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Abstract. The energy of a solar flare can be accumulated as the magnetic energy of the current sheet created 
in the vicinity of a magnetic field singular line by the focusing of disturbances. Conditions which define the 
singular line in general were obtained using the properties of a singular line as it focuses disturbances. 
Numerical simulations and an analytical model show the possibility of the creation of a stable current sheet 
which becomes unstable after a quasistationary evolution. The nonlinear development of the instability leads 
to a fast reconstruction of the magnetic field with the release of a substantial part of the magnetic energy. 
The longitudinal magnetic field in our experiment increases the sheet thickness by at most a factoring of 
ten. 

1. Introduction 

The observations (see, for example, de Jager, 1985; Kahler et al., 1986) give indications 
that the initial energy release in the solar flare takes place high in the solar corona. The 
problem is how the large quantity of energy (~ 1032 erg) accumulates in such a form as 
to be able to be released fast (during --~ 103 s). The magnetic energy can be accumulated 
in the vicinity of a magnetic field singular line (Syrovatsky, 1978a, b; Baum and 
Bratenahl, 1980) due to the self-focusing of MHD-disturbances with current sheet 
creation. This process was studied for the simple case of a singular line, namely the zero 
X-type magnetic line (in whose vicinity the magnetic field is B = { -  hoy, - h o x ,  0}, 
where ho is the magnetic field gradient) and the hyperbolic field with a longitudinal 
component (B = { - hoy, - hox, Bzo}). Using the properties of a singular line focusing 
MHD-disturbances in the above simple examples we try to find out the general 
conditions of singular line existence. 

There is a point of view that the flare energy is stored slowly in a force-free field before 
it becomes unstable. Such fast energy release can be due to instabilities of current sheets 
which appear in the regions of reconnection of the force-free magnetic field. Therefore, 
this point of view does not contradict the possibility of a focusing process in the vicinity 
of a singular line. 

There are many investigations which study different aspects of current sheet theory 
through different approaches. Some of the best known were proposed by Parker (1957), 
Sweet (1958), Harris (1962), Furth, Killen, and Rosenbluth (1963), Petschek (1964), 
Priest and Forbes (1986), Vasyliunas (1975), and Syrovatsky (1976). The review by 
Priest (1985) contains the latest results. 

Here there is an attempt to answer an important question: Why during the magnetic 
energy accumulation does an instability not appear so that a quasi-stationary current 
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sheet can be created, but later an instability does appear and so leads to fast energy 
release? 

The current sheet is created by plasma flow in the vicinity of the singular line and is 
reinforced by this flow throughout its existence. At first, the current sheet can be stable, 
but later the quasistationary evolution can lead it into an unstable state. Using the results 
of numerical calculation and some physical considerations which arise, particularly, 
from the models of Parker (1957) and Syrovatsky (1976), we propose a model for a 
quasi-stationary current sheet in which the total plasma mass in the sheet can slowly 
change with the course of time. Conditions are obtained for the quasi-stationary 
evolution of the current sheet which leads to the instability. 

2. Singular Lines 

The reconnection takes place if the magnetic field near the singular line has an X-type 
topology and OB/Ot electric field along this line can not be compensated (Syrovatsky, 
1978a, b, Baum and Bratenahl, 1980; Greene, 1988; Hesse and Schindler, 1988; 
Schindler, Hesse, and Birn, 1988; Priest and Forbes, 1989). Also, for singular lines 
considered here, the disturbances appeared far from singular line must be focused to 
it causing the reconnection process. To deduce relationships which determine singular 
lines, considerations based on analogy with the disturbance focusing in a more simple 
case of a singular line in a hyperbolic field {B x -- -hoy,  By  = - h o x ,  Bzo } are used. 

It is possible that currents in the solar corona could not change the magnetic field 
topology so strongly as to vanish the singular lines of the potential field. New singular 
lines can appear in the force-free magnetic field, for example, between twisted magnetic 
tubes. The properties of singular lines are considered here for the potential magnetic field 
which can be found in the solar corona (see, for example, Den, Kornitska, and 
Molodensky, 1983) from observed magnetic field in the photosphere. These properties 
of singular lines can be generalized in the case of the force-free magnetic field which can 
be found in the solar corona under some conditions (see, for example, Gary et  al.,  1987; 
Yang, Hong, and Ding, 1988). 

Due to the high plasma conductivity, the magnetic field can be considered to be frozen 
into the plasma. The space in the vicinity of the line where the magnetic field is 
-B = { - hoy ,  - hox ,  0} or B = { - hoy,  - hox ,  B~o } is separated by the planes (y = - x) 
and (y -- x) into four sectors with different magnetic fluxes so that MHD-disturbances 
are focused as follows. If the plasma flow is directed towards the line {x = 0, y = 0} 
in two opposite sectors (for example, where the y-axis is placed) and plasma flows away 
from this line in two other opposite sectors, then the plasma flow distorts the magnetic 
field. The field is expanded in the x-direction and compressed in the y-direction. The 
current density increases, therefore the magnetic force c -  l j  X B increases, too. This 
force propels plasma in the direction of the plasma flow. The plasma velocity grows and 
the plasma flow increases the deformation of the magnetic field creating a configuration 
with a current sheet. The magnetic energy accumulation stops when the current sheet 
thickness gets so small that the frozen-in condition is violated and all the magnetic 
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energy coming with the plasma flow into the sheet dissipates there: 

v~ 
a - , (1) 

vin 

where Vin is the plasma inflow velocity to the sheet, 'a' is the sheet thickness, 
v m = c2/4zca  is the magnetic diffusivity for the conductivity a. Physically, it means that 
the electric field near the sheet (Ens = c - 1 VinBs,  Bs  is the value of the magnetic field 
near the sheet) is equal to that in the sheet (E s = j / a  = B s / 4 n a ~  ) (Parker, 1957). 

Assuming that the process of MHD-disturbance focusing in the vicinity of a general- 
type singular line is similar to that described above, we can formulate the properties of 
the singular line as follows: 

(1) The space in the vicinity of the singular line can be subdivided into four sectors 
by surfaces which intersect along the singular line so that every magnetic line is located 
entirely in one sector. 

(2) If the electric current flows along the singular line, then the forces c-  1~ x B in 
two opposite sectors are directed towards the singular line and in two other sectors away 
from it. 

(3) If the frozen-in condition is fulfilled and plasma flows come into the vicinity of 
the singular line from two opposite sectors, then plasma flows from the other two sectors 
cannot carry out the magnetic field incoming with plasma in the first two sectors. 

(4) On the singular line, there is no magnetic field component perpendicular to the 
singular line, so the induced electric field along the singular line created by the variation 
of the magnetic flux cannot be compensated by the field c - 1 V x B.  

If the magnetic field differs from the field where conditions (1)-(4) are fulfilled, then 
only part of the magnetic energy is accumulated by the focusing process. Its other part 
goes out with plasma under the influence of the force c - 1j x B which is not equal to 
zero on the line, if condition 4 is not fulfilled. If the field does not strongly differ from 
that where conditions (1)-(4) are fulfilled, then the energy accumulation can be more 
effective than the energy exit and the solar flare energy can be stored. 

At first, we find relationships on the singular line corresponding to ideal fulfillment 
of conditions (1)-(4) in potential field. 

In the plane case (where B does not depend on z and B z ( X  , y) - 0) the singular line 
can be the only zero line (according to conditions (1)-(4)) and the zero line must be 
the only singular line, since in the linear expansion in its vicinity 

B x = axx x + a x y y ,  By  = ayx x + a y y y ,  (2) 

with axx = - a y y  (since divB = 0) and ayx = axy (since rotB = 0). Turning the co- 
ordinate axes through the angle c~ = _1 a r c t g ( a x y / a ~  ) gives the well-known form 
-B = { - hoy,  - hox ,  0} where h o = - axy/COS (2e). 

To deduce the properties of a singular line in general we shall make clear why in a 
hyperbolic magnetic field with a longitudinal component 

B x  = - h o y  , B y  = - h o x  , B~ = B~o , (3) 
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there are no points outside the Z-axis, through which the 'ideal' singular line can pass. 
For example, let us consider the point (0, Yo, 0). The expansion of the magnetic field 
in the vicinity of this point is 

_ - h o B  ~o 

B':I = \ x /hoY  0 2  2 + B~oJ2 Yl ; 

(. -ho zo ) ( hX o ) . 
By I = \ x /hgy  ~ + B2oJ x, + \x /h~yg + B~o Z1, (4) 

( h2yo B~ O) Bz1 = x/h~y~ + B2o + I x /hZy~+ Y l "  

The z-axis is directed along the field; new coordinates are expressed in terms of the 

old ones by 

xBzo zhoYo �9 , 

x ' -  , y l = y - y o ,  
y2 + B~ ~ o Yo + B~o 

- xhoY o zB~o 
- + 

Zl ~/h2oy~ + B2o hw/~oy ~ + B~o 

If z 1 = 0, then the expressions for Bxl and By  I have the same form as in (3). But if 
Zl # 0, the above type of field variation would be in the vicinity of the point 

(xl = (hoYo/Bzo)zl, Yl = 0 )  rather than in the vicinity of the point (Xl = 0, yl = 0). 
Therefore, surfaces which divide the space into four sectors must intersect along the line 
(Xl = (hoYo/Bzo)Zl, Yl = 0 ) ,  where the magnetic field has a non-zero perpendicular 
component, because it is tangential to the line (x~ = 0, Yl = 0). So, the line 
(Xl = (hoYo/Bzo)Zl, Yl = 0) does not satisfy the property 4, and the singular line cannot 
pass through the point (x = 0, y = Yo, z = 0). 

A similar consideration for every point which does not lie on the z-axis gives an 
expansion of the type (4) which has a linear dependence of Bxl and (or) Byl on za. Points 

of the singular line satisfy the condition 

OB':I - O, OByl - 0 (5) 
Ozl ~zl 

which we shall later consider to be necessary for the existence of a singular line. If on 
the singular line B # 0, then the derivative O/Oz 1 must be proportional to the derivative 
along the local field direction (B, 7), since zl-axis is directed along B. Condition (5) 
means that xl- and yl-components of (B, 7)B are zero. It means that vector (B, 7)B 
must be parallel to the zl-axis and, therefore, to the vector B. So, condition (5) means 
that the vector (B, 7)B must be parallel to the vector B or 

(B, q)B x B = 0. (6) 
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Equation (6) describes a line in three-dimensional space, since out of the three scalar 
equations only two are independent. According to property 4, on the singular line there 
should not be any magnetic field component perpendicular to the singular line, so it is 
necessary to choose among all the lines satisfying condition (6) only those that coincide 
with magnetic field lines or zero-magnetic field lines. 

To study the field in the vicinity of the line satisfying Equation (6) we should expand 
the field in this vicinity in the system of coordinates with the z-axis directed along the 
magnetic field: 

Bx = hxxx + hxyy + hxzz , 

By = hyxx + hyyy + hyzz,  (7) 

B z = h~xx + h~yy + h~z  + B~o. 

It is clear that the potentiality of the field (rotB = 0) means the symmetry of the matrix 

hxx hxy hx~ I 

hM= hyx hyy hyz], (8) 
! 

hzx hzy hzz] 

i.e., hxy = hy~, hx~ = hzx, hy~ = h~y. Here divB = 0 means that h~x + hyy + hzz = O. 
Condition (5), and consequently (6), means that h~  -- hy~ = 0. In other words, vector 
B on the singular line (in our coordinates (0, 0, Bz)) is the eigenvector of the matrix hM. 
As hxy = hy~, the coordinate system can be rotated about the z-axis so that h~y = hy~ = 0. 
Therefore, the expansion in the vicinity of the line (6) is as follows: 

Bx = hxx ,  (9) 

By = hyy, (10) 

B~ = hzz + Bzo,  (11) 

where hx + hy + h~ = O. I fhz  = 0, then this field is the well-known hyperbolic magnetic 
field with Bz r 0 (the system of coordinates where the field has the form 
{ - b o y ,  -boX,  Bzo } is recovered by turning through an angle �88 0. 

If h, ~ 0, it is necessary to study two cases: (a) signs of h~ and hy are the same; 
(b) signs of h~ and hy are opposite. Projections of magnetic lines on the plane (z, y) are 
described by the formula 

y = C x  , (12) 

where c~ = hy/hx. Ifh~ and hy have the same signs (c~ > 0), then projections of magnetic 
lines have a parabolic shape (see Figure l(a)) and division of the space into four sectors 
according to properties 1-3 is not possible. For the same reason this line cannot be 
singular in the two degenerate cases h x = 0 and hy -- 0, when projections of magnetic 
lines on the plane (x, y) are straight lines parallel to they-axis or to the z-axis (formally, 
if h x = 0, we cannot use expression (12)). 
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a 

Fig. 1. 

bY b 

The  family of  curves descr ibed by y = cx~; (a) c~ > 0, (b) e < 0. 

In the case of hx and hy having opposite signs (~ < 0) projections of magnetic lines 
on the plane (x, y) are hyperbolas (Figure l(b)). Planes (x, z) and (y, z) divide the space 
into four sectors according to property 1 and it is clear that all properties 1 to 4 are 
satisfied. So, if the signs of hx and hy are opposite and both of them are non-zero, then 
the line satisfying the condition (6) is singular and in the opposite case this line is not 
singular. 

A similar investigation can be carried out for the vicinity of the point where the field 
becomes zero; choosing the coordinate system with the basic vectors being eigenvectors 
of the matrix hM (8) we obtain an expansion like (9)-(11) with Bzo = 0. So, the lines 
where the condition (6) is satisfied or the magnetic field becomes zero are singular, if 
eigenvalues of the matrix hM (8) corresponding to eigenvectors in the plane normal to 
singular line have opposite signs. These conditions can be generalized on the case of 
a force-free field. Indeed, condition B • rotB = 0 in the system of coordinates with the 
z-axis directed along the magnetic field means that ~3Bx/Oz = OBz/Ox; OBy/OZ = OBJOy. 
Then in the expansion (7) h~  = h~,  hyz = h~y, but h~y would not be equal to hy~ as it 
was for the potential field. It means that if eigenvalues of the matrix hM (8) have opposite 
signs, then projections of magnetic lines on the plane (x, y) have X-type topology. These 
lines are described by (12) with ~ < 0, but in the nonorthogonal system of coordinates. 
So, all conditions (1)-(4) are fulfilled. 

Now we consider the singular line in the vicinity of which besides the energy 
accumulation due to disturbances focusing there is some energy exit with the plasma 
propelled by a small force c - 1) x B. The force ) x B exists on the litle because j is not 
precisely parallel to B. On this line relation (6) can be fulfilled only approximately. The 
accuracy of the fulfillment of (6) can be estimated under the following assumption. If 
the 'ideal' singular line exists (where condition (6) is fulfilled precisely), then the distance 
from the singular line to the 'ideal' singular line must be less than the region size. Instead 
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of (9)-(11) the expansion in the vicinity of this line is as follows: 

Bx = h~x + exz,  

By = hyy -[- eyZ, 

B z = h z z +  e x X + e y y + B z o .  

(13) 

(14) 

(15) 

The distance from the point {0, 0, 0} to the line where condition (6) is fulfilled in the 
field (13)-(15) (this line exists only in the field (13)-(15), but for the real field the 
nonlinear terms of expansion should be taken into account and the line where con- 
dition(6) is strictly fulfilled may not exist) less than [eB~o/(~2+ h2)] where 
I hl : max([hx], ]hy[), re] = max(] exl, [eyl. The region size can be estimated as ]Bo/h [ 

where B o is the average magnetic field in the active region. So, the condition for a 
singular line has a form: 

C~ B z o / 
This condition can be used practically instead of condition (6) together with the 

condition sign(hx) r sign(hy) for seeking singular lines in the coronal magnetic field. 
Condition (16) chooses among all potential singular lines defined by Priest and 

Forbes (1989) ones in the vicinity of which the process of reconnection can be caused 
by small disturbance appearing far from the singular line. This disturbance leads to a focus- 
ing process and therefore, to electric field or plasma flow corresponding to reconnection. 

3. Numerical Simulation of Current Sheet Creation and Its Quasi-Stationary 
Existence 

The process of the current sheet creation and its further development was studied by 
numerically solving the two-dimensional system of MHD-equations in the region 
containing the X-type singular line (the magnetic field is B = { - boy, - box,  0} (Podgor- 
ny and Syrovatsky, 1981a) or B = { - hoy, - hox, Bzo } (Podgorny, 1983a). Processes 
for the X-type neutral line, but under different conditions, were studied by Stevenson 
(1972), Brushlinsky, Zaborov, and Syrovatsky (1980), and Biskamp (1986). The size 
of this region 'l', which is approximately equal to the size of the active region in the solar 
corona, was taken as the dimensionless unit of length. The thickness of a current sheet 
in the solar corona is so small that the memory size of modern computers is not sufficient 
for an MHD-simulation. So, the current sheet properties were studied for plasma 
parameters corresponding to a sheet thickness which is much larger than that in the solar 
corona, but still much smaller than the active region size. The principle of limited 
simulation was used (see, for example, Podgorny, 1978). 

The linear solution for a MHD-wave (Syrovatsky, 1968) corresponding to an electric 
field directed along the singular line was used for the boundary conditions. This wave 
can be caused by disturbances coming from under the photosphere; the solution is valid 
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a long distance from the singular line. Due to the symmetry of initial and boundary 
conditions relative to the X- and Y-axes, the M H D  equations were solved numerically 
in the quarter plane (0 < x < 1, 0 < y < 1). We shall describe here the task for the 
general case B = { - boy, - box, Bzo}, where the longitudinal magnetic field Bzo may be 
either zero or non-zero. 

As units for temperature, plasma density, and plasma pressure were taken their values 
at the initial moment of time Tr, p~, and p, = T~py. As a unit of magnetic field the value 
of the transverse magnetic field at the boundary B o was taken. As the units of velocity, 
time and current density Vo = VA = B o / 4 x / ~ , ,  to = l/Vo, and Jo = (c/4n) (B/l)  were 
taken. The dimensionless system of M H D  equations has the form: 

~ 3 E - r o t ( V x B )  - ~ 1  r o t ( ~  r o t E ) ,  (17)  
at R m 

Op_ 
- -  - - div(p V), 
at 

- -  - -  1 a_V _ _ (~, 7)F" - r2 7(pT)  - 1 (B x rotE) + - -  AV, 
at p p Rp  

(18) 

(19) 

c3T _ ( V , V ) T -  (V - 1 ) T d i v V +  ( 7 -  1) % ( ro tB)  2 - 
at R.,o.r[ p 

- ( 7 - 1 ) G L ' ( T ) p +  7 -  1 d i v ( ~  ~ V T ) ,  (20) 
rcp 

where Rm = lVo/v,,, is the magnetic Reynolds number; vm = c2/4rc%; o-/% = T - 3 / 2 ;  

r ff = [1/2 = 4~tp, Tr/B2o; rc = prlVo/~o; ~:/~o = rs/2; R = polVo/~l; K, *1, and 7 = ~ are 
thermal conductivity, viscosity, and the adiabatic constant; the term ( 7 -  1)GL ' (T)p  

describes the radiation cooling. 
The initial conditions correspond to a motionless homogeneous plasma in the 

hyperbolic magnetic field: 

B x - y  By - x ,  B z Bz~ = ; = " - ; p = l ;  

B~ (21)  

V x = 0 ;  V , = 0 ;  V z = 0 ;  T = I .  

At the left and lower boundaries the following symmetry conditions were imposed for 
X = 0 :  

63Bx - 0 ; By = 0 ; aBz - 0 ; ap _ 0 ; 
ax ax ax 

V x = 0  ; O V z o ;  V z = 0  ; a T _ o , .  
ax ax 

(22) 
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for y =  0: 

Bx=O; OBY- O; (~&- 0 ; O--P=o; OV~- O; 
@ ~y @ @ 

aT 
vy=0; v~=0; - 0 .  

ay 

(23) 

For the upper boundary of the region (0 < x _< 1, y = 1) and for 0 < t < 1 at the right 

boundary (x = 1, 0 < y < 1) the following conditions were set: 

ey ax B zo 
= - -  Bz  - , 

Bx  = - Y x 2 + y2 ' By - x + x 2 + y2 ' Bo 

(24) 

ax - ay 
p =  1 ,  V x - x  2 + y 2  ' V y : x  2 + y 2  ' V z =  = 0 ,  T :  1 ,  

where e = Vd/VA ~-- A B / B  is the disturbance parameter, V a is the inflow velocity at the 

boundary of the region. For t > 1 at the right boundary where the plasma flows out of 

the region, the conditions of free exit for p and f" were given. 

I f  we initially have Bzo = 0, Vzo = 0 and at the boundary B z = 0, V~ = 0, then at every 
moment  of time B z ----0, V z - 0  and we do not need to solve the equations for B z 

and Vz. 

In the case ofBz = 0 the three main parameters determining the sheet thickness and 

current density in the sheet are Rm, rs 2, and e. The most convenient parameters 

characterizing the current sheet are Syrovatsky numbers: 

L = ~R m and S =  ~/r 2 

which can be used instead of Rm and r~. Parameters L and S actually are the ratios 

in order of magnitude between the terms which promote the creation of a thin current 

sheet and terms which counteract this process. 

In order to compare the influences of the longitudinal magnetic field and the plasma 

pressure it is convenient to introduce the parameter S '  which differs from S in such a 

way that the gas dynamical pressure is replaced by the sum of the plasma pressure and 
2 2 the pressure of the longitudinal magnetic field (S'  = e/r'~2; Fs 2 = F 2 + Bzo/2Bo).  

Most of our calculations were done for 3 < L; S, S '  _< 30; ~ = 0.1. The calculations 

were done on a nonuniform grid which was changing in time. The y-steps were small 

near the sheet (by rain ~'~ 1 0  - 2-10 - 4) and they became smaller when the sheet got thinner 

so that it was 8-12 steps across the sheet. 
The front of the MHD-wave  which comes to the singular line at first, has a circle 

shape. Later it takes the form of an ellipse, since the velocity of the part of the wave 
where plasma comes to the singular line (in the present system of references - along the 
y-axis) is larger than the velocity in the part where the plasma goes out of the singular 

line (along the x-axis). After a while (for parameters L, S, and a in our calculations this 
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time is ~ 2to) the ellipse 'flattens out' into the current sheet. In general the duration of 
the current sheet creation must be larger than the Alfv6n time t o = l/V A and smaller than 
the plasma convection time tl = l/Vd, which agrees with the energy accumulation time 
for a solar flare. 

The current density distribution which corresponds to the wave approaching the 
neutral point and distributions of the current density, plasma density, the pattern of 
magnetic lines and the plasma velocity field corresponding to the current sheet are 
represented in Figures 2-6. A schematic picture of the current sheet vicinity is given in 
Figure 7. 

J 

X 
q 

Fig. 2. The current density distribution in the quarter plane as a surface in three-dimensional space at the 
time t =  l for e= 0.1; L = 3, S = 3 ,  Tr=100. 

Fig. 3. 
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T h e  c u r r e n t  dens i t y  d i s t r i b u t i o n  at  t he  t i m e  t = 6 f o r  a = 0,1; L = 3, S = 3, ~ = 100. 
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Fig. 4. 
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The plasma density distribution at the time t = 6 for ~ = 0.1; L = 3, S = 3, n = 100. 

Fig. 5. 

), 

C -I 
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The pattern of magnetic lines in the quarter plane at the time t = 6 for e = 0.1; L = 3, S = 3, 
n = 100. 

The plasma pressure increases in the sheet mainly because it counteracts the magnetic 
pressure and the plasma flow directed into the sheet. Being propelled chiefly by the 
magnetic tension force, the plasma goes along the sheet width and compresses the 
magnetic field directed normally to the sheet at the sheet edges. The plasma velocity at 
the sheet edges reaches a value of 0.4VA, which exceeds the local Alfv6n velocity, so 
that fast shock waves appear at the sheet edges. Such an increase of the normal magnetic 
field corresponds to currents at the sheet edges which are directed oppositely to the 
current in the sheet. 

In the quasi-stationary current sheet all the values slowly change with the course of 
time (the sheet becomes thinner, the current density increases), but among all of them 
the total plasma mass in the sheet undergoes the most rapid change - it decreases due 
to a fast plasma outflow. 



296 A.I. PODGORNY 

Fig. 6. 
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The plasma velocities at the time t = 6 for e = 0.1; L = 3, S = 3, ~ = 100. 

: j /  
\ - ' - > . ~ . _ _  - . ".. _ . _ : - ~ .  / 

""'..\ \f ."" ! """ V / .""" 
%e ,o " ; "% I , i'I 

oo~ ~* i ~o �9 �9 
�9 \ . .  , " ,  . . . . .  I �9 . . . . . . . .  ,,~ 

! 
q \  / " " - , . ~ - - - -  "." i .-'- ~ . e  " " \ / .------... \ 

~'~- ~ --.__ i._ _=--~ 

Fig. 7. The schematic picture of the behaviour in the vicinity of the current sheet. Magnetic lines are 
depicted by thin lines. Arrows show directions of plasma movement along the fines consisting of points. 
Fronts of shock waves are depicted by thick lines behind which the regions of the much increased plasma 
density and the compressed magnetic field are located. The region of increased plasma density is shaded. 
Regions bounded by lines are as follows: . . . . . . .  region of increased current density; . . . . . . .  regions of 
opposite current caused by compression of the magnetic field by the plasma flow leaving the sheet; . . . . .  
regions of low plasma density near the sheet. Points denoted by numbers indicate: 1 - variation of density 

at 1.5 times; 2 - variation of density at 4 times. 

F o r  s y m m e t r i c a l  se ts  o f  L a n d  S (i.e., L = A,  S = B a n d  L = B, S = A )  t h e r e  is on ly  

a sma l l  d i f fe rence  in  t h e  b e h a v i o u r  o f  va lues  in  t h e  sheet .  I n  c a s e  o f  a sl ightly di f fer ing 

L a n d  S, t h e  r a t i o  o f  t h e  shee t  w i d t h  to  i t s  t h i c k n e s s  is a p p r o x i m a t e l y  equa l  to  L o r  S 

(see  T a b l e  I, a n d  P o d g o r n y ,  1983a) .  
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TABLE I 

Half-thickness 'a', half-width 'b', their ratio 'b/a', current density 'Jz', plasma density 'p' and temperature 'T' 
in the centre of the sheet (x = 0, y = 0) expressed in dimensionless units at the time t = 3 and their 

dependence on L, S, S',  and 

L S S' r~ a b b/a Jz P T 

30 30 - 102 0.009 0.43 48 56.6 10.11 4.70 
30 30 - 105 0.0086 0.45 52 60.7 5.40 9.51 
30 10 - 102 0.016 0.43 27 31.8 5.28 3.08 
30 10 - 105 0.013 0.43 33 35.9 2.94 5.76 
30 30 10 102 0.012 0.42 35 40.2 6.68 4.22 
30 30 10 l0 s 0.009 0.43 48 55.9 4.25 9.45 
30 3 - 102 0.03 0.42 14 17.0 2.67 1.89 
30 3 - 105 0.025 0.42 17 18.8 1.71 3.00 
30 30 3 102 0.017 0.4 24 27.1 3.58 3.70 
30 30 3 105 0.011 0.42 38 41.2 2.59 8.85 
10 30 - 102 0.014 0.43 31 34.6 8.26 5.40 
10 30 - 105 0.012 0.43 36 38.7 4.20 11.80 
10 10 - 1 0  2 0.024 0.41 17 18.9 4.26 3.55 
10 10 - 105 0.022 0.43 20 22.9 2.36 6.83 
10 30 10 102 0.018 0.41 28 27.4 6.18 5.01 
10 30 10 105 0.012 0.42 35 36.7 3.63 11.72 
3 30 - 102 0.025 0.41 16 18.8 6.56 6.11 
3 30 - 105 0.022 0.43 20 22.0 3.16 14.53 
3 3 - 102 0.076 0.4 5 5.48 1.76 2.44 
3 3 - l0 s 0.058 0.4 7 7.46 1.18 4.06 

4. The Fast Magnetic Field Reconstruction: Numerical Results 

Numer ica l  calculat ions showed that  for L --- 30, S = 30 after the long quas i -s ta t ionary  

evolution, a fast reconst ruct ion o f  the magnet ic  field and p l a sma  flow occurs in the 

current  sheet with the release of  a substant ia l  par t  of  the magnet ic  energy (Podgorny,  

1983b). The process  of  fast  reconst ruct ion in the sheet goes as follows. A preferable 

p l a sma  inflow in the vicinity o f  the point  x = 0.2 (dimensionless  units) leads to magnet ic  

field deformat ion  which cor responds  to a normal  magnet ic  field componen t  increase.  

Consequently,  the magnetic  tension force increases,  which propels  p l a sma  out  of  this 

vicinity. The outflow velocity sharply increases and reaches a value exceeding the Alfv~n 

velocity V o. The  pressure  balance  is violated in the vicinity of  the poin t  x = 0.2; under  

the influence of  the magnet ic  pressure  the inflow velocity in this vicinity grows (it reaches  

a value ~ 0.1VA). In the vicinity of  the point  x = 0.2 the current  densi ty and the 

magnet ic  d iss ipat ion increase.  Then the p l a sma  densi ty (and consequently,  the p l a sma  

pressure)  in the vicinity of  the point  x = 0.2 substant ial ly  increases due to the s trong 

increase  of  the inflow velocity. The inflow velocity in this vicinity decreases  to a value 

which is smaller than  that  in the quas i -s ta t ionary  sheet, so the current  densi ty in this 

vicinity also decreases  to a value which is smaller than that  in the quas i -s ta t ionary  sheet. 

After  the fast  magnet ic  field reconstruct ion,  which takes place during the per iod  of  

several Alfv6n t imes (2 -3  to), there appears  a configuration of  the magnet ic  field with 
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the current density distribution having a local minimum in the vicinity of the point 
x = 0.3. This magnetic field configuration can exist in a quasi-stationary manner for 

10 to after the reconstruction. The current density distributions before and after the 
fast reconstruction are represented in Figures 8 and 9. 
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Fig. 8. The  current  densi ty  d is t r ibu t ion  at  the t ime t = 3 for s = 0.1; L = 30, S = 30, = = 100. (a) The  scale 

on the y-axis  is not  s t re tched.  (b) The  scale on the y-axis  is s t re tched  40 t imes,  
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Fig. 9. The  current  densi ty  d is t r ibut ion  at  the t ime t = l l f o r e =  0 .1 ;L  = 3 0 , S  = 30,• = 100. (a) The  scale 
on the y-axis  is not  s t retched.  (b) The  scale on the y-axis  is s t re tched  40 t imes.  
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5. Model of the Current Sheet 

Our model of the current sheet represents a development of models proposed by Parker 
(1957) and Syrovatsky (1976) and contains an attempt to determine relations that 
describe the main interactions of values in the sheet. These relationships connect the 
values averaged across the sheet without taking into account the details of their 
distributions. The relationships represent the conservation laws obtained by the inte- 
gration of the MHD equations. Taking Syrovatsky's (1976) model as a basis, Somov 
and Titov (1983) proposed a model of the turbulent current sheet with a more detailed 
account of thermal losses. For our model the information used was obtained by 
numerical MHD simulation of the current sheet created by disturbances in the vicinity 
of a singular line. 

The basic distinguishing feature of this model is the lack of equality between plasma 
flows entering the sheet and leaving it (the total plasma mass of the sheet can slowly 
change in the course of time according to numerical simulation results). Other new 
elements are the propelling of the plasma along the sheet width mainly by the magnetic 
tension force (rather than by the plasma pressure) and the counteracting of the magnetic 
field pressure at the sheet edge by plasma flow from the sheet. 

Unchangeability of the magnetic field with time (rotB = 0) in the two-dimensional 
case means that E = const. Equalizing the electric fields in the sheet and near the sheet 
we have the main equation (1) and equalizing the electric fields in the current sheet and 
at its edge (c- 1 V o u t B n  ' where Vou t is the plasma outflow velocity from the sheet, Bn is 
the magnetic field component normal to the sheet) we have 

v~Bs 
- goutB n (25) 

a 

This equation also has a magnetohydrodynamic interpretation: the diffusion of the 
normal magnetic field component into the sheet is equal to its exit with the plasma flow 
along the sheet width. 

The plasma flow along the sheet width propelled mainly by the magnetic tension force 
c- ljBy means 

PsVx dVx _ By(x)Bx (26) 
dx 4~a 

(p, is the plasma density in the sheet). Taking into account a linear dependence of By 
on x (By(x) = (Bn/b)x , where b is the sheet width) which agrees with the numerical 
calculations, we can integrate (26) and obtain: 

g o u t = ~ !  BnBs (27) 
4~ps 

Taking into account a substantial deceleration of the plasma flow out of the sheet by 
the magnetic field pressure and approximating the value of the magnetic field at the sheet 
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edge with the initial hyperbolic field at this point (hob) we have 

P~ V~ - hgb2 (28) 
2 8re 

Ifp~ is known, then using (1), (25), (27), and (28) we can represent a, b, Vout, and 
B~ as functions of V~n and B, : 

Vm (29) a - 

B 3/2 Vin 
b _ - - s  

h 3 / 2 v  1/2 v 1/2 ' (30) 
0 - - A s  - m  

1 / 2  V1/2 
r A s  Vo. t  _ v ia  , ( 3 1 )  

h l/2 ,, 1/2 
0 Vm 

where 

h i ~ 2  ~, 1/2/:/1/2 
0 Vm ~ s  

Bn = , ( 3 2 )  
VA~ l/2 

Bs 
V A S - 4 x / ~  ~ �9 

To estimate the plasma density in the sheet we can use the balance of pressures in 
the sheet: 

p e T s  - (33) 
8z 

(T~ is the temperature in the sheet) and the balance of energy in the sheet. But it is difficult 
to estimate Ps in such a way, because we do not quite know all the mechanisms of the 
plasma cooling (thermal conductivity, radiation, outflow of hot plasma from the sheet), 
and so we are not sure we can accurately estimate thermal losses. The plasma density 
in the sheet must be maximal if the plasma cooling counteracts effectively the Joule 
heating so that the plasma temperature in the sheet does not increase compared with 
the temperature of the plasma in the active region of the corona. In this case the plasma 
density increases by B2/81rpr ~ B~/4zpr-----t-1 times as compared with the plasma 
density of the coronal active region; estimates give Ps/Pr ~ 106. Observations show that 
in coronal arch-type structures the plasma density reaches ~ l0 ll cm-3,  which is three 
orders higher than in the corona (pr ~ 108 cm - 3). It is impossible to observe structures 
with such a small size as the current sheet thickness where the plasma density can be 
larger than in the arch-type structures. So, it is natural to suppose that the range of the 
plasma density variation in the current sheet is Ps/Pr ~- 1 0 3 - 1 0 6 .  

The velocity of the plasma flow into the sheet Via decreases as compared to the inflow 
velocity into the region Va due to the counterpressure of the 'magnetic pillow'. The latter 
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actually is the magnetic field which is accumulated near the sheet and could not dissipate 
in the sheet in time (Podgorny and Syrovatsky, 1981b). This situation corresponds to 
the pile-up solution in the classification of Priest and Forbes (1986). Using the numerical 
simulation results we can define that the maximum V~n is approximately equal to the 
inflow velocity at the region boundary (Ve) and the minimum V~n is several orders of 
magnitude lower than Va, the maximum B s is approximately equal to the magnetic field 
at the region boundary (Bo) and the minimum B, is several times smaller than 0.1Bo. 
These estimations agree with ones from the Priest-Forbes pile-up solutions. 

Employing (29)-(32) we can obtain the criterion of the decrease of the total plasma 
mass in the sheet in the course of time: 

_ 

Voutap, \ VA,/ t,, < 1 '  
(34) 

According to numerical calculations the total plasma mass in the sheet decreases in time 
in such a way that the plasma density in the middle of the sheet remains approximately 
unchanged and the plasma density near the sheet boundary (p,~) decreases. This result 
can be physically interpreted through the analysis of the pressure balance in the sheet. 
The plasma density near the sheet boundary Pn, decreases in the course of time during 
the quasi-stationary evolution which takes place before the fast reconstruction according 
to the numerical simulation. Later we shall try to explain this fact by a study of the linear 
instability. So, condition (34) is a criterion for flare occurrence. 

The small disturbances which are observed in the photosphere can produce MHD- 
waves of small amplitude. The magnetic field near the current sheet (B~) created from 
such a small-amplitude wave can also be small. By this means it is possible to explain 
only small flares. The application of this model to large flares is more difficult because 
we must explain how the large magnetic field near the sheet (B,) appears due to 
small-amplitude disturbance near the photosphere. Such a situation can take place 
because the mean value of the magnetic field in an active region near the photosphere 
is largel During the nonlinear propagation of this disturbance the field can be carried 
by a plasma flow to the singular line. But during the focusing process the magnetic field 
near the singular line is also dissipated due to the diffusion which is effective for 
small plasma conductivity. The plasma conductivity of the solar corona is high 
( R  m = VAI /V  m = 1016 o r  V d l / v  m = 108-101~ so it is possible to expect a large B~ even 
for a small inflow velocity in the photosphere, Vd (Va/VA = 10 - 8-10 - 6). The computer 
memory size is not sufficiently large to make calculations with such a large magnetic 
Reynolds number. 

Taking parameters close to those in the Corona, Tr~ 1 0 6 K ,  pr~  10Scm -3, 
B r ,~ 300 G, the active region size l a ~ 10 l~ cm, and the outflow velocity on the 
photosphere V# ,,~ 103-104 cm s-  1, we obtain a = 1016, vm = c2/4rca = 0.5 x 104, 

V A = B o / x / ~ =  0 .5  • 1 0 1 ~  R m = l a V A / v  m = 1016 , V d / V  A =  1 0 - 6 - 1 0  - 7 .  

For these parameters the dimensions of the current sheet from the model defined 
by (29)-(32) are approximately the same as in the Syrovatsky (1976) model: 
' l '  - ' b '  • ' a '  = 10 l~  • 109 • 10 c m ;  for a magnetic field near the sheet ofB 2 ~ 300 G 
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the magnetic energy of the sheet is about Bs/8 rcb2l --- 1032 erg (the value of b ~ 101~ cm 

corresponds better to the model (29)-(32) and for this value of b the value of B~ can 
be ~ 30 G to provide current sheet energy equal to ~ 1032 erg, however, all relations 

(29)-(32) are obtained in order of magnitude, so we do not have any major differences 

in the current sheet dimensions from the Syrovatsky model). In the case when the inflow 

velocity does not decelerate under the influence of the magnetic field accumulated near 

the sheet (gin/V a ~ 1), the criterion (34) is fulfilled for Pr/P, ~- 10 - 3 if Vd/V A ~ 3 X 10 - 8 

and for pr/p~ ~- 10 . 6  if Va/VA<~3 x 10 -7. For Vd/VA ~- 10 -6 the criterion (34) is 

fulfilled even for the case of pflp~ = 10-3 if the inflow velocity is decelerated by the 
magnetic field near the sheet so that Vi,/Va ~- 3 x 10 -2. So, there can be such a 

situation in the solar corona that criterion (34) for the current sheet is fulfilled and the 
fast energy release can occur. On the other hand, a current sheet which does not satisfy 

criterion (34) can exist in which the fast energy release does not occur, but rather the 

corona is slowly heated by magnetic field dissipation, as proposed by Browning, 
Sakurai, and Priest (1986). 

6. Linear Analysis of MHD-Instability Associated with Magnetic Field Dissipation 

Here we consider the linear disturbances Vxa, gy  I , B y  1 , and Pl for the sheet; initial values 

in the sheet are Vxo, Vyo, Byo, Po (Vi~,o = - Vyo(Y = a), gin 1 = - -  Vyl(Y = a)). Instead 
of equation for Bx we use Equation (1) obtained from it - this is possible if the diffusion 

time for the sheet (z a = a2/Vm = alVin = tA/(Vin/VA)2Rm) is much smaller than the 
instability development time 7- 1 (this condition is fulfilled for the solar corona where 
(Vin/VA)2Rm = 10-2-10 -4 and the instability duration is larger than tA = VA 1, ac- 

cording both to the observations of the flare and to the value of the instability increment 

7 obtained below). Since the initial sheet thickness is a 0 = Vm/Vi~ 0 and the perturbed 
sheet thickness is a 1 -- Vm/(Vin 0 + Vinl), the disturbance of the current density is 

Jl = CBs/4rcal - cBs/4rca = cVinlBs/4~v ~. The value o f j  is needed for us to know the 
disturbance of the magnetic tension force c - ~jBy which propels plasma along the sheet 

width and is a part of the equation for V~. 
The linear MHD-equations for disturbances are: 

~Vxl _ 8Wxl ~Vxo ~Wxo + 
Po at Po Vxo ~ x  - po Wxl ~-x  - D1Wxo --~x 

1 BxVi~ 1 1 BxVi~o ~Pl 
+ -  By 0 - - - [ - -  By I , ( 3 5 )  

4 zt v,,, 4To v~ 8x 

 vyl po Vxo evy  po Vyo ave1 epl - + 

Po & ~ x  Po Vyl ~ y  8x Oy 

1 8By 1 
+ -  Bx , (36) 

4re 8x 
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~Pl Vx 0 ~Pl ~Wxo ~Vxl ~GlPO 
. . . .  Pl - - -  P0 , (37) 
Ot 0x ~x ~x Oy 

(~Byl _ Vx 0 ~By 1 Vx 1 OByo _ By~ (?Vx~~ - By o r 
?t ~x 3x ~x Ox 

-[- B x OVyl O2By 1 O2By 1 
+ Ym + Vm - -  (38) 

~x ~x 2 ~y2 

Values gxl  , gyl ,  By l ,  and Pl are represented in the form e (Tt+ikx), and we consider 
a perturbation with characteristic size equal to the sheet width k -  1 = b, during which 
a substantial part of the release of current sheet magnetic energy should be expected. 
Using the fact of the existence of the characteristic size in the y-direction which is equal 
to the sheet thickness 'a' we have the equation for the instability increment 7: 

det 

A - ? 4~Vmp~ p, V - A2 4~ap~ 

Vi.o 7", B~ 
k v  - - -  7 - k p  - -  

a ap.~ 4~zp~ 

f)•s 
- P s  - -  - A  - ? 0 

a 

2h Bs 0 - A  - ? 
b 2 

= O, (39) 

(here tA 1= VAil is taken as the unit for the dimensionless increment 7; 
A = OVxo/OX = Vout/b, h = OBy/aX = B . / b  are taken from the model (29)-(32), 
k v,  kp < 1 are the dimensionless coefficients for the transfer to finite differences 

PO O(gyl Vyo)/OY "~ kvPns Vino Vin/a, OD1 To/OY ~- kp Tsp I/a). 
The physical meaning of this instability is as follows. The nonuniform plasma flow 

leads to an increase of the magnetic field normal to the sheet and consequently to an 
increase of the magnetic field tension force c -  l j B  n which propels plasma out of the 
sheet. An additional increase of the magnetic tension force takes place due to the 
increase of the current density. The plasma outflow grows under the influence of the 
magnetic tension force and tends to decrease the plasma density and consequently the 
plasma pressure, and to increase the inflow velocity. A number of factors tend to 
stabilize the instability: the plasma inflow p,, Vin tries to increase the plasma density in 
the sheet, the plasma flow along the sheet with nonuniform velocity, the decrease of the 
magnetic field normal component due to magnetic diffusion, the decrease of the inflow 
velocity due to the magnetic tension force in the direction perpendicular to the sheet. 
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The plasma inflow Pns Via depends on the plasma density near the sheet P,s. So, our result 
concerning the instability appearance after the plasma density decrease near the sheet 
is physically clear. 

The main diffei'ences between the instabilities considered here and those studied by 
Furth, Kilen, and Rosenbluth (1963), Dobrott, Prager, and Taylor (1977), and Bulanov, 
Sakai, and Syrovatsky (1979) are that here the plasma is compressible and the frozen-in 
condition in the sheet is violated due to the effective magnetic diffusion according to (1). 

The analysis of Equation (39) shows that the mode with the maximum real part of 
the increment-y is aperiodic (Im 7 = 0) and for it: 

l( ioo  
Ym~x = 2 m ~-~A .] 

k V A ] Pns / k V A ]1 \Pss] - 2 ~ps + 

+X/~ " (40) 

The condition of the instability 7max > 0 has the form 

(Vino~ 2 Pr P~_2 < _  . (41) 
Rm \ ~ A /  pr 2 

The situation in the solar corona can be such that immediately after the current sheet 
creation the condition of instability (41) is not fulfilled, but the condition of the plasma 
mass decrease (34) is fulfilled. Later the plasma density decrease at the sheet boundary 
during the quasi-stationary evolution condition (41) becomes fulfilled and the instability 
associated with the flare release of energy occurs. 

During the development of the instability the plasma density near the sheet p,, 
decreases, The instability increment (40) increases as Pn, decreases, so the instability 
grows strongly during the nonlinear phase. The magnetic field reconstruction in the sheet 
proceeds most effectively in a nonlinear phase if the inflow velocity in the sheet becomes 
approximately equal to the thermal velocity. In the balance of pressures obtained 
through integrating Equation (19) for the y-component of the momentum 

= f ~(V~/2) Ps --B~+ P - -  dy, (42) 
8re @ 

0 

we can estimate Sg p(OVy/2)/Oy dy as kp~(VyM/2), where Vy M is the maximum value of 
Vy for 0 < y < a, k < 1. Taking into account that p~ = ps T s we obtain 

B~/8 
p~ - (43) 
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If Vy becomes so large that kV~M/2 > T s, then expression (43) becomes meaningless. 
It means that the stationary state described by Equation (42) cannot be reached and the 
inflow velocity Vy must increase with time until the magnetic field dissipates, i.e., until 
the numerator in (43) becomes zero. 

7. Influence of Longitudinal Magnetic Field 

The longitudinal magnetic field is compressed in the sheet, and its pressure is directed 
against the plasma inflow velocity, so its influence is similar to the effect of plasma 
pressure. However, due to the effective magnetic diffusion in the sheet, the longitudinal 
magnetic field does not have an overwhelming effect on the parameters of the sheet (see 
Table I). 

The distribution of the longitudinal magnetic field component and magnetic lines in 
three-dimensional space obtained by numerical simulations (the initial magnetic field 
was B = { -  hoy, -ho x, Bzo}) are represented in Figures 10 and 11. Figure 12 shows 

Fig. 10. 

B 

X ~ - "  

Z - c o m p o n e n t  m a g n e t i c  field d i s t r ibu t ion  for  e = 0.1; L = 30, S = 30, S '  = 10, ~z = 100 a t  the  t ime 

t = 3 .  

the dependence of the current density Jz, plasma density p, and the longitudinal magnetic 
field component B z on the coordinate y perpendicular to the current sheet - it shows 
that Bz changes much more smoothly than Jz and p because of the magnetic diffusion. 

We can estimate the increase of the longitudinal magnetic field in the sheet B~s as 
compared with its value near the sheet Bz~ using the equation 

rot(E'c) = 0, (44) 

w h e r e E . e =  - V x B +  v mrotB. 
Equation (44) corresponds to the dimensionless equation for the quasi-stationary 

magnetic field (~?B/Ot-~ 0). In our case all the values do not depend on z. The 
x-component of Equation (44), ~(Ezc)/c?y = 0, implies that Ez(y)c = const. Equalizing 
the value near the sheet, Ez(y~-a)c = V~nB ,, to the value in the sheet, 
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Fig. 11. 

0 1 

Magne t i c  l ines in th ree -d imens iona l  space  for e = O, 1; L = 30, S = 30, S '  = 10, ~ = 100 at  the 

t ime t = 3. 
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Fig. 12. Dependence  of  the p l a s m a  dens i ty  p, z -componen t  of  the current  densi ty  Jz and  the longi tudina l  

magne t i c  field B z on the y -coord ina te  perpendicu la r  to the sheet  (x = 0) for e = 0, 1; L = 30, S = 30, S '  = 3, 
= 100 at  the t ime  t = 3. 

E~(y=0)c=  Vm(OBz/OY)= Vm(Bs/a), we obtain the well-known Equation(l). 
Using the z-component of Equation (44), O ( E y c ) / O x -  O(Exe)/~3y = 0, estimating 
~(ExC)/Oy = a -  l(VinB~,,~ - Vm(B=~ - Bz,,s/a)) and O(Eyc)/Ox = Vou tB ,Jb ,  and employ- 
ing (1) we have 
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(1) we have 

2Bzns 2Bzns 
B~s = : . (45) 

1 + (aVout/bmin) 1 + (gin/VA)-2Rm 1 ~nsns/Ps 

The latter equality was obtained by using the model (29)-(32). The value of the 
longitudinal magnetic field in the sheet (45) corresponds to a balance between the 
increase of the longitudinal magnetic field in the sheet due to the inflow VinBzns and a 
decrease of this value due to diffusion Vm(Bz, - Bz,Ja ) and outflow VoutBzs. To make 
an upper estimation we should neglect the exit of B together with the plasma flow out 
of the sheet (Vout = 0) and we obtain Bzs -~ 2Bzn ~. The numerical simulation shows that 
Bzs --- 1.3Bzn ~ in the range of the plasma parameters' variation for which the computer 
memory size permits us to do calculations. Therefore, the pressure of the longitudinal 
magnetic field B2/8~ must not increase in the sheet more than 4 times (according to the 
numerical simulation, in ~ 1.7 times) and at the same time the plasma pressure increases 
in the sheet by several orders of magnitude. Extrapolating the influence of the plasma 
pressure on the sheet parameters to the situation in the solar corona with a much larger 
Reynolds number obtained from the numerical simulation and using the estimate (45) 
we find that the addition of a longitudinal magnetic field of the same order as the 
transverse magnetic field is likely to increase the current sheet thickness by at most 10 
times. 

8. Conclusions 

The instability analysis of the quasi-stationary current sheet shows the principal 
possibility of flare release of magnetic energy which was previously accumulated in the 
solar corona. More accurate analysis of the instability requires finding eigenvalues of 
the system of linear ordinary differential equations rather than of the system of linear 
algebraic equations. A further study must include also a study of the nonlinear phase 
of the instability by numerically solving the magnetohydrodynamic equations with the 
largest magnetic Reynolds number permitted by modern computers. The conditions 
under which the numerical simulation must be carried out are defined particularly by 
the condition of the linear instability obtained here. 

Another direction for future investigations is the creation of a magnetic energy 
accumulation model for the solar flare in the coronal magnetic field of solar active 
region. This model must improve the solar flares' prognosis which up to now has been 
made purely phenomenologically without using any accurate physical theory. For this 
purpose we suggest that the present study permits us to understand a mechanism for 
the accumulation and fast release of magnetic energy in the current sheet. This model 
consists of the following: 

(I) Finding singular lines in the coronal magnetic field using conditions (6) and (16) 
and analysing signs of eigenvalues of the matrix 7B (8). The magnetic field is approxi- 
mated by a potential field which can be found using the observed magnetic field in the 
photosphere. 
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(2) The simulation of magnetic energy accumulation by focusing disturbances in the 
vicinity of the singular line with the creation of a current sheet. The initial magnetic field 
is potential and the boundary condition for disturbances is obtained from observations 
of the inflow velocity in the photosphere. 

(3) Investigations of the possibility of fast energy release in the current sheet using 
analytical conditions (34), (41) and simulating numerically linear and especially nonli- 
near phases of the instability with a more detailed numerical set near the current sheet. 
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