that d4~ and A U,,, can be rather directly inferred from a knowledge of the time 
history of cellular flux. This, of course, implies a knowledge of the magnetic topology 
defining the flux Cells, and especially a knowledge of the separatrix. 

We now estimate the stored flux A& required for a large flare. Inverting Equation 
(16) we obtain the stored flux 

Aq5 =[2LAUra] 1/2 

which gives & b = l . 4 •  1 (1.4x1021Mx) for L = 1 0 H  and AUra= 
10 z5 J(1032 ergs). On the other hand, a characteristic sunspot flux may be d~ = 
8 x 1013 V s 1 (Bray and Loughhead, 1964) so that 

J~b/4~ ~ 0 . 1 7 5 .  

Therefore,  in a large flare the stored flux corresponds to only 17.5% of the flux 
linking one parental spot pair. If two equal bipolar pairs are involved, the dissipated 
flux is only - 9 %  of the flux of one spot pair. The preceding analysis is geometry 
independent and, therefore, applies to field aligned current models as well as flux 
transfer flare models. 

Storage of flux A& and free magnetic energy A U,,, to drive the flare process can 
come about through (i) a relative displacement of the spots (temporal change in a 
and /or  Z0), (ii) by a change in spot flux (temporal change in qS0), or (iii) spot group 
rotations (not analyzed here). In the absence of a conducting plasma, changes (i) and 
(ii) simply change the flux partition functions, F and G, in the manner shown in 
Figure 3b. However,  in the presence of plasma, as we shall presently see, these 
changes in F and G cannot take place pari pasu but are delayed. Flux A~b and free 
energy AU,,  = (Acb)Z/2L are therefore stored, and we can use Equations (10) and 
(11) (plotted in Figure 3b) as a basis for determining this flux and energy storage. In 
Case (i) examination of Figure 3b shows that a 9% change in ~bl or 4~3 requires a 
change Aa ~ 1.0 for a ~> 1. If the bipolar regions are close (a < 1), the displacement 
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can be small (,Ace < 0.25). Pursuing Case (ii) for any constant c~, &~ and 053 a r e  directly 
proportional to the change in spot flux &0 (e.g. a 9% change in 05o produces a 9% 
change in 05| and 053). For constant spot area (or field), the spot field (or area) must 
change by 9% for a flux change of 9%. For a spot field of 2 kG we calculate a 9% spot 
field change of 180 G or a flux change of 7 x 10 lz V s -~ (7 x 10 z~ Mx). It may be noted 
that usual magnetographs measure flux changes only outside of sunspots (because of 
saturation) and, therefore, do not produce evidence relevant to Case (ii). There is 
now a need for these measurements. 

While the observations are ambiguous as noted in Section 1A, Tanaka (1977) has 
observed field changes up to 60 G and flux changes of 2 x 102o Mx during a Class 2B 

flare of 10 September 1974. Earlier, Rust (1972) observed flux changes up to 
1021 Mx although notduring a flare. The solar observations, the present analysis, and 
laboratory observations (Bratenahl and Baum, 1976) emphasize the difficulty in 
correlating magnetic field changes with even fairly large flares. 

We hypothesize that energy is continually supplied to the solar atmosphere by 
Poynting flux (evidenced by hydromagnetic waves), and that in the presence of a 
conducting plasma a portion of this energy may be stored for extended periods in 
current circuits or magnetic fields which need differ only slightly from potential fields. 
In extreme cases the structure may depart significantly from potential. The flare is 
more directly associated with the interruption of the current circuit than with the 
magnetic field itself (Baum et al., 1978). Unfortunately, it is not possible to observe 
the current (V x B) directly or even indirectly with good accuracy (Svestka, 1976b; p. 
384). Further,  if it were possible to observe the current, it would be necessary to 
know its spatial-temporal behavior since laboratory observations (Bratenahl and 
Baum, 1976) show that the current decrease along the separator at 'flare'-time is 

accomplished by its transport out to the frontier flux surfaces of the daughter flux 
cells by large amplitude waves. In this way currents are expected to increase at the 
frontier surfaces. 

By default we must rely on measurements of magnetic field rather than current, 
but laboratory observations suggest that field changes at flare time are also complex. 
The field changes would be different for the two cases of spot separation and spot flux 
change. If energy is stored by spot motion (e.g. a temporal decrease in a) ,  Figure 3b 
shows that the parental flux will decrease while the daughter flux will increase and the 
net spot flux will be unchanged. (Figures 1 and 2a show that both parental and 
daughter flux thread a spot and in the lowest energy state of the system (the ground 
state), the flux is partitioned according to (10) and (11).) However,  the flux changes 
only need be of the order of 9% as indicated. If energy is stor+d by an increase in spot 
flux, both parental and daughter flux will increase by 9%. The small magnitude of the 
changes and the spatial resolution make observations difficult and we have still to 
consider plasma effects. 

On the basis of laboratory studies (Bratenahl and Baum, 1976), we have acquired 
some knowledge of plasma effects in reconnecting systems. The presence of plasma 
controls the separator voltage Vs = -d053/dt (Section 1C) which is the reconnection 
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rate or rate of flux transfer into (or out of) the daughter cell. Thus with plasma 
present, Faraday's law, Ohm's law, and the circuit relation A& = L I  give 

_d~__~=rb = I R  = R~ d40 = Vs. (17) 
dt L 

Here I is the current induced along the separator, R is the effective resistance, L is 
the inductance associated with the current path, and '-kb is the stored flux associated 
with/ .  On the other hand, with no plasma present the voltage corresponding to the 
rate of change of flux in cell 3 is - d F / d t  which is greater than -dd)3/dt  by the amount 
d(d&)/dt:  

dE dq~3 d(A~) 
+ - (18) 

dt dt dt 

Hence, the equation for flux storage A& is 

R d F _  d(A&) +- -  A& (19) 
dt dt L 

in which 

d F  OF 04)0 OF aa OF OZo 
- - -  - -  ~ - - q  ( 2 0 )  

dt Ogao Ot Oa Ot OZo Ot 

Therefore, - d F / d t  acts as an EMF. From (19) the flux storage for times t-> tl is (for 
d2F/dt 2 = O) 

{[ [R ]} - L  OF R a 4 ( t , )  ] - g  
A & - - ~ - ~  1 -  1 L - - ~ T d - t j e x p  ( t - t l )  (21) 

and the stored energy is 

(.r (~ )  2 

,_1U,. = - -  (22) 
2L 

The details of the time release of this energy are presented elsewhere (Baum et al., 

1978). One way of estimating R is to measure the time ~ between repeating flares 
and to assume that ~ - L / R .  We note that (21) and (22) have the asymptotic flux and 
energy storage limits 

= - L  

and 

A U , , ~ -  L (~-F) 2 
2R 2 (24) 
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If we now identify ~ = L / R  as an energy storage time then (24) can be rewritten 

1 (.~_tF) 2 q..~2 (Aq5) 2 
A U,, = - ~  2L 

From (17) and (23) we note that since Vs = (R /L )  Aeb, Vs -+ - d F / d t  as t -+ oo. This is 
true for all times t in the no plasma case. Hence, the plasma reconnection rate 
asymptotically approaches the vacuum rate. This confirmation of a conjecture by 
Yeh and Axford (1970) and Yeh (1976) has been referred to as the Yeh-Axford  
theorem (Bratenahl and Baum, 1976). Note that many elements of the Yeh-Axford  
theorem are supported by the numerical MHD solution of Ugai and Tsuda (1979). 

In (24) we note that the energy storage capacity is proportional to the square of 
both the no-plasma reconnection rate dF/d t  and the plasma conductivity. This latter 
condition makes it evident that the integrity of the energy storage reservoir depends 
on the stability of the conduction mechanism. Finally, we note that the foregoing 
no-plasma cellular flux analysis provides the formalism by which we can compute the 
energy available for flares in terms of changes in the parameters describing spot 
strengths and their geometrical arrangement. 

In analogy to laboratory experiments (Bratenahl and Baum, 1976) we expect that 
during the intraftare phase the parent cells might decrease in flux for only a short time 
of the order of a few fast mode transit times (from the spots to points in the parent 
cells with a characteristic distance equal to the separator distance). Thereafter,  the 
fields and fluxes in the parent cells may be restored to their previous interflare values. 
Therefore,  we expect that considerable caution must be used in interpreting flare 
related magnetic field changes. 

Based on a point charge model we have calculated the height of the separator, 
finding it to be proportional to the separation of the bipolar pairs for large 
separations. We have further calculated the magnetic flux in all cells of an inter- 
connected colinear bipolar pair. For large pair separations the parental flux exceeds 
the interconnected flux. 

In the potential limit by Faraday's law the vacuum separator voltage may be 
calculated from the time rate of change of flux. This was used as a driving EMF in 
calculating the separator electric field of reconnecting plasma systems and in 
computing the stored flare energy. The results will also be of use in testing modified 
numerical solar magnetic flux codes capable of computing cellular flux A,bi and their 
time changes A~i which are specific flare variables rather than active region variables 
as in the Schmidt method. Further,  the results will be valuable in comparing with 
further laboratory data on bipolar pairs. 
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