
J. V. H O W A R D

C O O P E R A T I O N IN T H E P R I S O N E R ' S D I L E M M A

1. I N T R O D U C T I O N

The payoff matrix below is an example of the Prisoner's Dilemma (PD)
game. If both players cooperate (C) they each get 2: if both defect (D)
they each get 1. However if one cooperates but not the other, the
cooperator gets 0 whilst the defector gets 3.

Column

C D

C 2,2 0,3
Row

D 3,0 1,1

There are three arguments for playing D in this game. Firstly, (D,D) is
the only Nash equilibrium: for any other pair of pure or mixed strategies
at least one player has an incentive to change his strategy (given the other's
strategy is fixed). Secondly, it is the maximin strategy: D guarantees at
least 1, C might yield 0. Thirdly, and most powerfully, D strictly domi-
nates C: whatever strategy Column chooses, Row is at least one unit better
o f f if he plays D.

Similar results hold if the game is repeated a fixed number of times.
All the Nash equilibria imply that both players play D in every game. Pairs
of maximin strategies lead to the same result. And successive elimination
of dominated strategies (equivalent to 'reducing the game backwards')
also produces a string of defections. (However cooperative outcomes can
be Nash equilibria if the number of repetitions of the game is uncertain.)

Nonetheless arguments have been made in favour of playing C even in
a single play of the PD. The one that interests us relies heavily on the usual
assumption that both players are completely rational and know every-
thing there is to know about the situation [1]. (So for instance, Row

Theory and Decision 24 (1988) 203-213.
�9 1988 by Kluwer Academic Publishers.

204 J . v . HOWARD

knows that Column is rational, and Column knows that he knows it, and

so o n .) I t can then be argued by Row that Column is an individual very

similar to himself and in the same situation as himself. Hence whatever

he eventually decides to do, Column will also necessarily do the same (just

as two good students given the same sum to calculate will necessarily
arrive at the same answer). Hence if Row chooses D, so will Column, and

each will get 1. However if Row chooses C, so will Column, and each will

then get 2. Hence Row should choose C.

This is clearly an unusual argument! It was put forward by Rapopor t

in 1966, and discussed by Davis in 1977 [2]. (However, Rapopor t did not
press the argument strongly, and later supported another resolution of

the problem, namely Nigel Howard ' s metagame analysis (1971) [3].) A

recent statement of the argument is Hofstadter (1983) [4].

The idea of behaving so as to necessitate that another individual act

in a certain way is not unique to the PD. Ayer (1956) gives the example
of a Calvinist who abstains f rom sin in order to have been saved [5]. In

Newcomb's Paradox it can be argued that the Chooser should open only
one box so as to necessitate that the Predictor shall have previously placed

one million pounds in it. (See the discussion in Kavka (1980) [6].) Again,

it seems irrational to bother to vote in an election which almost certainly
will not be won or lost by one vote. However, if your action necessitates
that a large group of citizens with similar predispositions will (or have)

also voted, it would be rational.

We do not propose in this paper to dive into the subtleties of this sort
of argument (including the murky waters of free will, determinism and

backwards causation). Instead we propose to work with a 'model ' of
the PD. The model will have computer programs instead of individuals,

and there will be no direct assumption of rationality (and so no as-

sumption that there always is a rational choice of strategy).
Replacing individuals by programs in real or imaginary situations

seems to us often to make a philosophical problem much clearer, and to
illuminate some of its essential features. We used this approach for the
problem of statistical inference in Howard (1975) [7]. The idea of having
games played by programs instead of people was introduced by Axelrod
(1980) and discussed in Axelrod and Hamil ton (1981) [8]. The programs
were enlisted in two rounds of a ' tournament ' , and played each other -
including a clone of themselves - 200 times in the first round and a

C O O P E R A T I O N IN T H E P R I S O N E R ' S D I L E M M A 205

random number of times (with a median of 200) in the second round.
They knew whether they were playing the same opponent (so they could
'recognize' individuals), and they could remember (if they wished) the
results of previous games against the same player. Thus the tournaments
simulated the repeated PD.

In Axelrod's tournaments Rapoport 's strategy TIT-FOR-TAT
(cooperate in the first game against an unknown opponent, thereafter
copy his previous move) did amazingly well. It won almost all the
tournaments (in the sense of gaining the highest total payoff), despite the
fact that by its nature it can never win any individual contest. TIT-FOR-
TAT can be regarded as one solution to the repeated PD, in the sense that
a population of TIT-FOR-TAT programs always obtains a Pareto opti-
mal payoff (one that cannot be improved for both players at the same
time), and is also evolutionarily stable according to the definition of
Maynard Smith and Price (1973), and Maynard Smith (1982) [9]. This
means that any small invading strategy (program) will be less successful
than the bulk of the population, and will die out in the course of evolution
(assuming the payoffs of the game are in units of Darwinian fitness and
the programs breed true).

In this sense, then, Axelrod's tournaments suggest a solution to the
repeated PD. We shall consider an imaginary tournament with different
rules which will model the single-shot PD. In this model the strange
argument of Rapoport and others for playing cooperatively in such games
becomes completely clear, and in fact becomes a possible solution to the
single shot PD, in just the same sense as TIT-FOR-TAT is for the repeated
PD.

2. R E C O G N I T I O N

In the Axelrod tournaments, the competitors could recognise each other
as individuals. They knew how many times they had played a particular
opponent before, and if they wished they could record and recall the result
of each previous encounter with this opponent. In the Rapoport argument
it is also crucial that the player recognise that his opponent is also rational
(and in fact is very similar to himself).

However the dominance argument does not require that the opponent
be rational. It suggests that in a single-shot game it is always best to play

206 J . v . H O W A R D

non-cooperatively. Most players in Hofs tadter ' s tournament seemed to

accept this argument, and hence defected.
We now wish to describe an imaginary tournament in which the players

never recognise each other as individuals. (This might be because they

never in fact meet the same opponent twice, or because they are incapable

of recognising someone when they meet him again. The opponents are
masked.) However the players can perceive the way their opponents

think. They can do this because they are given as data the computer
program of their opponent. Hence although players cannot recognise

individuals, they can recognise types. (Two players with the same pro-
gram are said to be of the same type.) Several copies of each program

submitted would be entered into the tournament , and then each player
would play every other player exactly once. The idea of recognition of

types is due to K. G. Binmore, who suggested studying games between
players who have their G6del numbers written on their foreheads.

Players could of course remember (if they wished) the results of

previous games against the various types of opponent. I f they did this it

would alter their own type, because we shall regard any stored data used

by a program as being part of that program.
At first glance, it appears easy to write a program to do well in this

tournament. We arrange that our program will read in the opponent ' s
program, then simulate what it will do when fed with our program as

data. Having decided what our opponent is going to do, we can then

decide what our best strategy will be.
However, if the other program is trying to do the same sort of thing,

we fall into an infinite regress, and both programs will compute indefini-

tely. In fact, to make the rules precise, we will have to insist that each
program must produce an answer within a specified time, or a specified

number of program steps.
On seconds thoughts, however, it seems unnecessary to try to find out

what our opponent will do. Whatever he does, we do best by playing D,
so why not just play D. (This is just the dominance argument.) Let us
suppose that one of the program types embodies this non-cooperative
strategy. We shall now show that there is a program that will do better
than this strategy when matched against it.

Our contender will be a program that recognises its own type, (i.e. it
recognises itself). When it recognises that its opponent is identical to

COOPERATION IN THE PRISONER'S DILEMMA 207

itself, it plays C. Otherwise, it plays D. We shall call this the MIRROR
strategy. Clearly such a program will do better than the non-cooperative
strategy. Suppose for example that in the tournament are five copies of
the non-cooperative strategy and five of the MIRROR strategy. Then the
non-cooperative players will obtain 9 points, while the MIRROR players
will obtain 13.

It is of course necessary to show that there can be a program that
recognises itself. This is fairly easy to do using the standard methods of
mathematical logic. 1 We first give the essential idea in the form of an
algorithm in English which recognises itself.

Algorithm

Read the proposed algorithm and check that the first part of it is the text
enclosed in quotation marks at the end of these instructions. Check that
the remainder of it consists of a copy of the first part enclosed in
quotation marks. If the proposed algorithm is of this form, declare that
it is the same algorithm, otherwise declare that it is a different algorithm.
The text referred to above is as follows. "Read the proposed algorithm
and check that the first part of it is the text enclosed in quotation marks
at the end of these instructions. Check that the remainder of it consists
of a copy of the first part enclosed in quotation marks. If the proposed
algorithm is of this form, declare that it is the same algorithm, otherwise
declare that it is a different algorithm. The text referred to above is as
follows."

The idea embodied in the algorithm can equally well be incorporated
into a computer program. The Appendix gives such a program (written
in a dialect of BASIC). It reads another BASIC program (terminated by
' ' END") and prints "Same Program" o r "Di f f e ren t Program" as appro-
priate. It is interesting that one of the programs (submitted by J. Graas-
kamp) enlisted in Axelrod's tournament tried to recognise its twin and
modify its play accordingly. In this case the recognition was based on the
way the other program played the first 56 moves.

Hence we have shown that under certain assumptions it can be sensible
to play cooperatively even in a single-shot play of the Prisoner's Dilem-
ma. One situation where it is sensible is when you can recognise that your

208 J .V . HOWARD

opponent is similar to yourself. This is essentially the argument put
forward by Rapoport . Another possible situation is outlined in the next

section.

3. PROBLEMS AND EXTENSIONS

There will be many different programs that recognise themselves - for

example copy the program in the Appendix, but insert some extra spaces
in one of the lines (and alter the corresponding DATA statement). We

then get a population of individuals of a number of different types who

cooperate within a type but not across types, although the differences

between types are minute. (This is scarcely unknown in the real world.)

It does seem a genuine problem how to cooperate with a wider range of

opponents whilst not laying oneself open to exploitation by people who

do not regard you as one of their type (or class, race, species, etc.).
It might be objected that if the two players have the same program they

are effectively the same individual, and there is really no proper play of

the PD game at all. However it is easy to imagine more sophisticated

versions of the self-recognition program which would examine the other

program to see which subroutine it uses when confronted with the PD
game. If this subroutine is identical to its own subroutine for the game

it would cooperate, otherwise not. Then the two programs could be very

different except for their approach to the PD game, but they would still

recognise each other and cooperate. They would have the same 'gene' for
playing PD. The programs could even keep a record of previous games

and this would not matter as long as they did not refer to this record when

playing the PD. These twin programs must therefore be regarded as
separate individuals, just as twins are in reality.

Nor do we have a case of cooperation between related individuals,
sharing some of the same genes. For in that situation cooperation occurs
because the payoffs do not take the form of the PD table: in fact there

is an identity of interest for the common genes, as if the original payoffs
for the two players had been aggregated to give the following table.

C O O P E R A T I O N IN T H E P R I S O N E R ' S D I L E M M A

Column

C D

C 4,4 3,3
Row

D 3,3 2,2

209

In that case, there is no problem.

In fact, we could easily modify our algorithm to produce two programs,

P and Q, such that P recognised Q and played cooperatively against it,
and vice versa, but neither P nor Q recognised itself. This would give a
model of symbiosis. There would then be no question of the individuals'

being related. Whether cooperation ever occurs in nature by this mecha-

nism (recognition of genetic code) we are not able to say. However,

evolutionary biologists have considered the idea that a gene might have
two distinct effects: firstly to produce a conspicuous label in individuals

carrying the gene, and secondly to confer a tendency to behave altruisti-
cally towards bearers of the label. This is known as the 'green-beard

effect ' [10]. It is clearly vulnerable to mutants which bear the label (the

green-beard) without the altruism. Our model is the extreme case where
the ' label ' is the gene itself, and hence not vulnerable to mutants. It seems

doubtful whether any examples of the green-beard effect exist in Nature,
and even less likely that direct recognition of sections of genetic code ever
Occurs .

Other interesting programs can be envisaged. For example~ suppose a

fixed time is allowed for computat ion before each play of a game. We

can imagine ' superior ' programs which run on a fast computer and

' inferior ' ones which run on a slow computer. Suppose a superior

program always has time to calculate how an inferior program will play
against it. Then a possible strategy for a superior program would be

always to play what it forecasts the inferior program will play. (Of course
its forecast is always correct.) We shall call this strategy TAT-FOR-TAT.

It is a first-level metagame strategy in the sense of Nigel Howard (1971)
[11]. Inferior programs faced with this superior strategy are then effec-
tively confronted with Newcomb's problem. Despite the ,dominance
argument, it is best for an inferior program to cooperate when confront-
ed with the TAT-FOR-TAT oracle.

210 J . v . HOWARD

Imagine, for example, that we are writing a program for a slow
computer. We know there will be one superior type of program (playing
TAT-FOR-TAT) and we have a listing of it. We write our program so
that it first checks if it is playing the superior program (by storing a copy
of the listing as data within our program). If it is, then we arrange for
it to cooperate. If it is not, we check to see if it is playing a copy of itself.
Again, if it is, we cooperate. Otherwise our program will play D. If
several people write programs with this general strategy, we will finish
with a population consisting of one type of superior program and several

types of inferior program. An inferior program cooperates with a
superior program and with programs of its own type, but not with inferior
programs of different types. However a superior program elicits cooper-
ation from all opponents (assuming it is self-recognising). In this popu-

lation the superior programs do best.
Of course we can easily envisage even faster computers giving rise to

extrasuperior programs. Alternatively, instead of insisting that a program
computes for not more than some fixed time, we might simply insist that
it must always stop eventually. In this case, a program could try to find
what its opponent would do by simulating N of its program steps. If the
opponents program did not halt within the N steps, it would (say) play
D, otherwise it would play TAT-FOR-TAT. In this way we would get a
hierarchy of programs (with larger and larger values for N), so that no
matter how complicated a program was, there would always be another
program that could forecast its moves. There would, however, be no

godlike program superior to all others.

4. D I S C U S S I O N A N D C O N C L U S I O N S

Biologists have suggested that individuals may cooperate in situations of
potential conflict in two cases:

(a) if they recognise that the other player is a close relative, or
b) if they recognise the other player as someone with whom they are

playing a sequence of games.
Both situations depend on recognising something about the other

player. And a central assumption of much of Game Theory is that each
player knows that the other players are rational (and they know that he
knows, etc.). This assumption is not clearly specified unless " ra t iona l"

C O O P E R A T I O N IN T H E P R I S O N E R ' S D I L E M M A 211

has previously been defined. So we can regard Game Theory as attempt-
ing to provide a satisfactory definition of rational behaviour in game

playing. The at tempt is successful in the case of zero-sum games, but not
for non-zero-sum games. The original problem must therefore be speci-

fied more clearly. We have tried to explore the use of Binmore 's idea,

replacing the assumption that players know each other to be rational by

the assumption that they know each other 's game algorithms. So here is
a third way in which individuals may recognise each other. (We have

shown that this does not necessarily mean that they can forecast what pure
or mixed strategies the other players will use.)

In general a good algorithm (program) to use will depend on the
opponents ' programs. As in the Axelrod tournaments there may not be
a best program for all populations of opponents. However, two points
should be noted. Firstly, we are closer to the pure Game Theory problem

of the single-shot game: in our tournaments there need be no memory

of previous encounters. Secondly, we can define an ideal population for

playing the Prisoner 's Dilemma. I f all players use the self-recognition

program listed in the Appendix, and play cooperatively only if they
recognise their opponents as their twins, then every game will be played

cooperatively. Moreover no small group of invading programs could
exploit the existing population. In fact, the invaders would do badly and

die of f after a few generations of competitive interaction. In this sense

then, in the new formulat ion the Prisoner 's Dilemma has a solution, and
that solution is very reminiscent of the argument given by Rapopor t and
others.

A P P E N D I X : A B A S I C P R O G R A M T H A T R E C O G N I S E S I T S E L F

10 linenum = 0
20 FOR part = 1 TO 2

30 IF part --- 1 T H E N insertS = " "
40 IF part = 2 T H E N insertS = " D A T A "
50 RESTORE
60 REPEAT
70 linenum = linenum + 10

80 I N P U T yourline$: READ endline$

90 myline$ = STR$(linenum) + insertS + endline$

212 J. v. HOWARD

100 IF yourline$ <> myline$ THEN PRINT "Different Program":

STOP

110 UNTIL endline$ = " S T O P "

120 NEXT part

130 linenum = linenum + 10

140 INPUT yourline$

150 myline$ = STR$(linenum) + " E N D "

160 IF yourline$ <> myline$ THEN PRINT "Different Program":

STOP

170 PRINT "Same Program"

180 STOP

190 DATA linenum = 0

200 DATA FOR part = 1 TO 2

210 DATA IF part = 1 THEN insertS = " "

220 DATA IF part = 2 THEN insertS = " D A T A "

230 DATA RESTORE

240 DATA REPEAT

250 DATA linenum = linenum + 10

260 DATA INPUT yourline$: READ endline$

270 DATA myline$ = STR$(linenum) + insertS + endline$

280 DATA IF yourline$ < > myline$ THEN PRINT "Different Pro-

gram": STOP

290 DATA UNTIL endline$ = " S T O P "

300 DATA NEXT part

310 DATA linenum = linenum + 10

320 DATA INPUT yourline$

330 DATA myline$ = STR$(linenum) + " E N D "

340 DATA IF yourline$ <> myline$ THEN PRINT "Different Pro-

gram": STOP
350 DATA PRINT "Same Program"

360 DATA STOP

370 END

Notes

(i) Leading blanks are stripped from DATA strings;

C O O P E R A T I O N IN T H E P R I S O N E R ' S D I L E M M A 213

(ii) S T R $ is a f u n c t i o n w h i c h c o n v e r t s a n u m b e r i n t o t h e s t r i n g o f d ig i t s

w h i c h d e n o t e it.

NOTE

As the paper was about to be printed, I discovered that this result, and its application
to the PD, were established independently by R. P. McAfee of the University of Western
Ontario in an unpublished article 'Effective Computability in Economic Decisions' (1984).

R E F E R E N C E S

[1] Anatol Rapoport: 1966, Two-Person Game Theory (Ann Arbor), pp. 139-141.
[2] A. Rapoport, op. cit., pp. 141f; Lawrence H. Davig: 1977, 'Prisoners, Paradox, and

Rationality', American Philosophical Quarterly 14 (October), pp. 319-327.
[3] Nigel Howard: 1971, Paradoxes of Rationality: Theory of Metagames and Political

Behavior (MIT Press); Anatol Rapoport: 1967, 'Escape from Paradox', Scientific
American, July, pp. 50-56.

[4] Douglas R. Hofstadter" 1983, 'Metamagical Themes', Scientific American, June,
pp. 14-18.

[5] A. J. Ayer: 1956, The Problem of Knowledge (Penguin Books), pp. 173-175.
[6] Gregory S. Kavka: 1980, 'What Is Newcomb's Problem About?', American Philoso-

phical Quarterly 17 (October), pp. 271-280.
[7] J. V. Howard: 1975, 'Computable Explanations', Zeitschr. f. math. Logik und

Grundlagen d. Math. 21, pp. 215-224.
[8] R. Axelrod: 1980, 'Effective Choice in the Prisoner's Dilemma', J. of Conflict

Resolution 24 (March), pp. 3-25. 'More Effective Choice in the Prisoner's Dilem-
ma', J. of Conflict Resolution 24 (September), pp. 379-403. R. Axelrod and W. D.
Hamilton: 1981, 'The Evolution of Cooperation', Science 211, pp. 1390-1396.

[9] J. Maynard Smith and G. R. Price: 1973, 'The Logic of Animal Conflict', Nature 246,
pp. 15-18; J. Maynard Smith: 1982, Evolution and the Theory of Games (Cambridge
University Press).

[10] W. D. Hamilton: 1964, 'The Genetical Evolution of Social Behaviour II', Journal of
Theoretical Biology 7, pp. 17-32; R. Dawkins: 1976, The Selfish Gene (Oxford
University Press).

[11] N. Howard, op. cit.

L o n d o n School o f Economics ,

Hough ton Street,

L o n d o n WC2A 2AE,

England

