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O N  C O M P L E T E N E S S  IN A F F I N E  D I F F E R E N T I A L  

G E O M E T R Y  

In affine differential geometry there are at least three notions of completeness 
for nondegenerate hypersurfaces M of the affine space R" ÷ 1, namely: 

(1) affine-metric completeness, that is, completeness of the Levi-Civita 
connection of the affine metric of M (whether it is positive definite or 
not); 

(2) Euclidean completeness, that is, completeness of the Riemannian metric 
on M induced from a Euclidean metric in R "÷ 1; 

(3) completeness of the canonical equiatfine connection on M (see Section 1 
for this notion). 

In [6,§7] Schneider, among others, has studied conditions (1) and (2) and 
has given an example of a surface in R 3 which is Euclidean complete but not 
affine-metric complete. Calabi's work in [1], [2] shows the importance of 
condition (1) in some global problems. In the present paper, we consider one 
more completeness property: 

(2') Lorentzian completeness, that is, completeness of the metric (assumed 
nondegenerate) induced on M from a flat Lorentzian metric in ~" + 1 

It was shown in [4] that if M is a spacelike hypersurface in R "+1 with 
Lorentzian metric E" dXk 2 z k = 1 --dx,+l and if the induced metric on M is 
complete, then the metric induced on M from the Euclidean metric E"+k= ~ dx2 is 
also complete. In this sense, we may say that (2') implies (2) at least for a 
spacelike hypersurface. 

We wish to propose a more systematic study of these completeness 
conditions, but the purpose of this paper is to give an example of a spacelike 
surface M in ~3 with metric dx 2 + dy 2 - dz 2 (that is, the Lorentz-Minkowski 
space L 3) whose induced metric is complete but whose affine metric is not 
complete. 

In order to clarify our approach to affine differential geometry we shall start 
with a brief introduction to the subject which emphasizes the notion of 
equiaffine structure. An equiaffine structure on a differentiable manifold is a 
pair (V, 0), where V is a linear connection with zero torsion and 0 is a volume 
element which is parallel relative to V. This approach was first given in my talk 
at the Conference on Differential Geometry, Miinster, June 1982 [5]. 
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1. BASIC  THEORY FOR H Y P E R S U R F A C E S  

Let R "+1 be an (n + 1)-dimensional affine space with a volume element given 
by the determinant: det(e 1 . . . . .  en) = l, where {e 1 . . . . .  e,} is the standard basis 
of the underlying vector space for R" + 1. We denote by D the standard linear 
connection in R" + 1 relative to which the volume element 'det' is parallel. 

To deal with a more general situation, let us consider an (n + 1)-dimensional 
manifold ~ with a certain equiaffine structure (D,o~), namely, a linear 
connection D with zero torsion and a volume element co which is parallel 
relative to D. Let M be a hypersurface, namely, an n-manifold with an 
immersion f into ~ .  For  a local theory, we think of M as imbedded and 
suppress f in all basic formulas we write. Let ~ be a transversal field of tangent 
vectors on M so that for each x in M, the tangent space Tx(M) is the direct sum 
of the tangent space Tx(M) and the span of~. For  tangent vector fields X and Y 
on M, we decompose DxY at each point x in the form 

(1) Dxg = VxY + h(X, Y)~, 

where Vx Y is the component tangent to M and h(X, Y)~ is the component in 
the direction of ~. It is quite routine to check that 

(2) (X, Y) ~ Vx Y 

defines a linear connection on M with zero torsion and that 

(3) (X, Y) ~ h(X, Y) 

defines a bilincar symmetric form on each tangent space of M, called the second 
fundamental form. Note that both the connection V and the form h depend on 

the choice of ~. In addition to (1), we may also decompose Dx~ in the form 

(4) Dx~ = - S(X) + z(X)~, 

where S(X) is the component tangent to M and z(X)~ is the component in the 
direction of ~. We see that S is a (1, l) tensor and z is a 1-form. We shall also 
define a volume element v on M by 

(5) o ( x l  . . . . .  x . )  = ~o(x ,  . . . . .  x . ,  O, 

for any tangent vectors X 1 . . . . .  X. on M. It is easy to check that 

(6) VxO = ~(X)O. 

Our approach is the following. Assuming nondegeneracy of M (as explained 
below) we first show that there is a choice of ~ for which the form T vanishes 
identically so that the volume element 0 is parallel relative to the connection V. 
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We then impose one further condition which will determine ~, V and 0 

uniquely. The resulting pair (V, 0) is the canonical equiaffine structure on M. 

Now for our purpose, we begin with 

LEMMA 1. Let ( =  Z + r~ be another choice of  a transversal vector field, 
where Z is tangent to M and r > 0 is a differentiable function. Then we have the 
relationships 

(i) h = rh- 

(ii) Vx Y = ~x Y + K(X, Y)Z 
(iii) f(X) = z(X) + Xr/r + h(X, Z)/r 

between V, h, and z for ~ and ~7,~, and f for (. 
Proof. Straightforward. 

From (i) it follows that the condition that h is nondegenerate is independent 
of the choice of ~. In this case, we say that M is nondegenerate. Now we have 

LEMMA 2. l f  M is nondegenerate, then we can choose ~ so that ~ = 0 (and thus 

0 is parallel relative to ~). 
Proof. For r = 1, we can find Z such that h(X, Z) = - r(X) for every tangent 

vector X. 

REMARK. If E denotes the set of transversal vector fields for which ~ = 0, 
then the map ~ eE --* 0 is injective. For, if ~, ( eE ,  then in the notation of Lemma 

1, 0 = 0 implies r = 1. From • = f = 0, we have h(X, Z) = 0 for all X, so that 
Z = 0 .  

Now we impose a further condition on ~. For  h corresponding to ~, let v be the 

volume element on M defined by 

(6) v(X 1 . . . .  ,X,) = ~/I det [h(X,, X j] l, 

where {X1 . . . . .  Xn} is any basis in the tangent space. Let us consider the 

condition 

( c )  v = o. 

By choosing a basis {XI, . . . ,Xn} such that O(XI . . . .  ,Xn) = 1, let 

(7) hij = h(X i, X j) and n = det [hlj]. 

Then v ( X x , . . . , X n ) = x / I H  I and hence v=~/ In lO;  condition (C) i s  thus 

equivalent to I HI = 1. 

LEMMA 3. Let ¢, (6E,  and write H and H for the values for ¢ and (defined in 
(7). I f  ( =  Z + r~ as in Lemma 1, then 

h = r ~  and H=rn+2/7 .  
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Proof. Straightforward. 

In view of Lemma 3, we see that 

(8) I = h 
Inll/t "+2) 

is independent of the choice of ~. (8) is called the affine metric for the 
nondegenerate hypersurface M. If ~eE satisfies condition (C), then IHI = 1 so 
that I = h in (8). Thus the volume element 0 = v for ~ coincides with the volume 
element 0for the affine metric t. The uniqueness part in the following theorem 
follows from the remark just after Lemma 2. 

THEOREM 1. I f  M is a nondeoenerate hypersurface in 1V1, we can choose a 
unique transversal vector field ~ E~, satisfyino condition (C). 

Proof. By Lemma 2, we choose ~eE and compute H = He. Take r = 
IHI 1/t"+2) and then choose a tangent vector field Z such that ( = Z + r ¢  is in 
Z again. Then / 7 = H :  is given by H/r=H/IHI so that 1/71 = 1. Thus ~-eE 
satisfies condition (C). 

The transversal vector field ~ established in Theorem 1 is called the affine 
normal for the nondegenerate hypersurface M. For this ~, the second 
fundamental form h coincides with the affine metric ~, and the volume element 
0 coincides with the volume element 0 of the affine metric f. The linear 
connection V arising from the affine normal is called the canonical affine 
connection on M. The affine metric 1 is nondegenerate. The Levi-Civita 
connection on M for the metric t will be called the affine metric connection. 

When ~ = R "+1 with its equiaffine structure (D, det), we obtain the 
canonical equiaffine structure (V, to) on any nondegenerate hypersurface M in 
R, + 1. This is indeed the object of study in classical affine differential geometry. 

2. AN EXAMPLE 

We shall give an example of a spacelike surface in the Lorentz-Minkowski 
space L 3 whose induced metric is complete but whose affine metric is not 
complete. In fact, this surface is one of the surfaces constructed in [3] in the 
following way. 

Let f be a mapping of R 2 into L 3 with metric dx 2 + dy 2 - dz2: 

(u, ~b)eR 2 --* f (u, q~) = (x, y, z)E L 3, 

where j" (9) x = x/1 + e 2' dt, 
O 

y = eUsh~b, z = C c h ~ .  
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Then f is an imbedding of the entire (u, ~)-plane R 2 into L 3 and the induced 
metric on R 2 

(10) ds 2 = du 2 + e2"dtk 2 

is positive definite. This metric is complete, since the transformation 
(u, ~b)~ (X, Y), where X = ~b and Y = e -" takes it into the Poincar6 metric 
( d X 2 + d y 2 ) / Y  2 in the upper half-plane Y > 0 ,  which is known to be 
complete. It also follows that (10) has constant Gaussian curvature - 1. We 
denote by Mo this spacelike surface f :  ~2 ~ L 3. 

In order to view Mo from the affine point of view, we take a unit timelike 
normal vector field ~ and the corresponding second fundamental form h. It is 
known, in the theory of submanifolds of a Lorentzian manifold, that the 
Gaussian curvature K, which is - 1 for our surface Mo, is related to h by the 
Gauss equation 

- K = h(X 1 , X l )h (X2 ,  X2) - -  h(Xi ,  X2) 2, 

where {Xt, X2} is an orthonormal basis (relative to the metric (10)) in the 
tangent space. This means that from the affine point of view, the quantity H 
defined in (7) for ~ is equal to 1. Thus the affine metric of M o coincides with h. 
We know from [3] that 

h (  t~, O "] = C/x//1 +e2~ ' h (~ ,9~_"  ] = 0, 

h ( ~ - - ~ , ~ ) = e U x / / l + e  2u. 

Thus h may be written in the form 

(11) da 2 = (e"/x/1 + e2")du2 + (Cx/1 + e2U)dq~ 2. 

This affine metric is elliptic. In order to show that it is not complete, we recall 
the following well-known basic fact. 

LEMMA 4. Suppose that da 2 and dz 2 are two Riemannian metrics on a 
differentiable manifold such that da 2 ~< dz 2. 

(i) I f  {xn} is a Cauchy sequence relative to dz 2, it is also relative to da 2. 
(ii) I f  dtr 2 is complete, so is dr 2. 

To apply this lemma, let 

dz 2 = x/1 + e~dtr  2 = eUdu 2 + e~(1 + e2U)d~b 2 

and observe that 

do" 2 ~< X/1 + e2~da 2 = d-c 2. 
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We shall show that the metric dz  2 is not complete. This implies that do" 2 is not 

complete. 
Consider the curve C given by u = - t, ~b = 0, where 0 ~< t < 00. The tangent 

vector (du/dt, dq~/dt) = ( -  1,0) has a length (relative to dr 2) equal to e -'/2. So 

the arclength of C is 

f~e-'/2dt=2. 

Obviously, the curve C has no limit point as t -~ ~ .  This proves that dT 2 is not 

complete. 

REMARK 1. The canonical affine connection V of Mo coincides with the 
Levi-Civita connection of the metric ds 2. Hence it is complete. Thus Mo is also 

an example showing that condition (3) in the introduction does not imply 
condition (1). 

REMARK 2. It was also shown in [3] that for each a > 0, a # 1, there is a 
surface Ma in L 3 which is a nonstandard imbedding of the hyperbolic plane 
into L 3. We can show that each of these surfaces is affine-metric complete in the 

following way. 

The surface Ma is defined by 

x= f l x / l  +a2sh2tdt, y=achushc~, z=achuch(~. 

The induced metric on M is 

d s  2 = d u  E + a 2 c h  2 ud t~  2, 

and the affine metric (which coincides with the second fundamental form of M~ 
as a spacelike surface of L 3) is given by 

( achu ~du2 + x/1 + aZsh2uachud~2. 
dtr2= x / l + a  2sh 2u}  

Case 1. a < 1. We have 

l + a  2sh 2 u < l + s h  2 u = c h  2u so > a  
1 + a 2 sh 2 u 

from which we have 

do 2 > adu 2 + ad4) 2. 

Since the metric on the right-hand side is complete, so is do 2 by Lemma 4. 
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Case 2. a > 1. We have 

achu/x/1 +a2sh2u  > 1 

so that 

da 2 > du 2 + adq~ 2. 

Again, da 2 is complete. 
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