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Abstract. Dispersion relations for the resistive tearing instability are analytically found in the hydromagnetic 
approximation for a current sheet with a small normal component of the magnetic field. A strong stabilizing 
influence of the normal component on the development of the tearing instability is shown to exist. These 
results are also obtained from physical considerations, and so a simple interpretation of the stabilization 
effect of the normal component is given. The results of the present paper are compared with those of previous 
works on the topic, and the previous negative results are explained. 

1. Introduct ion 

Current sheets play an important role in space physics and laboratory plasma physics 
(see, e.g., Priest, 1976, 1982, 1985; Syrovatskii, 1981; Hones, 1984). In particular they 

can be energy sources in flare-like processes in the solar atmosphere. The problem of 
the stability of current sheets is of special importance. On the one hand, in the funda- 

mental work of Furth, Killen, and Rosenbluth (1963) the tendency of the sheet current 

to break up into a set of parallel current filaments was shown. It is the so-called tearing 
instability (see also Coppi, Laval, and Pellat, 1966; Drake and Lee, 1977). On the other 

hand, laboratory and space researches show that current sheets can be sufficiently thin 
and wide for a long time. 

To explain this discrepancy the hypothesis that the tearing mode is stabilized by a 

small transverse magnetic field B •  i.e., perpendicular to the sheet, was suggested. This 
effect was examined in the case of a collisionless plasma by Schindler (1974), Galeev 
and Zeleny (1976), Schindler and Birn (1978), Coroniti (1980); and the stabilizing effect 
of B• has been demonstrated. The hypothesis that the resistive tearing mode is 

stabilized by a normal component B• has been pointed out by Pneuman (1974) and 
Schindler (1976). 

Later on, however, in papers of Bulanov, Sakai, and Syrovatskii (1979), Janicke 

(1980, 1982) the effect was asserted to be totally lacking in the hydromagnetic approxi- 
mation. Moreover, it was even concluded in Bulanov, S akai, and Syrovatskii (1979) that 
the transverse field B• results in the enhancement of instability. Thus the stabilizing 
effect of a transverse field was suggested to be totally lacking in the hydromagnetic 
approximation. This idea was supported by the phenomenon of the break-down of the 
totally stable states of a collisionless non-neutral (i.e., with the transverse field) sheet 
when collisions are allowed (Coroniti, 1980; Zeleny and Taktakishvili, 1981). 
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In the present paper (and also in papers of Vemeta and Somov, 1988) it is shown 
that, contrary to the above opinion, a transverse magnetic field exerts a strong stabilizing 
effect in the hydromagnetic approximation. 

2. Formulation and Solution of the Problem 

The present consideration is based on the equations of ideal magnetohydrodynamics 
for an incompressible plasma with finite conductivity: 

r o t [ P ( ~ t  + V T V ) ] =  r o t [ ~ j x  B] ,  (1) 

4 ~  
r o t B = - -  j ,  (2) 

r 

divB = divV = 0, (3) 

1 SB 
rotE - , (4) 

c St 

( 1 1) j = a  E + -  [ B x B  , 
r 

(5) 

@ 
- -  + V grad r/= O. (6) 
St 

In Equations (1)-(6) we made use of the following designations: c is the velocity of light, 
E and B are electric and magnetic fields correspondingly, j is the density of the electric 
current, o-is the conductivity (we will also use the quantity r/= c2/a), V and p are the 
velocity and density of plasma. It follows from (1-6) that 

S B - r ~  x B ] - S t  r o t [ ~  rotB] ,  (7) 

ro t [p (~- t  + B T V ) ] =  r o t I ~  n (rotBx B)].  (8) 

Now let us pick out the unperturbed values of the magnetic field and velocity and 
study the behaviour of small (strictly speaking, the infinitesimal) disturbances. 

The unperturbed magnetic field, 

Bo(y  ) = Bo~(y)e ~ + B • ey ,  (9) 
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depends only on the y-coordinate which is perpendicular to the sheet and has a nonzero 
transverse (i.e., perpendicular to the sheet) component B• = const (see Figure 1). The 

choice of the function Box(Y) will be made below. 

Fig. 1. 
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A current sheet with a nonzero transverse (i.e., perpendicular to the sheet) magnetic field com- 
ponent B •  

Further, we choose, as usually, a zero value for the undisturbed velocity distribution: 

V o -- 0. (10) 

The introduction of the transverse field is known to involve an additional sheet-aligned 
force that causes plasma to spread. On the one hand, we may formally assume that this 
force is neutralized by some other force of non-electromagnetic nature which does not 
affect the investigated phenomenon or that the time of the instability is smaller than the 
time of plasma outflow (see Section 5). On the other hand, the characteristic stabilizing 
effect which is briefly outlined in Section 5 is associated with the outflow effect. The 
outflow does not effect the stabilization of the transverse component (in the linear 
approximation), and for the sake of simplicity we put Vo = 0 (as is usually done). By 
this assumption the unperturbed magnetic field is meant to satisfy the following con- 
dition: 

rot.ol}=0 (11) 

as in Furth, Killen, and Rosenbluth (1963). Below we shall not make use of it. Equilibria 
of this type have been described in detail by Soop and Schindler (1973), Birn, Sommer, 
and Schindler (1975), Janicke (1982). 

The disturbed values are sought in the following form: 

fl(r ,  t) = fl(Y) exp(~t + ikxx ) . (12) 
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In this case a set of equations for disturbed quantities, denoted by the subscript 1, is 
reduced to 

ogrot(poVl) = rot ( - ~  {(BoT)Bl + (B17)Bo})  , (13) 

1 
coB 1 = (BolT)V 1 - (VI~7)B o - ~ {[grad r/o x ro tB 1 ] - qoAB1 + 

+ [grad ~/1 x rotBo] - ~/1ABo}, (14) 

divB 1 = divV 1 = 0,  (15) 

og~h + V 1 grad ~/o = 0.  (16) 

There are two equations in this set (like when B• = 0 in Furth, Killen, and Rosenbluth) 

comprising terms Vly and B l y  only. Let us write these equations down in the 
dimensionless form: 

1 W')' S2(  i~ [Ip" ~ 2 } ( 1 7 )  ~2 ( fi ~ W - - -  c ~ 2 F O + F " 0 - F O "  + - -  - ~O]' , 
P 

~ - ~ k  1+  p + + + - - -  
~z • p ~ i~3 

Here 

- B l y  , B = IBox(a)l,  W = - iVlyk 'CR,  # = y- 
B a 

(a is thickness of the sheet), 

(18) 

F - kB~  , k = (k2) 1/z , ~ = ka, (19) 
kB 

4ha 2 a(4n ( p )  )l/a. r, R 
ZR-- , Z A -  , S = - - ,  p=co~R,  

= q o , ~ _  ~ , ~ _ B •  

(n )  (p)  B 

Equations (17)-(19) differ from the corresponding equations in Furth, Killen, and 
Rosenbluth (1963) in the terms with r Equation (17) is re-arranged with the help of 
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Equation (18) in the following way: 

. ~ ( #  = W  # + - -  + + 
p ?~ : J  

) + S2q / F _ F "  + 

p / pio~ ~1 
W, _ 

+ + - -  . ( 2 0 )  

~p p~ i ~  j 

It may be noted that the condition (11)just as in Furth, Killen, and Rosenbluth is 
reduced to 

To solve the problem of tearing instability the so-called singular perturbations method 
is usually employed. Two regions of a current sheet are singled out: the outer one and 
the inner one. 

The effect of finite conductivity is negligible in the outer layer. The external solution 
possesses a singularity in a small internal region where this contribution is essential. The 
solution is sought in this inner region with finite conductivity included. Then the 
solutions (strictly speaking, their asymptotes) are joined. We examine separately each 
of these regions. 

2.1. OUTER REGION 

The magnetic field is 'frozen' to plasma in the outer region. This situation corresponds 
to the limit S-+ oo. We get from Equation (17) 

~/ ,_ ( a 2 +  ~ ) ~ - ~ F i ~  ( r  (22) 

After that we choose the following distribution of the reconnection component of the 
magnetic field: 

I 
- l ,  # <  - 1 ,  

F =  #,  - 1 < # < 1 ,  

I 1, #>1. 
(23) 
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In this case the general solution of Equation (22) can be easily found: 

I / / =  A 1 e - ~  + B 1 e ~ 
C 1 

e i~t~/r , Ix < - 1 ; 

= A2e-~* + B2e=~* - --2~c2 e - = ~  ~ e-(i=t2/2r + 

o 

# 

+ - -  e ~u e - -  ( i ~ t 2 / 2 ~ )  - -  o~t d t ,  

2 ~  
0 

I~l < 1 ; (22a) 

= A 3 e -  ~'~ + B 3 e ~'u 
C3 e -  io,~,1r ~ > 1 

For the chosen form of the function F we have 

F"  = 3(/~ + 1 ) -  6(1, - 1). 

Allowing for (24) we obtain the conditions of 'joining' from Equation (22): 

(24) 

$ ] - 1 + 0 = 0 ,  ~b,] - 1 + 0  

1 - 0  1 - 0  
= 0  

and 

-i~ ~9"1-1+0 ~9(1) (25) 
1 - 0  

at the point /~ = - 1 and similar conditions at the po in t / ,  = 1. Also ~ is an even 
function: 

~b(/~) = ~b( - # ) .  (26) 

Further, we make use of the condition that the solution is limited at infinity: 

I~bl < const (27) 

as/~ ~ oo. Finally we obtain from (22)-(27) for ~ < a that the derivative ~b has an 
effective jump at point # = 0. 

This fact enables one to conclude that the high density current flows in the plane/~ = 0 
associated with the instability development. In this region the dissipation effects become 
important. The effective jump of ~ ' / ~  in the vicinity of the kt = 0 equals 

A' = 2/~ (28) 
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under the condition of r < a < 1 (usually accepted in works on this topic), as in Furth, 

Killen, and Rosenbluth (1963). 
We point out here, that the value A'/2 is the ratio of corresponding coefficients in the 

asymptotics at /z ~ + 0 for the solution in the outer region. Below the ratio of the 
coefficients will be calculated for the asymptotic solution in the inner region. 

2.2. INNER REGION. '~t = const' APPROXIMATION 

Let us examine the vicinity of the point # = 0. Within the area of the width ~o the 
'freeze-in' condition is violated, S < oo. We write down a set of Equations (17) and (18) 
with new designations: 

u ~  ~Ou ~ ~-c~2e~A u ~  u ~  (29) 
2 4 

~ , " -  ~2eo20 = ~o12o[40 + Ou ~ + peg ~uO, " (30) 
4i 

Here 

O= -~ , u ~  4~~ W, f2 o = p ~ o  , ~ = . 4  (31) 
~o P 4 ~eo 2 ' 

F p l I/4 ( 472)--1 pe 
e=L4~2S2 j  , A=  I +  , 0 = - - 4  ' (32) 

= F  p 1 1 / 4 (  4 7 2 ) 1 / 4  
e 0 = eA-  1/4 L4~--S~S~J 1 + (33) 

At 4 = 0 these equation coincide with the equations deduced in Furth, Killen, and 
Rosenbluth (1963). We shall search u~ in the form of a series in terms of normalized 
Hermite functions 

u ~ ~ a~ (34) 
n = O  

where 

u;,' + n +  u n = 0 ,  (35) 
2 

/'/n(0) = 1An e - ~  ' 

H,(x) are Hermite polynomials 

An = 2(n/2)+(1/4)N~ " ,~1/4 . (36) 

H,,(x) ( - 1)" e x2 d" = - -  e - .2 (37) 
dx n 
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By making use of the properties of the Hermite polynomials (Gradstein and Ryzhik, 
1982; Furth, Kiilen, and Rosenbluth, 1963) we obtain for the coefficients of the series 
(34) the following recurrent relationship: 

a m = 
x / ( m -  1)m 

2 m - 1/2 
o x / (  m + 1) (m + 2)'] 

am + 2 2 m + 3/2 1 
+ 

§  

f } 1 + (01 ~t--  i ~ f ) u  m d01 - ( m  + 1) _ ctZ~2A 
- - o o  

Terms with a ~ _ 2 and a ~ + = can be neglected as they are exponentially small with respect 
to m and besides they have opposite signs. It will be seen in Section 2.4 what the 
parameter of the expansion is in this case. 

We may briefly point out that oscillations with respect to 0 are not essential in this 
approximation. They can be taken into account if the solution of the Equation (29) is 
sought in the form 

u o = e-(i/8)~o2 ~o. (39) 

Then we get for the width of the oscillation penetration layer 

~(1 + ~2S2"~ v2 
= . (40) 

P / 

The interval between the two nearest maxima at different sides of the point 0 = 0 is equal 
(as one can see from (39)) to 

~" ~0" 

One can see that AO > eo for ~ < e. 
Thus, Equation (29) can be rewritten as 

§  

o 1 f u,,,(01O- i~tp')dO~, 
a m  = - -  (m + �89 - A~2 e~ 

- - o : )  

U ~ = + ~  aOUm " 
m=O 

Following Furth, Killen, and Rosenbluth (1963), we calculate A' for the inner region 
in the approximation ~, = const. The condition of applicability for this approximation 
is as follows: 

~b~ eo < 1. (42) 
4, 
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If we use (28), the above inequality is reduced to 

~0 < ~ .  

Allowing for 

(43) 

A1/4 
ff~, = r  (44) 

we get from (30) and (41) 

+Of3 

--00 

+o0 

(n + �89 + AI/2~z2~ z u"O1 d01 " (45) 
- o o  

By substituting the values of integrals (cf. Furth, Killen, and Rosenbluth, 1963) and 
using A1/2~2~2< 1, we obtain: 

A' = 12A- 1/4 f2. (46) 

Unlike Furth, Killen, and Rosenbluth (1963), there is an additional multiplier A- 1/4 
in (43)-(46) associated with the transverse magnetic field. 

2.3. THE DISPERSION EQUATION IN THE SHORT WAVE-LENGTH REGIME 

By comparing the values of A' derived for the outer (28) and inner (46) regions we find 
the dispersion equation 

P5 = ( 8 S ~ 2 -  ~2S2p 4. (47)  

\ 9 ~ 1  

The condition (43) with (47) is written down as 

pe2 > 4. (48) 

For very large wavelengths the inequality (48) is violated. 
One can easily see, as follows, that the second term of the right-hand side of 

.Equation (47) describes the stabilizing effect of the transverse field. 
The graphical solution of Equation (47) is given in Figure 2, where four curves are 

represented: the curve of the function 

f l  = p 5  

and three curves of functions 

(8S~ 2 - ~ 2 S 2 p 4  
f 2  = 
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~0 

~t 

~2 

Fig. 2. Graphical solution of the dispersion equation 
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(47). 

--p 

for three values of Co, Ca, and Cz of the parameter r 

I~1 > IC, I > ICol = o, 

The x-coordinate p~ (i = 0, 1, 2) of the intersection point of these curves is the root of 

Equation (47) for r = ~ and 

P2 < Pl < Po \ 9 ~ )  " 

The value ofPo (~ = 0) corresponds to Furth, Killen, and Rosenbluth (1963). The root 
decreases monotonical with the increase of C. 

It should be noted that, generally speaking, Equation (47) has complex roots as well. 
In the general case we find from (47) 

d Rep - 2~$2{5 Ipl  2 + 4~2S 2 Rep} 

d~ (5 Rep  + 4~2S2) 2 + (5 Imp)  2 

Rep(  - ~) = Rep( r  
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Therefore, 

d Rep 
- - < 0  

d~ 

at r > 0; Rep  > 0, i.e. when there is instability. Hence, the value o f R e p  > 0 decreases 

with the increase of Ill. This fact confines the stabilizing effect of the transverse 
component of the magnetic field. 

2.4. T H E  G E N E R A L  D I S P E R S I O N  E Q U A T I O N  

Let us study the behaviour of the growth rate of instability throughout the entire 
wave-length band. In Equations (17), (18), (20) the term ~2 W is neglected as compared 
with W" in the inner region. We, therefore, obtain 

? 
~" = c ~ 2 0 + p O + # W +  -~ W ' ,  (49) 

S 2 ~  2 S 2 ~  i S 2 ~  
w " -  ~ w +  s 2 ~ 2 ~ +  ~ w ' - - -  ~". (50) 

p pi p 

By substituting (V)l,4 
Z = ~ t " ,  0 = I.t A 1/4 , ( 5 1 )  

we derive from (49) and (50) the equation for z: 

Here 

z"  = [v + 02]z ' + 4 0 z -  iM(2Oz" + 5z ' ) .  

p 1/2 
1.' = (0~ 2 .-}- p) A 1/2 , 

c~S 

(52) 

(cf. Furth, Killen, and Rosenbluth, 1963). ~ is an even function, hence, z is also an even 
function, therefore, z' (0) = 0. 

The value of z is normalized with the condition 

z(0) = 1 

without loss of generality. 

It follows from the expression f o r M  in (53) that [MI < 1 when Rep  > 0 (instability). 
Below it will be shown that [ v - l r < 1. Thus, the solution of Equation (52) is to be 
sought in the form of an expansion in terms of parameters M and v - 1. In the zero 
expansion order we obtain 

z (~ = e -  ~ 2/2 (54) 

It is seen that no oscillations originate with respect to O. 

sr 
M - (53) 

(p + S 2 ~2)1/2 
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By making use of the known formulae for the function asymptotes at infinity we have 

~-~\~- .~,',/ 
(55) 

(see also Furth, Killen, and Rosenbluth, 1963). The value A' is expressed in terms of 
variables 0 and z in the following way (when ~ < a): 

P / 
A' = o (56) 

1-p(A a2S2~ -1/2 
P / 

q - o o  

f OzdO 

0 

In our problem, the consideration of the integrals in (56) can be confined to the zero 
approximation with respect to parameters v - 1 and M. For the case ~ < a we ultimately 
derive from (28), (54), (56) the dispersion equation 

Aa/4(a2s2~l/4( p3/2 ) 
1 -  A-1/2 - p a  = 0 .  (57) 

\ p / aS 

At ~ = 0 Equation (57) goes over into the dispersion equation derived in Janicke 
(1980, 1982). But when r ~ 0 in (57) (unlike Janicke, 1980, 1982) there are multipliers 
associated with ~ which control the stabilizing effect of the transverse field. 

In the first place let us consider the case when 

p3/2 A- 1/2 < 1. (58) 
aS 

From (57) we get 

pS = (2 S)2- {2S=p 4 (59) 

with (58) being equivalent to the condition 

2 pa  2 > - . (60) 
7~ 

Equation (59) and the condition (60) agree with (47) and (48) to within a numerical 
coefficient of order unit. 

Within the limit 

A1/4(~-) 1/4 pa  < (61) 
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the dispersion equation is reduced to 

p 3  = 0~2S 2 _ ~ 2 8 2 p 2 "  (62) 

The condition (61) is equivalent to 

pc~2 < 2 . (63) 

It is seen that the formula (59) describes the region of short wavelengths and 
formula (62) that of the long wavelengths (cf. Furth, Killen, and Rosenbluth, 1963; 
Artsimovich and Sagdeev, 1979 for ~ = 0). In the intermediate region both formulae 
produce virtually the same result. To see this, from (59) we get at p~2 = 2/re 

(2)3= ss2-( )2 2s2  2 (64) 

the limit (60) is equivalent to 

eo<C~ 

(see also (43)), and the limit (63) corresponds to 

eo > c~. 

(64a) 

(64b) 

(64c) 

At short wavelengths the growth rate is growing with wavelength, at long ones it is 
falling. Hence, when the wavelength is given by the Equations (64) (e = (2rcL)/2) it runs 
into its maximum. The same analysis of the Equations (57), (59), (62), and (64) as that 
of (47) reveals that the transverse component of the magnetic field reduces both the value 
of the growth rate over the entire wavelength band and the wavelength at which the 
growth rate maximises. 

Figure 3 gives plots of the growth rate of instability p = coz R as a function of the 
wavelength 2/L for S = 108 and for the three values of ~: ~o = 0, ~1 = 10 - 4,  ~2 = 10 - 3. 
Solid lines correspond to numerical solutions of Equation (57), dash-and-dash lines 
correspond to the solutions of the asymptotic equations (59), (62) with the account of 
(60), (63), and (64). An increase of the transverse magnetic field is evidently 
accompanied by a growth rate decrease, with its maximum shifting to the shorter 
wavelengths. 

Now let us check the validity of the approximation 

I v - 1 ] < l .  

Neglecting e2 in (53) (this is equivalent to the neglect of the member e2 ~ as compared 

and from (62) we get the same result too. 
It may be shown from (33) and (64) that the condition p e  a = 2/re is equivalent to 
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Fig. 3. 
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~ J  
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fo 2 z / c  3 

Plots of the instability growth rate dependence  on  the wavelength for S = 10 8 and 4o = 0, r = 10 - 4 

~2 = 10-3 (~ = B JBo). 

with  Ip in E q u a t i o n  (49)) we  get  

p3/2 
V = -  A 1 / 2  �9 

aS 

F o r  the  pa r t i cu l a r  c a se  (62) 

p + SZ~ 2 

Then ,  ] v - 11 < 1 for  p > 0. F o r  the  case  (59) 

~ p 4  

2 S  2 
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The maximum admissible value of p attained at ~ -- 0, p~2 ~ 1 equals 

Pm "~ S1/2 �9 

Therefore, [ v - 1[ < 1. Thus, the above technique of expansion in terms of v - 1 is 
valid. 

3. Elucidation of Physical Results 

In this section, for the sake of simplicity, we put all the coefficients of order unity equal 
to one. At first, let us obtain (similar to Furth, Killen, and Rosenbluth, 1963) the 
expression for the thickness of the region of 'decoupled flow' (RDF) ~o a. During the 
development of the instability (see Figure 4) plasma flows into the RDF with the velocity 
Vly. As a consequence of this, an electric current Jl and a restraining Lorentz force F s 
are created (we use absolute values of the quantities, and we also use a system of units 
where the velocity of light c = 1): 

J l  = ] G ( V l  X B e )  I = GVly~,oBo, (65) 

Fs = [Jl x B] = aVly(%Bo) 2 . (66) 

We take into account that the magnetic field is equal to %Be on the boundary of the 
RDF. 

The restraining force is directed opposite to the plasma motion. During the growth 
of the instability a driving force F a (which is due to the structure of the magnetic field 
outside the RDF: i.e., the tendency of the sheet current to break up into a set of parallel 
pinches - the 'rubber-bend' argument, see Figure 4 and Furth, Killen, and Rosenbluth, 
1963) dominates the restraining force F~ within the inner region, and is itself dominated 
by F~ outside this region. Both forces are approximately equal to each other. Therefore, 
the rate at which the force Fa does work on the fluid is given by 

P = [VI F~I = o ' [ ' r 2 y ( / 3 0 B o )  2 . (67) 

Fig. 4. 

Bj. . BO '~ 

Perturbed fields and velocities for a tearing mode in the presence of a transverse field. Solid arrows 
indicate fluid velocity. 
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This work per unit time is spent on: (i) the rise of the kinetic energy along the sheet, and 
(ii) the work done against the Lorentz force Fr related with the transverse magnetic field 
B•  because this field prevents plasma motion along the sheet: 

P = T + 17, (68) 

where T is the rate of change of the kinetic energy and H is the rate at which the work 
is done against the force Fr The first term on the right-hand side of Equation (68) we 
may estimate (similar to Furth, Killen, and Rosenbluth, 1963) using the equation 
div V = 0. From this equation we have for the velocity along the sheet 

Vlx = Vly /k~oa.  (69) 

The kinetic energy that fluid receives during the time 1/o9 (where co is the growth 
rate of the instability) is given by Po V~x, hence 

7" = v?x -  Opo (70)  
(keoa) 2 

Now we estimate the second term on the right-hand side of Equation (68). When the 
plasma moves along the sheet with velocity Vx~, an additional electric current jr is 
created, 

jr = ~rVlxB • , (71) 

and the appropriate Lorentz force Fr arises. This force is directed opposite to the fluid 
motion and in absolute value it is equal to 

Fr = j c B •  = aV,  xB  ~ . (72) 

Then 17 is equal (in absolute value) to 

17 = V, x F  r = aV?x B 2  . (73) 

We rewrite Equation (68) with the help of (67), (69), (70), and (73) in the form 

o.V?y(~,ogo)2 _ (..oPo V?y .-~ o.B2 V?y (74) 
(keoa) 2 (k~oa) 2 

From this equation we obtain the expression for the 'skin depth' So: 

~~176 1 + . (75) 
~ - (ka) 2 B~ a r 

It is easy to see that this expression is equivalent to the expression 

~0 = ,~ ( 1  -1- ~ 2 S 2 ~  1/4 

p / 
(76) 

which we obtained in Section 2. 
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Now let us obtain the dispersion equations. In the region of partly decoupled flow 
the first term on the right side of Ohm's law, 

~/j = E + V • B,  (77) 

dominates over the second, and we must select eoa so that 

r/o Jl = E1 �9 (78) 

Even in the inner region the flow is not perfectly decoupled. The perturbed electric field 
E 1 is related with the perturbed magnetic field B 1 by the equation 

E1 " (WBly ) / k .  (79) 

This field corresponds to the generation of the perturbation flux that links the field 
regions on either side o fB  o = 0 (Furth, Killen, and Rosenbluth, 1963). 

Using 

4 / ~  ~ 
rotB = -  j 

C 

and 

divB = 0,  

we have for (ka) < 1 

B tr i I .  , Jl ~ ly/(47:k) 

Using (78), (79), and (80) we find 

(80) 

~Bly ~ B~ ( 8 1 )  

q 4u 

When the main part of the magnetic 'loop' (the field line circulated around a magnetic 
'island') is frozen into the plasma, the magnetic field Bly is perturbed within a region 
of thickness b ~ aZk  (because 2b ~ a2). Hence, b decreases with the increase of 2. We 
will see from (75) and from the dispersion relations (just as we found from (33) and (59), 
(62)) that s o grows with 2. Therefore, in the region 

a k  > s o (82) 

(compare with (43), (64a)) we may use the estimate 

B r 
R , t  l y  B l y  
U l y  ,~  eoa eoaa2 k (83) 

In the region 

a k < eo (84) 
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(one may also compare with (43), (64a)) the estimate 

B'Iy Bly 
n ' l y  '~' ( 8 5 )  

eoa (eoa) z 

is valid. 
In the first case we have from Equations (75), (81), and (83) the dispersion relation 

12)5 = rio3B 2 1 B2 12) 4 (86) 

al~ k2 Porlo 

which corresponds in terms S, p, ~ to Equation (59). 
In the second case we obtain the equation 

12)3_ rioB~ k 2 B~ 12)2 (87) 
a2 po Po rio 

which corresponds to Equation (62). 
In the case ak > So the main part of the magnetic loop is frozen to plasma which 

is accelerated by the tension of the loop. The magnetic tension increases with 2 and 
consequently the growth rate 12) also increases. 

However, in the case ak < So the main part of the magnetic loop is not frozen into 
plasma and the 'motions' of the loop and of the plasma are 'independent' of each other. 
In this case plasma acceleration is inefficient, and 12) decreases with the increase of 2. 
It is not interesting to consider the case a~o > a for S >> 1. 

4. Discussion 

As was pointed out in the Introduction, in the papers by Bulanov, Sakai, and 
Syrovatskii (1979), Janicke (1980, 1982) the transverse component was shown to 
produce no stabilizing effect. This result was derived in Janicke (1980) under the 
condition that 

~ ~2 ~z, (88) 

which is easily reduced to 

~2 S 2 ,~ p .  (89) 

This condition means that A ~ 1 in formulae (31)-(33); the component ~2S2p4 is small 
compared with p5 in the dispersion equation (47) or (59); ~2S 2p2 is small compared with 
p3 in (62). The neglect of these components justified by (89) is equivalent to the neglect 
of the transverse field. Meanwhile the domain where condition (88) (or (89)) is satisfied 
is severaly restricted: though ~ ,~ 1, but S ,> 1 and r can assume, generally speaking, 
any value. Thus the stabilizing effect is always present. 
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In Janicke (1982) the problem is studied for the opposite case: 

@ = >> 1. (90) 

It is stated that there occurs the variation of the dimension of the singular region, 

R2S2]1/4 
=  LT-/ = g@1/2 ,  (91) 

but the growth rate value is stable. 
In our paper the formulae (33), (75), (76) provide for general expression of the 

variation of the 'defreezing' layer width: 

gO /311 "t- ~ 2 8 2 ]  1/4 @-211/4  = = ~@I/2[1 + . (92) 
P A 

In the limit (90) it is reduced to (91) when the expression (1 + @-2)1/4 is expanded in 
terms of the parameter @- 2 up to the term of zero order. 

The formula derived in Janicke (1982) describing growth rate is independent of B i .  
It is associated with the fact that the author solves the set (22a)-(22b) in Janicke (1982) 
with the help of an expansion in terms of the parameter @- 2 up to terms of first-order, 
and he disregards these terms in the expression describing the width of the 'defreezing' 
layer (the singular region). But to solve the problem correctly one should include them. 
This results in additional members in the sets (24), (25), (36) in Janicke (1982), and, 
consequently, in the change of the dispersion equation (37) in Janicke (1982). 

In the paper by Bulanov, Sakai, and Syrovatskii (1979) the stabilizing effect of the 
transverse magnetic field is stated to be lacking. Moreover, as is seen from formulae (38) 
and (42) in Bulanov, Sakai, and Syrovatskii the instability growth rate found by these 
authors is growing with B L. There was defined the characteristic dimension of 

a B = a (93) 

at which the noticeable influence of the transverse field was recorded (see formula (23) 
in Bulanov, Sakai, and Syrovatskii). But the value of 

ap 1/2 

aR - (94) 
( ~ S )  1/2 

is taken as a width of the region where dissipation processes are important (see (24) in 
Bulanov, Sakai, and Syrovatskii). In (94) we neglected the component related to the 
plasma's spread-over, as was done in (38) and (42) in Bulanov, Sakai, and Syrovatskii. 
The formulae, for the sake of simplicity, are rewritten using our symbols. 
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Further, it is stated (paragraphs 1 and 3 in Bulanov, Sakai, and Syrovatskii) that the 
necessity to allow for the normal field is equivalent to the inequality 

bB > bn . (95) 

But in this case dissipation effect is neglected in the inner region l YJ < b~ (see 
Section 3 in Bulanov, Sakai, and Syrovatskii). It is seen that (95) together with (93) and 
(94) is equivalent to the condition of the strong field: 

q~ >> 1. (96) 

However, it is shown in the present paper (see formulae (33) and (76)) and in the paper 
by Janicke (1982) at ~0 >> 1 ((19) in Janicke, 1982 or (92) in our paper) that it is in the 
region with dimensions 

ae2 ,,~ bB (when ~0 >> 1) (97) 

that the dissipation effects are essential. The dimension of this region depends on 
(see (76)) and is reduced to (94) only at ~ = 0. At ~ r  0 it is incorrect to use 
expression (94) derived in Furth, Killen, and Rosenbluth (1963) at ~ = 0. The con- 
dition (95) shows that the dimension of the singular region % is greater than the width 
e of Furth, Killen, and Rosenbluth (with ~ = 0). The dissipation effects are not to be 
neglected in the inner region since they allow the tearing instability related. 

There exists a complete stabilization effect of the transverse magnetic field on the 
kinetic tearing instability. In Coroniti (1980), Zeleny and Taktakishvili (1981) the 
account of collisions is shown to result in the destabilization of these stable states. This 
does not compromise the suggestions of this paper which shows the strong stabilizing 
effect of the transverse component in the MHD-approximation, but formally speaking, 
the complete stabilization such as in the collisionless plasma is lacking. Besides, as was 
pointed out in Zeleny and Taktakishvili (1981), the transition from the collisionless limit 
to the MHD limit needs furhter study. 

5. The Influence of the Transverse Component on HTCS Stability 

Let us apply the above results to the high-temperature turbulent current sheets (HTCS) 
of solar flares (Somov, 1981, 1986). The main peculiarity of HTCS is that powerful heat 
fluxes play an essential role in the energy balance of such sheets. The presence of the 
slightest magnetic field transverse component in HTCS leads to an increase of the 
efficiency of sheet cooling. The self-consistent approach to HTCS (Somov and Titov, 
1983, 1985) makes it possible for one to explain a sufficiently high energy release power 
in a non-neutral sheet. 

It was shown in Verneta and Somov (1987), Somov and Verneta (1988), Somov, 
Titov, and Verneta (1987) that in the approximation of the collisionless plasma the 
HTCS are stable with respect to the tearing mode due to the stabilizing effect of the 
transverse component. However, as was pointed out, plasma turbulence can also 
contribute to this process. An estimation of the effect in the MHD-approximation can, 
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X 

Fig. 5. (a) Unperturbed field lines in a two-dimensional HTCS. Electric current (j)  redistribution related 
with the tearing mode creates the additional ( _+ ) energy bep. (b) Perturbed field lines. 

therefore, become important especially for the case of wavelengths of order of the width 
of the sheet 2b (Figure 5). If the condition co < Vo/b is satisfied for the rate of instability 
growth co, where Vo is the velocity of plasma outflow, one can, therefore, suggest that 
the perturbation is emerging together with plasma without having been enhanced before 
leaving the current sheet. When co ,> Vo/b the stabilization is lacking. The curves in 
Figure 6 representing rate of growth dependence on the wavelength are located between 
the solid margins with the account of the stabilization, and between the dash-and dash 
margins without its account. The values of Vo/b are located between the horizontal lines 
(see Figure 6). The calculations have been carried out with the help of the approximation 
of formula (57) for five states of the sheet taken from Somov (1986). It is seen that the 
rate of growth at the wavelengths 2 ~ 2b decreases by an order of magnitude due to 
stabilization as compared to that calculated without taking account of stabilization, and 
becomes comparable with Vo/b (horizontal lines). Hence, HTCS can be considered 
stable. 

In case of a collisionless plasma the HTCS stability is demonstrated, but it should 
be noted that HTCS is stable in the range a < 2 < 2b in the MHD-approximation as 
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Fig. 6. The plots of the growth rate for HTCS. 

well. Indeed, the rate of growth of instability satisfies the condition 

co < V a / a  ,.~ 102-104 s-  1 

in the above range. Here V a is the inflow drift velocity of plasma. Consequently, the gaps 
in the sheet are filled in with flowing plasma before they have time to originate, and the 
instability is suppressed. 

6. Conclusion 

The analysis of this paper reveals that the transverse component of the magnetic field 
has a strong stabilizing influence on the development of the resistive tearing MHD 
instability. 

As all real current sheets always contain a small transverse component, their stability 
can be explained by this effect. 

The application of the results to high-temperature turbulent current sheets reveals 
their stabilizing character relative to the tearing instability in the energy source of solar 
flares during the 'main' or 'hot' phase of their development. 
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