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C O O P E R A T I O N  IN T H E  P R I S O N E R ' S  D I L E M M A  

1. I N T R O D U C T I O N  

The payoff  matrix below is an example of the Prisoner's Dilemma (PD) 
game. If both players cooperate (C) they each get 2: if both defect (D) 
they each get 1. However if one cooperates but not the other, the 
cooperator gets 0 whilst the defector gets 3. 

Column 

C D 

C 2,2 0,3 
Row 

D 3,0 1,1 

There are three arguments for playing D in this game. Firstly, (D,D) is 
the only Nash equilibrium: for any other pair of  pure or mixed strategies 
at least one player has an incentive to change his strategy (given the other's 
strategy is fixed). Secondly, it is the maximin strategy: D guarantees at 
least 1, C might yield 0. Thirdly, and most powerfully, D strictly domi- 
nates C: whatever strategy Column chooses, Row is at least one unit better 
o f f  if he plays D. 

Similar results hold if the game is repeated a fixed number of times. 
All the Nash equilibria imply that both players play D in every game. Pairs 
of  maximin strategies lead to the same result. And successive elimination 
of  dominated strategies (equivalent to 'reducing the game backwards') 
also produces a string of  defections. (However cooperative outcomes can 
be Nash equilibria if the number of repetitions of  the game is uncertain.) 

Nonetheless arguments have been made in favour of  playing C even in 
a single play of  the PD. The one that interests us relies heavily on the usual 
assumption that both players are completely rational and know every- 
thing there is to know about the situation [1]. (So for instance, Row 
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knows that Column is rational, and Column knows that he knows it, and 

so o n . ) I t  can then be argued by Row that Column is an individual very 

similar to himself and in the same situation as himself. Hence whatever 

he eventually decides to do, Column will also necessarily do the same (just 

as two good students given the same sum to calculate will necessarily 
arrive at the same answer). Hence if Row chooses D, so will Column, and 

each will get 1. However if Row chooses C, so will Column, and each will 

then get 2. Hence Row should choose C. 

This is clearly an unusual argument! It was put forward by Rapopor t  

in 1966, and discussed by Davis in 1977 [2]. (However, Rapopor t  did not 
press the argument strongly, and later supported another resolution of 

the problem, namely Nigel Howard ' s  metagame analysis (1971) [3].) A 

recent statement of  the argument is Hofstadter  (1983) [4]. 

The idea of  behaving so as to necessitate that another individual act 

in a certain way is not unique to the PD. Ayer (1956) gives the example 
of  a Calvinist who abstains f rom sin in order to have been saved [5]. In 

Newcomb's  Paradox it can be argued that the Chooser should open only 
one box so as to necessitate that the Predictor shall have previously placed 

one million pounds in it. (See the discussion in Kavka (1980) [6].) Again, 

it seems irrational to bother to vote in an election which almost certainly 
will not be won or lost by one vote. However,  if your action necessitates 
that a large group of citizens with similar predispositions will (or have) 

also voted, it would be rational. 

We do not propose in this paper to dive into the subtleties of  this sort 
of  argument (including the murky waters of  free will, determinism and 

backwards causation). Instead we propose to work with a 'model '  of  
the PD. The model will have computer  programs instead of  individuals, 

and there will be no direct assumption of  rationality (and so no as- 

sumption that there always is a rational choice of  strategy). 
Replacing individuals by programs in real or imaginary situations 

seems to us often to make a philosophical problem much clearer, and to 
illuminate some of  its essential features. We used this approach for the 
problem of  statistical inference in Howard  (1975) [7]. The idea of  having 
games played by programs instead of  people was introduced by Axelrod 
(1980) and discussed in Axelrod and Hamil ton (1981) [8]. The programs 
were enlisted in two rounds of  a ' tournament ' ,  and played each other - 
including a clone of  themselves - 200 times in the first round and a 
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random number of  times (with a median of  200) in the second round. 
They knew whether they were playing the same opponent (so they could 
'recognize' individuals), and they could remember (if they wished) the 
results of  previous games against the same player. Thus the tournaments 
simulated the repeated PD. 

In Axelrod's tournaments Rapoport 's  strategy TIT-FOR-TAT 
(cooperate in the first game against an unknown opponent,  thereafter 
copy his previous move) did amazingly well. It won almost all the 
tournaments (in the sense of  gaining the highest total payoff),  despite the 
fact that by its nature it can never win any individual contest. TIT-FOR- 
TAT can be regarded as one solution to the repeated PD, in the sense that 
a population of  TIT-FOR-TAT programs always obtains a Pareto opti- 
mal payoff  (one that cannot be improved for both players at the same 
time), and is also evolutionarily stable according to the definition of 
Maynard Smith and Price (1973), and Maynard Smith (1982) [9]. This 
means that any small invading strategy (program) will be less successful 
than the bulk of  the population, and will die out in the course of  evolution 
(assuming the payoffs of  the game are in units of  Darwinian fitness and 
the programs breed true). 

In this sense, then, Axelrod's tournaments suggest a solution to the 
repeated PD. We shall consider an imaginary tournament with different 
rules which will model the single-shot PD. In this model the strange 
argument of  Rapoport  and others for playing cooperatively in such games 
becomes completely clear, and in fact becomes a possible solution to the 
single shot PD, in just the same sense as TIT-FOR-TAT is for the repeated 
PD. 

2. R E C O G N I T I O N  

In the Axelrod tournaments,  the competitors could recognise each other 
as individuals. They knew how many times they had played a particular 
opponent  before, and if they wished they could record and recall the result 
of  each previous encounter with this opponent.  In the Rapoport  argument 
it is also crucial that the player recognise that his opponent is also rational 
(and in fact is very similar to himself). 

However the dominance argument does not require that the opponent 
be rational. It suggests that in a single-shot game it is always best to play 
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non-cooperatively. Most players in Hofs tadter ' s  tournament  seemed to 

accept this argument,  and hence defected. 
We now wish to describe an imaginary tournament  in which the players 

never recognise each other as individuals. (This might be because they 

never in fact meet the same opponent  twice, or because they are incapable 

of  recognising someone when they meet him again. The opponents are 
masked.) However the players can perceive the way their opponents 

think. They can do this because they are given as data the computer 
program of  their opponent.  Hence although players cannot recognise 

individuals, they can recognise types. (Two players with the same pro- 
gram are said to be of  the same type.) Several copies of  each program 

submitted would be entered into the tournament ,  and then each player 
would play every other player exactly once. The idea of recognition of 

types is due to K. G. Binmore, who suggested studying games between 
players who have their G6del numbers written on their foreheads. 

Players could of course remember (if they wished) the results of  

previous games against the various types of  opponent.  I f  they did this it 

would alter their own type, because we shall regard any stored data used 

by a program as being part of  that program. 
At first glance, it appears easy to write a program to do well in this 

tournament.  We arrange that our program will read in the opponent ' s  
program, then simulate what it will do when fed with our program as 

data. Having decided what our opponent is going to do, we can then 

decide what our best strategy will be. 
However, if the other program is trying to do the same sort of  thing, 

we fall into an infinite regress, and both programs will compute indefini- 

tely. In fact, to make the rules precise, we will have to insist that each 
program must produce an answer within a specified time, or a specified 

number  of  program steps. 
On seconds thoughts, however, it seems unnecessary to try to find out 

what our opponent  will do. Whatever he does, we do best by playing D, 
so why not just play D. (This is just the dominance argument.)  Let us 
suppose that one of  the program types embodies this non-cooperative 
strategy. We shall now show that there is a program that will do better 
than this strategy when matched against it. 

Our contender will be a program that recognises its own type, (i.e. it 
recognises itself). When it recognises that its opponent  is identical to 
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itself, it plays C. Otherwise, it plays D. We shall call this the MIRROR 
strategy. Clearly such a program will do better than the non-cooperative 
strategy. Suppose for example that in the tournament are five copies of  
the non-cooperative strategy and five of  the MIRROR strategy. Then the 
non-cooperative players will obtain 9 points, while the MIRROR players 
will obtain 13. 

It is of course necessary to show that there can be a program that 
recognises itself. This is fairly easy to do using the standard methods of  
mathematical logic. 1 We first give the essential idea in the form of an 
algorithm in English which recognises itself. 

Algorithm 

Read the proposed algorithm and check that the first part of  it is the text 
enclosed in quotation marks at the end of  these instructions. Check that 
the remainder of  it consists of  a copy of  the first part enclosed in 
quotation marks. If  the proposed algorithm is of  this form, declare that 
it is the same algorithm, otherwise declare that it is a different algorithm. 
The text referred to above is as follows. "Read the proposed algorithm 
and check that the first part of  it is the text enclosed in quotation marks 
at the end of  these instructions. Check that the remainder of  it consists 
of  a copy of the first part enclosed in quotation marks. If the proposed 
algorithm is of  this form, declare that it is the same algorithm, otherwise 
declare that it is a different algorithm. The text referred to above is as 
follows." 

The idea embodied in the algorithm can equally well be incorporated 
into a computer program. The Appendix gives such a program (written 
in a dialect of  BASIC). It reads another BASIC program (terminated by 
' ' END")  and prints "Same Program"  o r "Di f f e ren t  Program"  as appro- 
priate. It is interesting that one of  the programs (submitted by J. Graas- 
kamp) enlisted in Axelrod's tournament tried to recognise its twin and 
modify its play accordingly. In this case the recognition was based on the 
way the other program played the first 56 moves. 

Hence we have shown that under certain assumptions it can be sensible 
to play cooperatively even in a single-shot play of  the Prisoner's Dilem- 
ma. One situation where it is sensible is when you can recognise that your 
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opponent  is similar to yourself. This is essentially the argument put 
forward by Rapoport .  Another possible situation is outlined in the next 

section. 

3. PROBLEMS AND EXTENSIONS 

There will be many different programs that recognise themselves - for 

example copy the program in the Appendix, but insert some extra spaces 
in one of  the lines (and alter the corresponding DATA statement). We 

then get a population of  individuals of  a number of  different types who 

cooperate within a type but not across types, although the differences 

between types are minute. (This is scarcely unknown in the real world.) 

It does seem a genuine problem how to cooperate with a wider range of 

opponents whilst not laying oneself open to exploitation by people who 

do not regard you as one of  their type (or class, race, species, etc.). 
It might be objected that if the two players have the same program they 

are effectively the same individual, and there is really no proper play of 

the PD game at all. However it is easy to imagine more sophisticated 

versions of  the self-recognition program which would examine the other 

program to see which subroutine it uses when confronted with the PD 
game. If  this subroutine is identical to its own subroutine for the game 

it would cooperate,  otherwise not. Then the two programs could be very 

different except for their approach to the PD game, but they would still 

recognise each other and cooperate. They would have the same 'gene'  for 
playing PD. The programs could even keep a record of previous games 

and this would not matter as long as they did not refer to this record when 

playing the PD. These twin programs must therefore be regarded as 
separate individuals, just as twins are in reality. 

Nor do we have a case of  cooperation between related individuals, 
sharing some of  the same genes. For in that situation cooperation occurs 
because the payoffs  do not take the form of  the PD table: in fact there 

is an identity of  interest for the common genes, as if the original payoffs 
for the two players had been aggregated to give the following table. 
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Column 

C D 

C 4,4 3,3 
Row 

D 3,3 2,2 
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In that case, there is no problem. 

In fact, we could easily modify our algorithm to produce two programs,  

P and Q, such that P recognised Q and played cooperatively against it, 
and vice versa, but neither P nor Q recognised itself. This would give a 
model of  symbiosis. There would then be no question of  the individuals' 

being related. Whether cooperation ever occurs in nature by this mecha- 

nism (recognition of  genetic code) we are not able to say. However,  

evolutionary biologists have considered the idea that a gene might have 
two distinct effects: firstly to produce a conspicuous label in individuals 

carrying the gene, and secondly to confer a tendency to behave altruisti- 
cally towards bearers of  the label. This is known as the 'green-beard 

effect '  [10]. It is clearly vulnerable to mutants which bear the label (the 

green-beard) without the altruism. Our model is the extreme case where 
the ' label '  is the gene itself, and hence not vulnerable to mutants.  It seems 

doubtful  whether any examples of  the green-beard effect exist in Nature, 
and even less likely that direct recognition of  sections of  genetic code ever 
Occurs .  

Other interesting programs can be envisaged. For example~ suppose a 

fixed time is allowed for computat ion before each play of  a game. We 

can imagine ' superior '  programs which run on a fast computer  and 

' inferior '  ones which run on a slow computer.  Suppose a superior 

program always has time to calculate how an inferior program will play 
against it. Then a possible strategy for a superior program would be 

always to play what it forecasts the inferior program will play. (Of course 
its forecast is always correct.) We shall call this strategy TAT-FOR-TAT.  

It is a first-level metagame strategy in the sense of  Nigel Howard  (1971) 
[11]. Inferior programs faced with this superior strategy are then effec- 
tively confronted with Newcomb's  problem. Despite the ,dominance 
argument,  it is best for an inferior program to cooperate when confront-  
ed with the TAT-FOR-TAT oracle. 
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Imagine, for example, that we are writing a program for a slow 
computer.  We know there will be one superior type of  program (playing 
TAT-FOR-TAT) and we have a listing of it. We write our program so 
that it first checks if it is playing the superior program (by storing a copy 
of  the listing as data within our program). If it is, then we arrange for 
it to cooperate. If it is not, we check to see if it is playing a copy of itself. 
Again, if it is, we cooperate. Otherwise our program will play D. If 
several people write programs with this general strategy, we will finish 
with a population consisting of one type of superior program and several 

types of inferior program. An inferior program cooperates with a 
superior program and with programs of  its own type, but not with inferior 
programs of  different types. However a superior program elicits cooper- 
ation from all opponents (assuming it is self-recognising). In this popu- 

lation the superior programs do best. 
Of  course we can easily envisage even faster computers giving rise to 

extrasuperior programs. Alternatively, instead of  insisting that a program 
computes for not more than some fixed time, we might simply insist that 
it must always stop eventually. In this case, a program could try to find 
what its opponent would do by simulating N of  its program steps. If the 
opponents program did not halt within the N steps, it would (say) play 
D, otherwise it would play TAT-FOR-TAT. In this way we would get a 
hierarchy of  programs (with larger and larger values for N), so that no 
matter how complicated a program was, there would always be another 
program that could forecast its moves. There would, however, be no 

godlike program superior to all others. 

4. D I S C U S S I O N  A N D  C O N C L U S I O N S  

Biologists have suggested that individuals may cooperate in situations of  
potential conflict in two cases: 

(a) if they recognise that the other player is a close relative, or 
b) if they recognise the other player as someone with whom they are 

playing a sequence of games. 
Both situations depend on recognising something about the other 

player. And a central assumption of much of  Game Theory is that each 
player knows that the other players are rational (and they know that he 
knows, etc.). This assumption is not clearly specified unless " ra t iona l"  
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has previously been defined. So we can regard Game Theory as attempt- 
ing to provide a satisfactory definition of  rational behaviour in game 

playing. The at tempt is successful in the case of  zero-sum games, but not 
for non-zero-sum games. The original problem must therefore be speci- 

fied more clearly. We have tried to explore the use of  Binmore 's  idea, 

replacing the assumption that players know each other to be rational by 

the assumption that they know each other 's  game algorithms. So here is 
a third way in which individuals may recognise each other. (We have 

shown that this does not necessarily mean that they can forecast what pure 
or mixed strategies the other players will use.) 

In general a good algorithm (program) to use will depend on the 
opponents '  programs.  As in the Axelrod tournaments there may not be 
a best program for all populations of  opponents.  However,  two points 
should be noted. Firstly, we are closer to the pure Game Theory problem 

of the single-shot game: in our tournaments  there need be no memory  

of  previous encounters. Secondly, we can define an ideal population for 

playing the Prisoner 's  Dilemma. I f  all players use the self-recognition 

program listed in the Appendix, and play cooperatively only if they 
recognise their opponents as their twins, then every game will be played 

cooperatively. Moreover no small group of invading programs could 
exploit the existing population. In fact, the invaders would do badly and 

die of f  after a few generations of  competitive interaction. In this sense 

then, in the new formulat ion the Prisoner 's  Dilemma has a solution, and 
that solution is very reminiscent of  the argument given by Rapopor t  and 
others. 

A P P E N D I X :  A B A S I C  P R O G R A M  T H A T  R E C O G N I S E S  I T S E L F  

10 linenum = 0 
20 FOR part = 1 TO 2 

30 IF part  --- 1 T H E N  insertS = " " 
40 IF part  = 2 T H E N  insertS = " D A T A "  
50 RESTORE 
60 REPEAT 
70 linenum = linenum + 10 

80 I N P U T  yourline$: READ endline$ 

90 myline$ = STR$(linenum) + insertS + endline$ 
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100 IF yourline$ <> myline$ THEN PRINT "Different Program":  

STOP 

110 UNTIL endline$ = " S T O P "  

120 NEXT part 

130 linenum = linenum + 10 

140 INPUT yourline$ 

150 myline$ = STR$(linenum) + " E N D "  

160 IF yourline$ <> myline$ THEN PRINT "Different Program":  

STOP 

170 PRINT "Same Program" 

180 STOP 

190 DATA linenum = 0 

200 DATA FOR part = 1 TO 2 

210 DATA IF part = 1 THEN insertS = " " 

220 DATA IF part = 2 THEN insertS = " D A T A "  

230 DATA RESTORE 

240 DATA REPEAT 

250 DATA linenum = linenum + 10 

260 DATA INPUT yourline$: READ endline$ 

270 DATA myline$ = STR$(linenum) + insertS + endline$ 

280 DATA IF yourline$ < > myline$ THEN PRINT "Different Pro- 

gram":  STOP 

290 DATA UNTIL endline$ = " S T O P "  

300 DATA NEXT part 

310 DATA linenum = linenum + 10 

320 DATA INPUT yourline$ 

330 DATA myline$ = STR$(linenum) + " E N D "  

340 DATA IF yourline$ <> myline$ THEN PRINT "Different Pro- 

gram":  STOP 
350 DATA PRINT "Same Program"  

360 DATA STOP 

370 END 

Notes  

(i) Leading blanks are stripped from DATA strings; 
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(ii) S T R $  is a f u n c t i o n  w h i c h  c o n v e r t s  a n u m b e r  i n t o  t h e  s t r i n g  o f  d ig i t s  

w h i c h  d e n o t e  it.  

NOTE 

As the paper was about to be printed, I discovered that this result, and its application 
to the PD, were established independently by R. P. McAfee of the University of Western 
Ontario in an unpublished article 'Effective Computability in Economic Decisions' (1984). 
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