KATSUMI NOMIZU*

ON COMPLETENESS IN AFFINE DIFFERENTIAL
GEOMETRY

In affine differential geometry there are at least three notions of completeness
for nondegenerate hypersurfaces M of the affine space R**!, namely:

(1) affine-metric completeness, that is, completeness of the Levi-Civita
connection of the affine metric of M (whether it is positive definite or
not);

(2) Euclidean completeness, that is, completeness of the Riemannian metric
on M induced from a Euclidean metric in R"*!;

(3) completeness of the canonical equiaffine connection on M (see Section 1
for this notion).

In [6,§7] Schneider, among others, has studied conditions (1) and (2) and
has given an example of a surface in R* which is Euclidean complete but not
affine-metric complete. Calabi’s work in [1], [2] shows the importance of
condition (1) in some global problems. In the present paper, we consider one
more completeness property:

(2') Lorentzian completeness, that is, completeness of the metric (assumed

nondegenerate) induced on M from a flat Lorentzian metric in R"*?,

It was shown in [4] that if M is a spacelike hypersurface in R"*! with
Lorentzian metric Z!.,dx? —dx2,, and if the induced metric on M is
complete, then the metric induced on M from the Euclidean metric 711 dx? is
also complete. In this sense, we may say that (2) implies (2) at least for a
spacelike hypersurface.

We wish to propose a more systematic study of these completeness
conditions, but the purpose of this paper is to give an example of a spacelike
surface M in R with metric dx2 + dy? — dz? (that is, the Lorentz—Minkowski
space L*) whose induced metric is complete but whose affine metric is not
complete.

In order to clarify our approach to affine differential geometry we shall start
with a brief introduction to the subject which emphasizes the notion of
equiaffine structure. An equiaffine structure on a differentiable manifold is a
pair (V, ), where V is a linear connection with zero torsion and 6 is a volume
element which is parallel relative to V. This approach was first given in my talk
at the Conference on Differential Geometry, Munster, June 1982 [5].
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1. BASIC THEORY FOR HYPERSURFACES

Let R"* ! be an (n + 1)-dimensional affine space with a volume element given
by the determinant: det(e,,...,e,) = 1, where {e,,...,e,} is the standard basis
of the underlying vector space for R"*!. We denote by D the standard linear
connection in R"*! relative to which the volume element ‘det’ is parallel.

To deal with a more general situation, let us consider an (n + 1)-dimensional
manifold M with a certain equiaffine structure (D,w), namely, a linear
connection D with zero torsion and a volume element w which is paraliel
relative to D. Let M be a hypersurface, namely, an n-manifold with an
immersion f into M. For a local theory, we think of M as imbedded and
suppress f in all basic formulas we write. Let £ be a transversal field of tangent
vectors on M so that for each x in M, the tangent space T, (M) s the direct sum
of the tangent space T,(M) and the span of £. For tangent vector fields X and Y
on M, we decompose DY at each point x in the form

(1) DyY = VY + KX, Y),
where V, Y is the component tangent to M and h(X, Y)¢ is the component in
the direction of £. It is quite routine to check that

2 (X,Y)->VyY

defines a linear connection on M with zero torsion and that

3) (X,Y)=hX,Y)

defines a bilinear symmetric form on each tangent space of M, called the second
fundamental form. Note that both the connection V and the form h depend on
the choice of £. In addition to (1), we may also decompose D¢ in the form

) Dy = — S(X) + t(X)e,
where S(X) is the component tangent to M and t(X)¢ is the component in the

direction of £. We see that S is a (1, 1) tensor and 7 is a 1-form. We shall also
define a volume element v on M by

5 0X,,....X)=wX,,....X,,5),
for any tangent vectors X,,...,X, on M. It is easy to check that
(6) V0 = 1(X)6.

Our approach is the following. Assuming nondegeneracy of M (as explained
below) we first show that there is a choice of ¢ for which the form t vanishes
identically so that the volume element @ is parallel relative to the connection V.
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We then impose one further condition which will determine &, V and 6
uniquely. The resulting pair (V, 6) is the canonical equiaffine structure on M.

Now for our purpose, we begin with

LEMMA 1. Let E=Z +ré be another choice of a transversal vector field,
where Z is tangent to M and r > 0 is a differentiable function. Then we have the
relationships
(i) h=rh

(i) VyY=V,Y +h(X,Y)Z

(i) T(X)=t(X)+ Xr/r + WX, Z)/r
between V, h, and t for & and V., h, and 7 for E.

Proof. Straightforward.

From (i) it follows that the condition that h is nondegenerate is independent
of the choice of £. In this case, we say that M is nondegenerate. Now we have

LEMMA 2. IfM is nondegenerate, then we can choose £ so that t = 0 (and thus

0 is parallel relative to ).
Proof. Forr=1,wecanfind Z such that (X, Z) = — 7(X) for every tangent
vector X.

REMARK. If Z denotes the set of transversal vector fields for which t =0,
then the map é€X — fisinjective. For, if ¢, e X, then in the notation of Lemma
1, 6 = G implies r = 1. From t =7 =0, we have h(X,Z)=0 for all X, so that
Z=0.

Now we impose a further condition on &. For h corresponding to £, let v be the
volume element on M defined by

(6) WXy, X)) = /ldet[i(X;, X ]I,

where {X,,...,X,} is any basis in the tangent space. Let us consider the
condition

O v=20.
By choosing a basis {X,...,X,} such that 6(X,,...,X,) =1, let

Then W(X,,...,X,)=./|H| and hence v=./|H|6; condition (C) is thus
equivalent to |H|= 1.

LEMMA 3. Let &, E€X, and write H and H for the values for £ and £ defined in
(M. If E=Z +ré as in Lemma 1, then

h=rk and H=r"**H.
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Proof. Straightforward.

In view of Lemma 3, we see that

_ h
- |H‘l/(n+2)

® h

is independent of the choice of & (8) is called the affine metric for the
nondegenerate hypersurface M. If £eX satisfies condition (C), then |H| =1 so
that i = hin (8). Thus the volume element 6 = v for & coincides with the volume
element @ for the affine metric h. The uniqueness part in the following theorem
follows from the remark just after Lemma 2.

THEOREM 1. If M is a nondegenerate hypersurface in M, we can choose a
unique transversal vector field E€X satisfying condition (C).

Proof. By Lemma 2, we choose {eX and compute H = H,. Take r=
|H|*2) and then choose a tangent vector field Z such that = Z +r& is in
Z again. Then H = H, is given by H/r=H/|H| so that |H|=1. Thus £eZ
satisfies condition (C).

The transversal vector field £ established in Theorem 1 is called the affine
normal for the nondegenerate hypersurface M. For this ¢, the second
fundamental form h coincides with the affine metric k, and the volume element
6 coincides with the volume element 8§ of the affine metric h. The linear
connection V arising from the affine normal is called the canonical affine
connection on M. The affine metric h is nondegenerate. The Levi-Civita
connection on M for the metric k will be called the affine metric connection.

When M =R"*! with its equiaffine structure (D,det), we obtain the
canonical equiaffine structure (V, ) on any nondegenerate hypersurface M in
R"* 1. This is indeed the object of study in classical affine differential geometry.

2. AN EXAMPLE

We shall give an example of a spacelike surface in the Lorentz—Minkowski
space I whose induced metric is complete but whose affine metric is not
complete. In fact, this surface is one of the surfaces constructed in [3] in the
following way.

Let f be a mapping of R? into L with metric dx? + dy* — dz*:

(u, $)eR? > f(u, ¢) = (x, y,2)e L,

where

) x=J 1+e¥dt, y=e“sho, z=¢"ch¢.
0]
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Then f is an imbedding of the entire (u, ¢)-plane R? into 1> and the induced
metric on R?2

(10) ds? = du? + e**d¢?

is positive definite. This metric is complete, since the transformation
(u,¢)—>(X,Y), where X =¢ and Y =e™* takes it into the Poincaré metric
(dX2+dY?)/Y? in the upper half-plane Y >0, which is known to be
complete. It also follows that (10) has constant Gaussian curvature — 1. We
denote by M, this spacelike surface f: R? - L3

In order to view M, from the affine point of view, we take a unit timelike
normal vector field £ and the corresponding second fundamental form h. It is
known, in the theory of submanifolds of a Lorentzian manifold, that the
Gaussian curvature K, which is — 1 for our surface M, is related to h by the
Gauss equation

—K=hX, X )h(X,, X5)— X, X,),

where {X,, X,} is an orthonormal basis (relative to the metric (10)) in the
tangent space. This means that from the affine point of view, the quantity H
defined in (7) for & is equal to 1. Thus the affine metric of M, coincides with h.
We know from [3] that

o0\ _ A
h(a,—a—;‘-)—e/ 1+e h(a‘,%)—o,

0 a u 2u
h<%,5$>—~e 14+ e

Thus h may be written in the form

(11) d02=(e"/ ’1+e2")du2+(e“ /1+62u)d¢2_

This affine metric is elliptic. In order to show that it is not complete, we recall
the following well-known basic fact.

LEMMA 4. Suppose that do? and di* are two Riemannian metrics on a
differentiable manifold such that do? < d72.
() If {x,} is a Cauchy sequence relative to d?, it is also relative to da>.
(i) If do? is complete, so is dt>.

To apply this lemma, let
di?= /1 +e*do? =e"du® + e*(1 + ¢**)d¢?
and observe that

do? <. /1 +e?de? =dz2.
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We shall show that the metric dz? is not complete. This implies that da? is not
complete.

Consider the curve C given by u = —t, ¢ = 0, where 0 < ¢t < 0. The tangent
vector (du/dt,d¢/dt) = (— 1,0) has a length (relative to dz?) equal to e~ "/%. So
the arclength of C is

j‘ e 2dt=2.

0

Obviously, the curve C has no limit point as ¢t — co. This proves that dt? is not
complete.

REMARK 1. The canonical affine connection V of M, coincides with the
Levi—Civita connection of the metric ds®. Hence it is complete. Thus M, is also

an example showing that condition (3) in the introduction does not imply
condition (1).

REMARK 2. It was also shown in [3] that for each a >0, a # 1, there is a
surface M, in I3 which is a nonstandard imbedding of the hyperbolic plane
into L3. We can show that each of these surfaces is affine-metric complete in the
following way.

The surface M, is defined by
x=J 1+a%sh?tdt, y=achush¢, z=achuchdg.
(4]
The induced metric on M is
ds? = du? + a®ch?ud¢?,

and the affine metric (which coincides with the second fundamental form of M,
as a spacelike surface of L?) is given by

h
do? = <_lz_%;)du2 +./1+a*sh*uachude?.
a

Case 1. a< 1. We have

h
1+a?shu<1+sh?u=ch?u so <—-Ec—u-——>>a

J1+a*sh?u
from which we have
do? > adu? + adg?.

Since the metric on the right-hand side is complete, so is do® by Lemma 4.
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Case2. a>1. We have

achu/ /1 +a?sh?u>1

so that
do? > du® + ad¢?.

Again, da? is complete.
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