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Abstract. In this paper we propose and test a new method of multitemperature analysis of solar X-ray 
spectra. The method, which is based on a technique developed by Withbroe (1975), is designed to be used 
in the interpretation of spectra, to be measured by the X-Ray Polychromator on the Solar Maximum 
Mission. Various tests of the method on simulated temperature models establish its usefulness, generality, 
and stability. The possibilities of deriving the relative element abundances are analysed. The results of the 
present paper extend the possibility of the multitemperature analysis of X-ray spectra as compared with 
the results of Craig and Brown (1976a, b) and Craig (1977). 

1. Introduction 

The determination of the tempera ture  structure of a hot (T  ~> 10 6 K), optically thin 

plasma is one of the main problems in astrophysical plasma diagnostics. Many 
at tempts have been made to develop the best method for the mult i temperature  
analysis of a solar active region plasma. In several early papers the authors have 

assumed a constant tempera ture  all over the emitting region. With this assumption, 

the flux ratios measured in suitable lines or wavelength bands were used to derive two 
plasma parameters:  tempera ture  T and emission measure e (Kahler et  al., 1970; 

Landini et aI., 1972). However ,  the tempera ture  derived from different flux ratios 
yields values from 1.5 to at least 30 x 106 K during solar flares, so it seems natural to 

use a mul t i temperature  model  of the emitting plasma in the analysis of solar X-ray 
data covering the extended wavelength region 1-25 ~ .  

Batstone et al. (1970), Chambe (1971), Walker  (1972), Meekins (1973), Jakimiec 
et al. (1974), Walker  et al. (1974a, b, c), Phillips (1975), Parkinson (1975a), have 
analyzed the X-ray line emission of non-flaring solar active regions in terms of a 
mult i temperature  model. Analysis of solar X-ray flare data was per formed by Horan  

(1971), Herr ing and Craig (1973), Dere  et al. (1974), Horan  et al. (1974), Craig 

(1975), Sylwester (1980), Landini and Monsignori Fossi (1979). 

Craig and Brown (1976a, b) have strongly criticized the mul t i temperature  analysis 
of X-ray spectra and point out ' fundamental  limitations' of such a type of analysis. 
But they use a mathematical  method of solution that is inappropriate  for this 
problem, as it does not exclude a priori negative values of the emission measure.  In 
the context of the present  paper,  this point seems to be the main cause of their very 
critical statements.  

* On leave from Polish Academy of Sciences, Space Research Center, Wroclaw, Kopernika 11, Poland. 
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The aim of our paper is to propose and to test a new method of multitemperature 
analysis of X-ray spectra, based on the paper by Withbroe (1975). The method is 
designed to be used in the interpretation of spectra, to be measured by the X-Ray 
Polychromator (XRP) Flat Crystal Spectrometer, part of the Solar Maximum 
Mission (SMM) (Acton et al., 1980). The paper shows that the multitemperature 
analysis of solar X-ray line emission is valuable and useful. In the following sections 
we redefine the differential emission measure (DEM), present the method used, 
perform various tests, indicate the possibility of an a posteriori search for instrument 
calibration errors, and point out how to determine relative element abundances. 
Everywhere in the paper we use the assumption of quasistationarity of the emitting 
plasma, which means that we assume that the relaxation time of the ionization 
equilibrium in the emitting plasma is shorter than the characteristic time of the 
temperature variations. The analysis of a nonequilibrium plasma is presented 
elsewhere (cf. Sylwester et al., 1980). 

2. Differential Emission Measure 

The concept of a differential emission measure (DEM) was considered by Jefferies et 
al. (1972), Walker etal. (1974a), Phillips (1975), Sylwester (1977). The most suitable 
definition of DEM seems that given by Equation (9) in Craig and Brown (1976b). But 
this definition, which involves an inverse temperature gradient, cannot be used in the 
case of a partly isothermal region. This is the reason why we shall introduce here an 
alternative, physically simple definition of DEM, based on a concept of Jefferies et al. 
(1972). 

The X-ray spectrum for an optically thin thermal source may be written 

F(A) = / I  j" ~-(L T(r))N~ (r) d3r, (1) 
V 

where Ne(r) and T(r) are the electron density and temperature at position r in the 
source of volume V, A is the wavelength of the emitted radiation, and ~(A, T) 
denotes the theoretical spectral distribution function for an isothermal volume 
element of temperature T. 

Let us assume V to be the volume inside a spatial resolution element of the 
spectrometer used. The emitting plasma is assumed to be optically thin, so any simple 
geometrical rearrangement of the material inside V will produce the same photon 
emission. To characterize the volume structure of the plasma we can introduce a 
bivariate, volume vs temperature and electron density, distribution function 
7f(T, Are). The normalisation condition for this distribution will be 

o o  eJo 

I I  
T = 0  N e = 0  

?/ ' (T,N~)dT dN~= V = I I ;  d3r. (2) 
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Here ~(T, Ne) dT dare describes the volume element inside V which is occupied by 
matter with temperature between T and T+dT and density between Are and 
Ne + dNo ~(T, Ne) involves all elementary volumes inside V characterized by the 
same temperature T and density Ne. 

Now we introduce the electron distribution function ix(T, Ne) by means of the 
expression 

N~ dV = dN(T, Ne) = Nix(T, Ne) dNe dT, (3) 

with dN the total number of electrons inside the resolution element sampled by the 
observation, that are present in the interval (dT, dNe). Integrating Equation (3) over 
Ne we obtain the number of electrons N (T) d T being inside the temperature interval 
dT: 

Here 

N(T) dT= Nc19(T dT) .  

oo 

cl)(T) = I ix(T, Nr dNe 

is the temperature distribution function for electrons inside V. 
Using Equations (1), (2), (3) we obtain 

co oo 

F ( a ) =  I I ~(a,r)NNeix(T, Ne) dNedr  
T = 0  N e = O  

oo co 

r = 0  N e = 0  

Let us call the integral 

6(T)=N I 
N~=O 

(4) 

(5) 

the differential emission measure at temperature T. Using the mean electron density 
A?e(r) defined as 

l~e(T~ IN.=ONeix(T, Ne) dN~ 
' ' =  I-2 o  ' (7) 

Equation (6) becomes 

&( T) = NI~'e( T) 4)( T) . (8) 

So, the DEM at a given temperature T is a product of the temperature distribution 

oo 

Neix( T, N~) dNe (6) 
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function for N electrons inside V and their mean density at this temperature. 
Equation (8) can be particularly useful when attempts are made to derive DEM 
distributions from theoretical considerations giving the relation between Ne (T) and 
@(T). From Equation (8) it clearly follows that ~b (T) is a temperature distribution 
function. 

Rewriting Equation (5) with the use of Equation (8) for the case of an X-ray 
emission line 'i' we find 

oo 

Fi=A,  I f i (T)&(T)dT.  (9) 
T = 0  

We have assumed here that the abundance Ai (of the element forming line i) relative 
to hydrogen is constant inside volume V; f~(T) is the emission function in the line 
(the flux in the line at a distance of 1 AU emitted by a plasma of unit emission 
measure at temperature T, with unit abundance). Values of f~(T) can be calculated 
theoretically (see later). 

3. Method of DEM Distribution Calculations 

The calculation of a model (hereafter the term 'model' denotes the DEM distribution) 
of the emitting region is the main aim of many XUV and X-ray spectroscopy 
experiments (see Walker, 1972; Jordan, 1975; Parkinson, 1975b; and Walker, 
1975). The data often used for this purpose are absolute fluxes in several strong 
X-ray lines. Because of the different temperature sensitivity (different corresponding 
~(T) functions) of the lines used, the thermal structure of the emitting regions is 
reflected by the relative fluxes of the measured lines. In the process of model 
determination we try to find that temperature model 4~(T) of the emitting region, 
which gives agreement between the calculated and the measured fluxes in the lines. 

Mathematically, the problem can be posed in the following manner: we have 
measured fluxes Fe, i = 1 . . .  k, for which the emission functions and abundances are 
known, and we try to find the model function & (T) (always non-negative) by solving 
the system of Equations (9) with i = 1 . . .  k. 

Some different methods have been proposed to solve this system: the quadrature 
method in which the integral is replaced by some quadrature approximation 
(Batstone et al., 1971; Parkinson, 1975a) after which a system of linear equations is 
solved using appropriate techniques; the method of parametric functions, in which 
O(T) is represented in the form of an assumed parametric expression (Chambe, 
1971; Walker et al., 1974a; Phillips, 1975), and after integration, the parameter 
values are found usually by means of a best fit procedure. An extensive mathematical 
analysis of the quadrature method of solution for Equation (9) can be found in Rust 
and Burrus (1972). 
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The reality and inner consistency of model calculations are discussed often in 
terms of the parameter X 2 given as 

X 2= ~ (Fi-Fic)2, (10) 
i = 1  O' i  

where Fie is the line flux calculated from model ~b(T) using Equation (9). The error o-i 
should be interpreted as an error consisting of the uncertainties in the meas.urements, 
in the abundances A~, and in the function fi(T). In the following calculations we have 
assumed, for simplicity, the last two uncertainties to be negligible. 

A X 2 value near the expected value indicates that the calculated model is in 
agreement with the measured line fluxes. The interpretation of 2 values in the case 
of a parametric estimation can be found in Lampton et al. (1976). 

The expected high resolution and calibration accuracy of the planned XRP 
experiment (Rapley, 1977) may create a situation, where a significant difference 
exists between the accuracy of the measurements and the level of sophistication of 
the methods for data analysis. We have performed a critical search for the accuracy 
and the possibilities of existing methods of line flux analysis and we have found that 
most of the proposed methods are not sufficiently general and not able to match 
different expected models of active regions (both flaring and non-flaring). The 
quadrature methods are limited by the number of lines of different temperature 
sensitivity, while the parametric method limits the class of models which can be fitted 
by assuming a priori a general form or & (T). Only one method, used for the analysis 
of the chromosphere-corona transition region (Withbroe, 1975) seems to be a good 
basis for the model analysis. It fulfils the condition that ~b(T)-> 0 and can meet our 
needs in accuracy after some modifications. 

The method is an iterative procedure in which the next approximation of the 
model, &j+I(T), is calculated from the preceding one, ~bj(T), by means of the 
following formula: 

qSi+i(T) = qSi(T) E ~  CF, W,(T) (11) 
Li=l W/(T) " 

The weight functions W~(T) are chosen such that the correction factor CF~ = FdF~c 
improves the model most efficiently at those temperatures, where the particular .line i 
is formed: 

-fi(T~' "T" S~ r lF , -F ,  cl q_l] a (12) 
w , ( r ) - , , .  L o-, _, ' 

o0 

Fic =Ai I fi(T)4aj(T) dT, (13) 

0 

where the parameter a -> 0 (or < O) for Fi -> (or < )F~c. The last factor in parentheses, 



290 J. SYLWIESTER ET AL. 

which has been added to the weighting function used by Withbroe (1975), takes into 
account the errors of the flux measurements.  It is defined such that when the 
difference between the measured and calculated fluxes of a particular line (F, and F~o 

respectively) is relatively high, it significantly differs from 1, thus laying more 
emphasis on the correction of the model for this line. The form of this error weight 
was found semi-empirically. It turns out that by taking a value for the parameter  a of 
the order  of o'i/F~, we obtain the best convergence of the iteration procedure. 

From the formulae for the iterative procedure it is clearly seen that the method 
gives non-negative values for 4~ (T) (the operations to be performed to calculate the 
next approximation for ~b (T) do not change the sign). By this property the method 
fulfils the requirement  that the emission measure should always be positive. In the 
calculations one can use a zero approximation ~bo(T) = const., which seems reason- 
able when no other  a priori information exists. 

An important  step after the model determination is the estimation of errors in the 
model caused by errors in the measured line fluxes. Our intention is to find the set of 
models which gives an agreement between measured and calculated fluxes better  or 
equal to the errors of measurement  or/. This condition can be written in the form of a 
set of integral equations: 

o o  

Vi• ~ [~bc(T)+~b(T)]fi(r) dT,  i = 1 . . .  k ,  (14) 

0 

where 4~c(T) denotes the best model calculated and r is the unknown error 
function. Equation (14) can be rewritten using Equation (9) as 

o o  

= IF'-F/~I+~'->A' I o(r)f~(T)dr,  i . . .  k .  (15) O'~ 

0 

The absolute value of the difference between the measured and the calculated line 
fluxes can thus be treated as a part of the estimated maximum error or* in the line i. 

Equation (15) for the error  function O(T) has been solved analytically for the 
following two cases: 

(1) 'Single-temperature'  error  case. 
(2) 'Continuous'  error case. 
In the first case we assume that O(T) is a delta-type function, which means 

physically that the calculated model &~ (T) is everywhere a very good approximation 
to the real distribution, except at one temperature  To, where deviations + O(T0) 
occur. 

Solving Equation (15) separately for each line we obtain a set of equations for 
~ ; (To) , i=  1 . . .  k: 

r Ai~(To)' i= 1 . . .  k .  (16) 
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For each temperature To we thus have k @i(To) values, the smallest value of which 

gives the error: 

$M(To) = min ]61(To)I, i = 1 . . .  k. (17) 

The values • ~M (To) define the 'maximal' perturbation which can be inserted in the 
model ~c(T) at temperature To without giving a disagreement between calculated 

and observed line fluxes greater than any of the o-* errors. 
In the second case we assume that the error ~i(T) in line i is smoothly distributed 

over the whole temperature range of line formation AT/, in the sense that each 
temperature interval inside AT/gives the same contribution to the error, i.e. 

4i(T)fi(T) = const, inside ~1Ti, 

~,i(T)f~(T) = 0 outside. 

We define LIT~ as the temperature interval where 99% of the line flux arises in the 

model ~bc(T). 
Using Equation (15) we obtain 

~,i(T) i = i . . .  k .  (18) 
Agfi(T)AT~ ' 

Taking again 

g,c ( T ) =  min IO,(T)I, i = 1 . . .  k ,  (19) 

we define the limits ~b~ (T) + $c (T) for the family of continuous model solutions which 
result in line fluxes being in agreement with the measured fluxes better  than the ~r/* 
e r r o r s .  

The temperature range AT where I~,~(T)I~>I~(T)I can indicate roughly the 
temperature interval where the model estimation is meaningful. This interval will be 
important for model comparison (see next section). 

It should be noted that the way of error analysis presented is very simple. One can 
investigate this problem statistically by solving many times the system of Equations 
(9), after adding to the measured fluxes errors distributed normally with standard 
deviation o-~. The resulting family of solutions can give information about the possible 
errors in the model estimation. Such an error analysis can be made for any set of 
measured line fluxes. 

4. Tests of the Iterative Method 

The simplest way to test a complicated iterative procedure for model calculations is 
to check the results of its application in the analysis of artificially generated models, 
i.e. to look how closely the calculated models agree with the ideal generated ones. 
The procedure for such a comparison can be as follows. Using the assumed model 
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q~g(T) we can calculate the fluxes in the set of basic lines using the formula 

co 

Fig =A, f f,.(T)&g(T) dT. 
0 

(20) 

Then, these fluxes can be treated as observed ones (F~ = Fig) and used as input data 
for the iterative method. As the result of the iterative calculations we obtain the 
model &~ (T) which z . . corresponds to the smallest 2" value occurlng m the calculations. 
As a test of the agreement we can use the value of the following parameter:  

o" = A---T1 f l_~J[&g(T)-&c(T)]2 d T ,  

A T  

(21) 

where AT is the temperature  interval in which we compare the assumed and 
calculated models. This interval should be chosen in accordance to the temperature 
interval in which the lines are sensitive to model variation. From Equation (21) it is 
seen that o- = 0 when Og(T) - &c(T) and cr -~ 1 when Og(T)/&c(T) differs much from 
unity. The parameter  o- is convenient for the comparison of continuous distributions, 
the absolute values of which change by many orders inside the comparison interval, 
but it is not very useful when calculated models (always continuous) are compared 
with assumed models of the delta-type. In such cases we shall use two parameters: 
T m -  the temperature  of the maximum in the calculated &c(T) distribution and the 
value of the F W H M  of this distribution. These two values together with e (see later) 
characterize the fit of the continuous distribution to the delta-type one. As a 
universal test parameter  we will use the ratio ec/eg df calculated to assumed total 

emission measure, e is defined by 

e = f &(T)dT. 
A T  

(22) 

From Craig and Brown (1976b) follows that a very important characteristic of a 

method is its stability. Stability in this context relates to the response of the calculated 
model to perturbations in the line fluxes used. If small perturbations in measured 
fluxes (measurement errors) induce strong variations in the solution, than the method 
(not always the problem) is unstable and can not be successfully used. The stability 
test can be performed by comparison of or, or Tm and the F W H M values for 
per turbed models with unperturbed ones. 

The inspection of usefulness, accuracy and stability of the proposed method can 
also be made by visual comparison of generated and calculated models. Such a 
comparison can give an impression of the limits of the physical interpretation of the 
measured fluxes. 
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5. Results 

We have based our tests of the method on two sets of lines, which could be measured 

by means of the XRP spectrometer. The first set consists of 7 lines, planned to be 
used in the Polychromator Mapping Mode (PMM) (Rapley, 1977). These lines are 

denoted by an asterisk in Table I. The other, extended set involves the PMM set plus 7 

other lines which are given also in Table I. All the lines used are resonance, most 

prominent lines arising from the H and He like ions of 7 elements: O, Ne, Mg, Si, S, 

Ca, and Fe. Emission functions for these lines were calculated using the collision. 

strength approximation of Mewe et al. (1980a). The ionization equilibrium cal- 

culations were performed using the rate coefficients given by Mewe and Schrijver 

(1978) as updated by Mewe et al. (1980a, b). In the resonance line emission function 
calculations we took into account the processes of: direct excitation, cascades, 

radiative recombination, and dielectronic recombination. 

TABLE I 

The set of resonance lines used in the model analysis 

Line No. A (~) Isolectr. Element Tmax (106 K) 
sequence 

1 1.7805 H Fe 130 
2* 1.8505 He Fe 71 
3 3.0209 H Ca 58 
4* 3.1770 He Ca 30.5 
5 4.7295 H S 26.5 
6* 5.0386 He S 15.5 
7 6.1824 H Si 16.7 
8* 6.6478 He Si 10.5 
9 8.4211 H Mg 10.2 

10" 9.1688 He Mg 6.3 
11 12.1338 H Ne 5.9 
12" 13.4481 He Ne 4.1 
13" 18.9687 H O 3.0 
14 21.6044 He O 2.1 

Theoretical wavelengths are taken from Vainshtein and Safronova 
(1978), and are corrected for the Lamb shift (+0.0007/~), (cf. 
Korneev et aI., 1979). For H-doublets the mean value of A is given. 
Tm~x is the temperature of maximum power emitted in the line (cf. 
Figure 1). 
* Used in the Polychromator Mapping Mode of XRP. 

We present in Figure 1 the calculated emission functions. The numbers denoting 

functions correspond to line numbers in Table I. The temperatures Tmax where 
maximum power is emitted in the lines cover the range from 2 to - 7 0  x 106 K. We 

have therefore used this temperature interval for the model calculations. The heavier 

lines in Figure 1 correspond to the PMM line set. 
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Fig, 1. Calculated emission functions for the 14 lines used in the model analysis. Number denoting 
curves correspond to lines in Table I (heavy curves indicate the lines of the PMM line set). 

In the model  calculations we have everywhere assumed a constant zero approxi-  
mation m o d e l  ~bo(T)= 2 x 1042 cm -3 K -1. We have found that the resulting best 

model  hardly depends on the shape of the zero approximation,  as long as this 
approximat ion does not oscillate with a characteristic period shorter than 30 • 106 K, 
but we have found that a suitable zero approximation can save much computer  time. 

The use of a constant zero approximation seems to be a justified assumption when 
other  information does not exist. Physically it means that we assume that the 
emission measure  is equally distributed over  all temperatures.  The assumption of a 
constant emission measure  implies some kind of smoothing in the solution (smooth 
dda(T)/dT). If some foreknowledge about  the structure of the model  is available, 
such information can easily be taken into account in the zero approximation.  

After  many  test calculations we have found that in most  cases it is sufficient to stop 
the model  calculations after about  150 iteration steps, since convergence within 
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0.1% for the model function ~b(T) is then reached. As the best calculated model 
(T) we have adopted the model corresponding to the smallest ~(2 value. In all cases 

considered (except in some cases for perturbed model calculations, see later) the 
parameter X 2 converged until the last iteration. 

First we have tested the ability of the method to fit different assumed (generated) 
models. The results of calculations for continuous generated models of the type 
~ g ( T )  = A x 10 -~r are presented in Figures 2, 3, and 4. In Figures 5 and 6 fits to 
delta-type models are presented. Figures 7 and 8 deal with mixed (continuous + 
delta-type) models. In all these figures the heavy line corresponds to the model 
calculated using the PMM line set while the dashed line refers to the calculations 
based onthe  extended line set. In Figure 2 we have hatched the 'continuous' error 

r - - i  
,'T 

E 
u 

I -  

9- 

0 

T 

42 

41 

40 

39 

38 

37  
o lO 15 

- - , " , - -  T [106K3 

Fig. 2. Comparison of assumed (thin line) with calculated (heavy line) model.  The 'continuous' error 
area is hatched, while dash-dot lines represent the 'single-temperature' error limits. The calculations were 

done for the PMM line set. For the calculation of the error see text. 
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Comparison of assumed (thin line) with calculated (heavy line) model. Calculations are based on 
the PMM set of lines. 

area (every model inside this area is in agreement with the 'measured'  line fluxes 
within the errors o-/* (see Equations (15), (18), and (19)). The error o'i we have 
calculated by taking the square root of the number of counts in line i as measured by 
the FCS in a 1 s integral scan and assuming for simplicity an efficiency 
-0 .01 /Ai  ct cm 2 phot  -I (Ai is wavelength of line i in ~).  The limits of the single- 
temperature error (Equations (16) and (17)) in the model are also presented 
(dash-dot line). The characteristics of the model fitting for the continuous and 
delta-type models are given in Table II. 

Comparison shows that for all continuous models considered input and calculated 
models nicely agree. The use of the extended line set improves the fit (compare o- (cf. 
Equation (21)) in Table II). For delta-type models the maxima of the calculated 
distributions coincide well with the position T~ of the delta models. The F W H M 
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Fig. 4. Comparison of assumed (thin line) and calculated (heavy or dashed line) models. Heavy line 
indicates calculations with PMM line set, dashed line corresponds to calculations with extended line set. 

values in Figures 5 and 6 and Table II indicate the resolution level that can be 
obtained with the line emission functions as given in Figure 1. It can be seen that 
these FWHM values are small for temperatures lower than 20 • 1 0  6 K,  increasing 

rapidly for higher temperatures. The use of the extended line set improves the fit 

significantly (compare FWHM in Table II). For mixed models.~ visual inspection 
shows that calculated models are in qualitative agreement with the input models. 
Figures 7 and 8 clearly show that in ,many different situations the presence of 
quasi-isothermal regions embedded in a continuous temperature distribution can be 
resolved on a scale determined by the width of the line emission function used. 

We should stress once more that, besides the method itself, the only a priori 

assumption used in the model calculations is, that the zero-approximation is chosen 

constant in all cases. 
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TABLE II 

The fit of calculated to input models. 

Continuous models of the type ~g(T) = A • 10 -~T (cm -3 K -1) 

Input model parameters Calculations based on 
PMM line set 

A (1043 cm -3 K -1) o~ (10 -7 K -I) sg (1048 cm -3) o- (10 -2) X 2 sr 

Calculations based on 
extended line set 

o- (10 -3) X 2 ec/eg 

2 5 5.49 
2 3 14.5 
2 1 69.0 
2.0 -7 -1 109 a 

3.06 5.06 .5 0.69 
3.28 1.91-3 0.79 
3.47 8.15 -2 0.93 
7.14 3.04 0.96 

1.55 2.93 -5 0.96 
1.61 2.10 -4 0.98 
5.30 4.11-3 1.00 
8.66 0.237 0.99 

Delta-type isothermal models 

Input model parameters Calculations based on 
PMM line set 

Calculations based on 
extended line set 

T8 (106 K) eg (1049 cm -3) Tm (106 K) FWHM ec/eg Tm (106 K) FWHM ecleg 
(106 K) (106 K) 

2 3 2.0 <0.5 1.16 2.0 <0.5 1.16 
5 9 5.0 <0.5 1.02 5.0 <0.5 1.02 
7 13 7.0 0.5 1.00 7.0 <0.5 1.00 

10 19 9.9 1.1 0.99 10.0 0.8 0.99 
15 29 14.8 3.1 0.96 15.0 2.2 0.98 
20 39 19.6 5.7 0.98 20.0 3.4 0.98 
30 59 30.0 10.4 0.98 30.0 7.2 0.98 
50 99 55.0 39.0 1.00 51.0 18.4 0.98 

a Emission measure calculated inside the temperature interval 1-71 x 10 6 K. 
N.B.: 5.06 -5 means 5.06 x 10 -5, etc. 

To  be sure abou t  the results of the i terat ive method ,  we have pe r fo rmed  tests of the 

stabili ty of the method .  Us ing  two inpu t  models ,  one  con t inuous  (d~g(T) = 2 x 1043 x 

10-3xl~ the o ther  a de l ta - type  one  at t empera tu re  T8 = 15 x 106 K, we cal- 

culated the full set of 14 expected l ine fluxes Fig using E q u a t i o n  (20), after which we 

pe r t u rbed  these fluxes r andomly  with ampl i tudes  of 20, 30, and  50%.  As a result  of 

the pe r tu rba t ions  we have ob ta ined  14 fluxes F~p. (For fu ture  use we define an inpu t  

pe r tu rba t i on  factor  X~ as X~ = F~p/~g). We then  have used the pe r tu rbed  fluxes for 

calculat ions of ' p e r t u rbed  models ' .  For  each family (corresponding to a given 

p e r t u r b a t i o n  ampl i tude)  of such models ,  p resen ted  in Figures 9 to 11 we have 

der ived some m e a n  characterist ics and  their  s tandard  deviat ions.  We have put  the 

results in Tab le  I I I  and  in Figures  9, 10, and  11. The  n u m b e r s  in the co lumns  of Table  

I I I  headed  by a given pa rame te r  are the ar i thmet ic  m e a n  values ob ta ined  from 10 

different  calculat ions pe r fo rmed  with a given pe r tu rba t i on  ampl i tude .  The  co lumns  

m a r k e d  'dev '  conta in  the values of the s tandard  devia t ion  in % of the cor responding  
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calc. model without perturbat ion 
perturbed models 

I I S\ "~t 
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Fig. 9. Stability test of the iterative method. Each model plotted was calculated using the perturbed line 
fluxes (of the PMM line set). The amplitude of the random perturbation was taken equal to 20%. The 

unperturbed fluxes were calculated using the model ~b(T) = 2 • 1043 1 0 - - 3 x l 0 - 7 T ( c m  -3  K-I). 

mean  value. We  have done  two types of perturbation analysis, using mode l  cal- 
culations both for the P M M  set and the extended set of  basic lines. The results of  the 
stability analysis performed show that even 20% perturbations in the line fluxes are 
not fo l lowed  by large disturbances in the calculated models .  This result, valid for the 
P M M  and the extended set extends the limits of  the mult itemperature analysis given 

by Craig and Brown (1976b)  and Craig (1977).  
It was found that the values of  tr and X 2 are not  significantly correlated, but in 

most  cases minimal 2 "2 and minimal o- occur in the same iterations step. For large 
�9 �9 2 

perturbations (30 and 50%) we have found some  cases where the minimal 2" occurs 
2 

before  the minimal  o- in the iteration process.  But even in these cases the rise of  X 



M U L T I T E M P E R A T U R E  A N A L Y S I S  O F  S O L A R  X - R A Y  L I N E  E M I S S I O N  3 0 3  

43 

'-E 

E 
,~, 42 

9- 
g, 

41 

4 0  

39 

I I I 

EXTENDED LINE SET 
30"1. PERTURBATION 

I I \t , ,m 
0 5 10 15 

T [10 6 K] 

Fig. 10. For description see Figure 9. In this case the amplitude of the random perturbation in the line 
fluxes (of the extended line set) was assumed to be 30%. The same model 4~ (T) as in the previous case was 

used. 

after the minimum was insignificant. For the largest per turbat ion (50%) in the 
continuous case, the minimal )r occurs sometimes at the beginning of the iteration 
process (after 10-30 steps) and then )r grows. In such cases the method is divergent. 

The per formed stability analysis indicates that the proposed method of D E M  

model  calculations is sufficiently stable to be used in the analysis of X-ray line fluxes, 
when the fluxes are known with an accuracy bet ter  than 20% (the expected XRP 
accuracy is better). In the model  calculations, besides the model  itself, we can 
calculate the ratios of the observed input line flux to the calculated line flux (cf. 
Equat ion (13)), i.e. FJFic. In the case of the 'per turbed '  calculations Fi = F~p, so after 
the model  calculations we can have F~p/Fgc = Y~ values also. We will call these ratios 
detected perturbations.  Comparing these detected perturbations Yi with the input 
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I I I I I I 

4 4  E X T E N D E D  L I N E  SET 
30  */. P E R T U R B A T I O N  
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U 

~ 42 

41 

0 5 10 15  2 0  

" '  T [ 1 0  6 K3 

I 
2J~ 30 

Fig. 11. For description see Figure 9. The random perturbation amplitude of the line fluxes (extended 
line set) was assumed to be 30%. The unperturbed line fluxes were calculated using a delta-type model 

with temperature Ta = 15 • 106 K. 

per turbat ions Xi (defined previously), we have found that for most lines used, the 

input and detected per turbat ions are highly correlated. In Table IV we present  the 

results of the correlation analysis for each line separately. In deriving the correlation 
propert ies  we have used the extended set of lines, taking the input and output  factors 
f rom the stability calculations. In Table IV we give the correlation coefficients r, and 
the parameters  defining the regression line. For both cases we see that the regression 
line crosses the point (1, 1) within an accuracy of some percent  (see a + b row). This 
means that if the input per turbat ion factor is 1 (no perturbation) then the expected 
detected per turbat ion is i too. The results of the correlation analysis show that for all 
the lines used (except lines No. 1, 13, and 14, for the continuous case, and line 1, for 
del ta-type models) the input and output  per turbat ion factors are well correlated. 
This fact allows us to track possible errors in the instrument calibration, the element  
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abundances or the emission function approximations, viz., if after many real model 
calculations it turns out that the detected perturbation factors systematically differ 
from unity. It will be hard to decide what kind of error  causes the difference. We 
have performed calculations which indicate that when inappropriate approximations 
for the emission functions are used, for instance, systematically 20% too low, we can 
not reproduce the measured line fluxes in both H- and He-like ions in the model 
calculations. It turns out that in this case the calculated He-like ion line intensities are 
about 10% too low, while the H-like line intensities are about 10% too high. So, if a 
systematic difference exists between the fit of the H- and He-like ion line intensities, 
it may indicate an error  in the approximation used for the calculation of the H / H e  
emission functions. 

The results of the use of inappropriate element abundances are shown in Table V. 
In this table we present the effects caused by applying a perturbation of - 20% to the 
abundance of one element on the value of the detected perturbations in all lines. We 
observe typically that the detected perturbations in the lines belonging to the 
per turbed element agree qualitatively with the inserted perturbation (the same sign, 
approximately half the amplitude) while in 2-3 neighbouring lines from other  
elements the reverse effect, i.e. enhancement  of the intensity can be seen. This effect, 
as in the previous case, is weak for the 'boundary'  Fe and O lines (Nos. 1, 2, 13, and 
14). If other sources of errors can be assumed to be unimportant,  the pattern 
observed in Table V can be used to improve the relative abundances of the elements 
used in the model calculations. Unfortunately,  however, H- and He-like resonance 
lines, originating from the same element fall within the same channel of the FCS. 
Consequently errors in the relative calibration of the FCS sensitivity in different 
channels will result in values of the detected perturbation that are very similar to 
those caused by errors in the relative abundances. The problem of the separation of 
the abundance and calibration errors seems not easy to solve. We should mention 
that this problem is common to any method of line flux analysis, based on the 
considered PMM or Extended line sets. We hope that the fact, that the wavelength 
bands corresponding to each FCS channel overlap a little, can help in eliminating the 
uncertainties in the relative spectrometer calibration. Measurements of the 
continuum radiation level can also be very helpful in this context. 

Notwithstanding the different sources of errors, which probably will be small, the 
following procedure can be developed, which allows the study of a possible abun- 
dance differentiation in the coronal plasma. 

From the measured data (line fluxes in the extended set of lines) we choose a 
statistically significant set (hereafter reference set) corresponding to some preselec- 
ted type of plasma. If, as a result of the model calculations performed for the 
reference set the detected perturbation factors differ systematically from unity, we 
can formally 'recalibrate' the instrument or abundances or emission function 
approximations by applying to the measured line fluxes the multiplying correction 
factors in accordance to the regression line parameters given in Table IV, so as to 
provide a statistically exact agreement between the observed and modelled line 
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fluxes for the reference data set. We can use the derived correction factors to correct 
the line fluxes measured in other data sets. If for such a corrected data set, significant 
differences between corrected and modelled fluxes exist, these should be interpreted 
as a result of differences between the element abundances in the reference and the 
given type of plasma. Using such a procedure we hope to measure differences in 

the element abundances with an accuracy of a few per cent (physical processes which 
could cause differences in element abundances even within one active region are 
mentioned by Tworskowski (1975)). 

6. Conclusions 

We have performed a detailed analysis of a new iterative method for calculating the 
temperature distribution of the emission measure from X-ray line flux measure- 
ments. The method is designed to be used in the the interpretation of spectra to be 
measured by the X-ray Polychromator on board the Solar Maximum Mission. After  
various tests of the method, we have established its high usefulness, generality, 
stability, and ability to fit different kinds of simulated active region models. It turns 
out that the results of a mult i temperature analysis may be helpful for the final 
improvement  of relative spectrometer calibration. The possibility of deriving relative 
element abundances has been discussed. The method presented can be used for 
mult i temperature analysis of both non-flaring and flaring active region plasmas 
under conditions of quasi-stationarity. The results of the paper extend the limits of 
the mult i temperature analysis of line spectra as given by Craig and Brown (1967a, b). 

We have not analysed existing X-ray line flux measurements. Such attempts were 
made already in the papers of Sylwester (1977, 1980) (analysis of flare spectra 
measured and reduced by Walker (1974a)), and in the paper of Jakimiec et al. (1980) 
(analysis of narrow band, Ross-filter spectroheliograms from OSO-7, corresponding 
to a decaying post-flare loop). The proposed method of analysis can probably be used 
as well in the analysis of center-to-limb optical darkening, and in the analysis of hard 
X-ray data. 
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