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ABSTRACT. Let ( M, J, g) be a Hermitian manifold with complex structure J, metric g, and K/ihler 
form f~. Then g is locally conformal K5hler iffdf~ = co A ~ for some closed and non-exact 1-form 
co. Moreover, if co is a parallel form, M is called a generalized Hopf manifold. The main results 
of this paper are: (a) the description of the geometric structure of the compact locally conformal 
K~ihler-flat manifolds; (b) the description of the geometric structure of the compact generalized 
Hopf manifolds on which a certain canonically defined foliation is regular; (c) a description of 
the harmonic forms and Betti numbers of a general compact generalized Hopf manifold; (d) 
a method for studying analytic vector fields on generalized Hopf manifolds; (e) conditions for 
submanifolds of generalized Hopf manifolds to belong to the same class. 
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l. INTRODUCTION 

In the present paper, we are going on with our  study of  the special class of  
complex manifolds first discussed in [29], and called there locally conformal 
Kiihler manifolds with parallel Lee  form or ~'. Jr.-manifolds. Since the classical 
H o p f  manifolds H" ~ S 1 x S 2"- 1 belong to this class [29], we shall replace 
now the name of ~ .  d . - m a n i f o l d s  by generalized Hopfmanifolds.  

Let M"(n >~ 2) be a complex manifold (n = dim e M) with the complex 
structure tensor J. For  simplicity, all the manifolds of this paper  are consider- 
ed connected. Then, a locally conformal Kiihler (l.c.K.) structure on (M, J) 
(if any) is defined as a maximal  open covering { U }  of  M, with K~ihler 
metrics ~ on every U ,  such that  over every U ~ Ua :~ ~ ,  ~ and ~¢ are 
conformally  related. Because of  the K~ihlerian character  of ~ this means 

(1.1) Op = c pO~, 

where c ¢  are positive locally constant  coefficients, and satisfy the co-cycle 
condit ion c ac~ = c . 

The co-cycle condit ion above yields In c a  = a - aa for some Ca-funct ions  
a : U  ~ ,  which are defined up to an arbi t rary term q~/U, ~o~C°~(M). 
It follows that  

(1.2) g = e'~9~ 

is a global Hermit ian metric on M, defined up to a global conformal  change 
g ~ cog, and called an 1.c.K. metric. 

In [27] a configurat ion (M, J, g) as considered above was called an l.c.K. 
manifold. An 1.c.K. manifold has a unique underlying 1.c.K. structure, and 
every 1.c.K. structure defines an 1.c.K. manifold up to a global conformal  

Geometriae Dedicata 13 (1982) 231-255. 0046-5755/82/0133-0231503.75, 
Copyright (~ 1982 by D. Reidel Publishing Co., Dordrecht, Holland, and Boston, U.S.A. 



232 I Z U  V A I S M A N  

change of the metric. In this sense, these two notions are essentially equiva- 
lent. 

If we have an 1.c.K. structure, the forms {da}  yield a global closed 1-form 
co on M(co/U= = d a ) ,  which is defined up to cohomology,  and is fixed by a 
choice of a metric (1.2). Namely,  let f~, ~ be the K~ihler forms of 0, 0~ res- 
pectively (f~(., .) = g(., J.)). Then (1.2) implies f~ = e~=~, whence 

(1.3) d~z = co/x f~, 

and one gets [31] 

(1.4) co = [1/(n - 1)]i(f~)df~ = [1/(n - 1) ]5•oJ ,  

where i(f~), 6 are with respect to g. 
The form co is called the Lee form of g, and it can be defined by (1.4) for 

every Hermit ian metric. Moreover ,  if n = 2, co always satisfies (1.3), and for 
n >~ 3, if (1.3) holds, co is closed. Always, if co is closed and (1.3) holds, g is 
an 1.c.K. metric [27]. 

It is easy to unders tand from the above considerat ions that  an 1.c.K. 
metric is globally o.K. iff co is an exact form [27]. In this paper, we make the 
convention that l.c.K, means locally o.K. and not globally c.K. (Globally c.K. 
is not  viewed as a part icular  case of locally c.K. but  as an opposite case.) 

Now, it is rather  natural  to give the following definition: a generalized 
Hopf manifold (g.H.m.) is an 1.c.K. manifold (M, J, g) whose Lee form is 
parallel, i.e. 

(1.5) vco = 0(co ¢ 0), 

where V is the Riemannian connect ion of 9. Let us note  that, since co is closed, 
(1.5) is equivalent with the condit ion that  the Lee vector field B = # co is 
a Killing vector field. 

The manifolds considered are just  the ~ . S . - m a n i f o l d s  of [29], and 
the name g.H.m, was chosen now since the Hopf  manifolds [14] 

/-/" = (C"\{0})/A~ 
(where) .~C,  121 ¢ 0, 1, and A z is generated by z~2z ,  zsC"),  with the metric 

(41/h~ = )k~= 
(1.6) go = zhzh dzk d~k 

1 1 

are 1.c.K. and satisfy (1.5). (See the proof  in [29]. The insertion of the factor 
4 is a mat ter  of convenience only.) 

R E M A R K .  In the case of a compact  g.H.m., the 1.c.K. structure defines a 
unique metric satisfying (1.5) and with I co I = 1. Indeed, if g ~-->eSg, co~-, co + dr, 
and if we ask (1.5) to be satisfied for both  metrics we get by usual computa t ions  
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( [9, p. 1 l 5], and a contraction by - gij) 

A f - ( n -  1)g(~o, d f ) = ( n -  1)ldf] 2, 

where A is the Laplacian of g. Hence, by a well-known theorem of Hopf 
[10], f = const. The condition 1~o I = 1 will subsequently fix the value of this 
constant. 

Of course, I °]  = 1 can also be imposed in the non-compact case and here- 
after we shall assume 

(1.7) I~ol = 1 

jor all the g.H.m. 
Until now we described the object of our study. The motivation of its 

interest follows from our previous results on 1.c.K. manifolds [27], [29-32], 
and it is related in particular with the fact that compact 1.c.K. manifolds 
have no K~ihler metrics [32]. Hence we are studying some compact complex 
non-Kiihler manifolds where only a reduced information of a differential- 
geometric nature is available. We hope that the results of this paper will 
provide further motivation of our study. 

Very shortly, these results are: (a) the description of the geometric structure 
of the compact 1.c. (K. flat) manifolds; (b) the description of the geometric 
structure of the compact g.H.m, on which a certain canonically defined 
foliation is regular; (c) a description of the harmonic forms and Betti numbers 
of a general compact g.H.m.; (d) a method for studying analytic vector fields 
on g.H.m.; (e) conditions for submanifolds of g.H.m, to be again g.H.m. 

Of course, we shall use our previous results on g.H.m. (~.~((.-manifolds) 
given in [29]. 

2. LOCALLY CONFORMALLY KAHLER-FLAT MANIFOLDS 

Let us begin by establishing the following result which is obviously of a 
more general interest. 

THEOREM 2.1. Let (M, g) be a compact 1.c.K. manifold, and assume that 
its underlying l.c.K, structure consists of Kiihler metrics with non-negative 
Ricci curvature. Then, there is a global function cp > 0 on M such that (M, (pg) 
is a g.H.m. 

Proof. This result is a consequence of a more general theorem of P. 
Gauduchon [7]. Namely, the torsion form of [7] is - (n - 1)co, and the 
vanishing eccentricity theorem of [7] provides a metric q)g(cp > 0) whose Lee 
form is co-closed, and therefore harmonic. 

The main steps in the proof of this result can be described as follows. 
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If the metric g is changed to eOg, co changes to co + dO which is co-closed 
for eOg iff 

(*) A¢ - (n - 1) [i(co)d¢ + Id¢l 2] + 6co = 0. 

Now, a straightforward existence proof of a function ¢ satisfying (*) would 
be enough, but we have no such proof since (*) is a non-linear equation. 
Consider the transformation ~b = [1/(n - 1)] in ), Then (*) becomes 

(**) A)~ - (n - 1)i(co) d2 + (n - 1)R 6co = 0, 

which is a linear equation, but we shall have to ask for a strictly positive 
solution 2 > 0. Following [7], we shall notice that the elliptic operator L* 
in the left-hand side of (**) is the adjoint of the elliptic operator of the Hopf 
type [10] L = A + (n - 1)i(co)d. Both L and L* have the index of A, and since 
ker L = ~ [10], it follows dim ker L* = 1, whence all the solutions of (**) 
are of the form 2 = k2o, where keN, and 20 ~ 0. Moreover, since C'~(M) = 
k e r L ® i m L * = k e r L * ~ 3 i m L ,  and since 16 imL [10], we have 
(2o, 1 } :# 0(( , } denotes global scalar product on M), and )~o can be 
normed by (20, 1 } = Volume(M). Furthermore, 20/> 0, and )~o > 0 are 
ensured by Lemmas 1 and 2 of [7]. 

Thus, in order to prove Theorem 2.1 it remains to prove that the Lee form 
of q~g is, in fact, parallel. Or, by redenoting (pg as g, we shall prove that if 
(M, g) satisfies our hypotheses, and if, moreover, co is harmonic, then e) has 
vanishing covariant derivative. 

Using the notation of Section 1, the local K/ihler metrics conformal to 
9 are 0~ = e -~g (  co = d%), whence we can easily compute the Riemannian 
connection g7 of 0~, and find [27] 

1 X (2.1) V x Y  = V x Y  - ~co(X)Y - ~co(Y)X + 2g( , Y)B, 

where again B --- #co. The connection V is global since the cap of (1.1) are 
locally constant. In [27] we called it the Weyl connection of (M, g), and 
proved that ~d = 0 characterizes the 1.c.K. manifolds. 

Furthermore, (2.1) and 6co = 0 yield the following relation between the 
corresponding Ricci tensors/~ and R 

R = R  n - 1  ~--([col2g - co®co) + (n - 1)Vco, (2.2) 

whence 

,23, 

Now, let us note that 

d(Ico 12)(B) = B([co 12) = B(co(B)) = (VBco)(B) + cO(VBB), 
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and that the metric character of V yields Bg(B , B) = 29(VRB, B); i.e., 

B(Ico I x) = 2CO(VBB ). 

As a consequence, we obtain 

d([co [2)(B) = 2(VRCO)(B), 

and, by integrating over M we get 

fM(VBCO)(B) =l(d([col2),Co) =}(Icol 2,~5Co) = 1 0. 

This relation, together with (2.3) and with the hypothesis /~(B, B)~> 0, 
implies SMR(B, B)* 1 ~> 0. Since co is harmonic, the latter inequality implies 
by a well-known theorem [-9, p. 87] that VCo = 0. Q.E.D. 

REMARKS. (l) It is worth emphasizing the fact stated at the beginning of 
the proof above; namely, on every compact 1.c.K., and up to a global con- 
formal change of the metric, one can assume without loss of generality that 
the Lee form Co is harmonic. 

(2) If the Ricci curvatures of the metrics 0~ would be positive, the given 
proof would imply Co = 0, i.e., that the original metric g was globally con- 
formal K/ihler - a case which we do not want to consider. 

Now, the class of manifolds in which we are interested in this section is 
that of the 1.c.K. manifolds, whose l.c.K, structure consists of flat K//hler 
metrics. Such a manifold will be called an l.c. Kiihler-flat manifold or, in 
short, an l.c.K o. manifold. (Do not forget that this is not considered to 
include the globally c.K o. case.) Let us also mention that one can prove by 
easy tensor computations that the 1.c.K o. manifolds are precisely the mani- 
folds (M, g) such that g is simultaneously 1.c.K. and l.c. Riemannian flat. 

Moreover, we shall be interested only in compact 1.c.K o. manifolds, 
hence, by Theorem 2.1, we can assume, without loss of generality from the 
topological and analytical viewpoints, that our manifolds (M, g) are compact, 
1.c.Ko., and g.H.m. In [-29], we also discussed 1.c.K o. manifolds which are 
simultaneously g.H.m., under the name of ~o.X.-manifolds.  For our 
present discussion, we shall need the results of Theorem 3.8 and 3.9 of 
[29, p. 277], which we are reformulating here as 

T H E O R E M  2.2. Let M be a compact l.c.K o. manifold. Then the universal 
covering space of M is C"\{0}, and up to a global conformal change of the 
metric, M is a g.H.m, with the metric induced by (1.6). Every such manifold M 
has the same Betti numbers as the Hopf manifold H" of the same complex 
dimension n. 

We shall continue to denote by 9o the metric defined by Formula (1.6) 
on any M as in Theorem 2.2. Clearly, every such M is of the form 

(2.4) M = (C"\{O})/G, 
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where G is the corresponding group of covering transformations, and the 
transformations of G leave the metric (1.6) invariant. This also implies that 
the transformations of G are conformal with respect to the flat K/ihler metric 
Z~ =1 dzk dSk of Cn\{0}. 

REMARK. Every l.c.K, manifold M can be written as 

(2.5) M = M/C, 

where 2~ is a simply connected K/ihler manifold, and G is a covering trans- 
formation group whose elements are conformal for the respective K~ihler 
metric of ~t. Indeed, if M is like that, and M has the Kghler metric k, then 
k and all its transformed by G project to an 1.c.K. structure of M. Conversely, 
if M is 1.c.K. with metric g, the lift ~ of g to ~ has an exact Lee form, and 
0 = q~k(cp > 0) for some K~ihler metric k, which is transformed conformally 
by G. 

Now, let us come back to the 1.c.K 0 . manifold (2.4), and go on with the 
analysis of the covering group G. Clearly, every 7~G preserves the lift of 
the Weyl connection (2.1) to C"\{0}, i.e., it preserves the Levi-Civita con- 
nection of Z~=I dzk d~k" Hence y is an affine transformation of C", which 
is also conformal, and preserves the origin. Consequently, G consists of 
transformations 7 of the form 

(2.6) 5~= p ~ ukvzV, 
p = l  

where p > 0, and (ukp) is a unitary matrix. If necessary, we shall denote p = P(7), 
and call it the module of 7. 

Furthermore, following [15] we shall say that every compact complex 
manifold covered by C"\{0} is a Hopf-Kodaira manifold, and (2.4) proves that 
the compact 1.c.K o. manifolds are of this type. Accordingly, we shall use in 
a convenient manner the results of [15] and [12] in order to describe the 
structure of the covering group G. 

An analytic mapping f :  C" --* C" is called a contraction if fk(B) ~ 0 for the 
unit ball B, and k ~ oo. The mapping 7 of (2.6) is a contraction iffP(7) < 1, and 
one has [15, II, p. 695, 12]. 

LEMMA 2.3. Any contraction 7eG generates an infinite cyclic group {7} 
of finite index in G. There is a contraction 7o ~ G such that P(7o) is maximal < 1. 

Pro@ If 7 e G is a contraction p(7 k) = (p(7)) k are distinct numbers, hence 
{V} is infinite. Then, it also holds that (C"\{0})/{7} is compact. Since this 
is clearly a covering space of M, we get that G/{7} is a finite set. Moreover, 
the compactness of M ensures that a contraction 7 exists. Since the modules 
of the elements of a class [ 9 ]~ (9s  G) are of the form P(g)(P(7))k, we can find 
in this class a contraction whose module is the closest possible to 1. Finally, 
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since we have a finite number of such classes, we can chose the Yo needed. 
Q.E.D. 

Now, again following [12], let us consider 

(2.7) H = {yeG/p(7)= 1}. 

which is a normal subgroup of G, and prove 

T H E O R E M  2.4. H is a finite subgroup of G, which commutes with 7o, and 
one has 

(2.8) G = {hYko/hSH, ke2} .  

Proof. H commutes with Y0 since it is a normal subgroup of G. If a class 
of G/{Y0} has an element heH, all the elements of the class have modules 
p(h)pk(yo) = pk(yo) :p 1 for k 4: 0, and h is unique in this class. Hence H is 
finite. Moreover, let us take a class {gy~}, and let 2 be an element of maximal 
module < 1 in this class. Then, since p(27o 2) > p(2), we get p(27o 2)/> 1 and 
p(2) ~> P(7o)- Because of the choice of 7o and 2 this yields p(2) = P(7o), i.e., 
2Yo 1 e l l .  In other words every class of G/{Yo} has a unique representative in 
H, which proves (2.8). Q.E.D. 

Conversely, let us start with a finite unitary group H, and with a trans- 
formation 7o which commutes with H, and has the form 

(2.9) 5k = Po exp(2ni2k) zk (not summed) 

(with respect to a conveniently chosen coordinate system z k of C"). Let us 
construct the group G of (2.8), and M = (Cn\{0})/G. Then, if M is a compact 
manifold, M is a compact 1.c.K 0 . manifold. Hence, we have proven 

T H E O R E M  2.5. The formulas (2.4) and (2.8) yield all the compact I.c.K o. 
manifolds. 

REMARK. In [12], all the K o d a i r a - H o p f  surfaces are determined, which 
includes, of course, all the compact 1.c.K 0 . manifolds of complex dimension 
/ 1 ~ 2 .  

Now, let us also generalize Kato's results about the differentiable fibre 
bundle structure of the Hopf-  Kodaira surfaces [12] to compact 1.c.K o . mani- 
folds. 

T H E O R E M  2.6. A compact l.c.K o . manifold is a locally trivial differentiable 
fibre bundle with base space S I, fibre S2n-1/H, and structure group {ho}, 
where H is a finite unitary group, and h o is a unitary transformation commuting 
with H. 

Proof. In this theorem, as usual, S 2 is a circle, and S 2"- 2 is the unit (2n - 1)-' 
dimensional sphere. We shall discuss the 1.c.K o . manifold given by (2.4), (2.8). 



238 IZU VAISMAN 

Let us consider the well-known diffeomorphism C"\{0} ~ S 2"- 1 x ~ given 
by 

(2.10) (zk)~--~(zk/Izl, r = In Izl). 

Then a transformation hT~ similar to that in (2.8) acts by hhko on the compo- 
nent S 2"- i, where h o is the unitary component of 7o, and by ~ = r + k In Po 
(Po = module Of To) on the component R. 

Now, by known results about covering spaces (e.g., [28, p. 115]) we obtain 
the diffeomorphism 

(2.11) M = (C" \ {O} ) /G = [ ( C " \ { O } ) / H ] / ( G / H )  ,~ [ (S 2"-  ' /H )  x N] / {7o} ,  

and this yields the commutative diagram 

(S 2"- 1/H) x R ~ 
(2.12) ~ I l "  

M ---U---* $1 = ~ /F  

where F is the translations group 7 = r + kin Po, 7z' is the corresponding 
covering map R ~ S 1, and rc is the covering map of (2.11). 

From (2.12), it is easy to understand that q is precisely the fibring whose 
existence is stated by Theorem 2.6. Q.E.D. 

REMARKS. (1) A fibre bundle as described in Theorem 2.6 has a compact 
1.c.K o . manifold as its total space only if the transition functions of the given 
bundle are in accordance with the diagram (2.12). 

(2) From (2.12), and from the analysis made in [29], it follows that the 
fibres of q are precisely the leaves of the canonical foliation ~ defined on 
M by the integral manifolds of the Lee form co. 

(3) Similarly, the geometric trajectories of the Lee vector field B = # co are 
the images by rc of subsets of the form {x} x R, where x e S  2"- 1/H. Clearly, 
if we replace x by hko(X) we get the same trajectory. If {ho} is infinite, {h~(x)} 
can be an infinite set which will have an accumulation point x o in the compact 
manifold S 2"-1/H. In this case, the corresponding trajectory of B enters 
infinitely many times in any neighbourhood of 1t(Xo), and the foliation defined 
by these trajectories is non-regular [20]. But, if the group {ho} is finite, the 
manifold M is regular is the sense of [29]. 

We shall end this section by two other remarks of a different nature. 
The flat Kfihler metric of C" has coefficients defined by ~2F/~zh ~ k ,  where 

F = Z" zh~ h and it is naturally imbedded in the one-parameter family 
h = l  

of K/ihler metrics with coefficients [1/(1 + t)]~2(Fl+t)/~zh~k(t > -- 1). 
The transformations (2.6) are conformal with respect to all these Kfihler 
metrics, and this leads easily to the following family of 1.c,K. metrics existing 
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on every compact  1.c.K o. manifold M 

zk$k)t( ~ dzJ d~j) i t-l(~'zhdzh ~ ZS dzJ) 

(2.13) gt =4 (k~lZk~k)l+ t 

(t > - 1). (This explains the nota t ion 90 of (1.6).) 
The Lee form ofet is 

i (z j d2 s + ~J dz j) 
(2.14) co t = - (1 + t) j= 1 ~ zk~ k 

k=l 
and this form is not  exact for t @ - 1 [29]. (But for t = - 1, (2.13) yields 
only a non-negative Hermit ian form.) Hence, we have an example where 
the Lee chomology  class of an 1.c.K. structure can be deformed cont inuously 
but not  reaching zero. 

However,  let us note  that, for t g: 0, the Lee form of g, is not  parallel. 
Indeed, from (2.13), we get the local coefficients 

2 ( 5iz j ) 
(2.15) (gt)ij - n - -  g t f l j  + t n - - "  ' 

whence 

(2.16) (gt) 's' = __ h 1 i j  l~ Z.'Z 3 

t Z - - | ,  1 21- Z zhzh I 
h =1 ) 

and, consequently,  the Lee vector field B, of 9t is 

l f j ~  
(2.17) B t = - ~ z  8~72 J +  8~j , 

and it is interesting that it does not  depend on t. Moreover ,  up to corres- 
ponding factors, (2.15) and (2.16) also yield the local coefficients of the local 
K~ihler metrics conformal  to gt, and using known formulas (e.g., [9])  we can 
compute  the connect ion coefficients of the Weyl connect ion (2.1) of gt" The 
essentials among  them will be 

(2.18) (~.)~S = , t f3kfl + a~7"i zk2i2a l 

a=l k h=l 
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Finally, by using (2.1), it is easy to see that B t is parallel iff (Cgt)xB = - a 7X, 
which reduces in our case t o  ( ~ , ) ~ o J  = - } a { .  But (2.17) and (2.18) yield 

l + t @  
(2.19) (V')'c°J - 2 

and, hence, for t (: 0, B t is not gt-parallel. Q.E.D. 

Finally, our last remark consists of 

PROPOSITION 2.7. A compact (connected) complex surface S admits a 
quaternionic structure [13] iff it is an l.c.K o. manifold with a trivial canonical 
line bundle. 

Proof. According to [13], a quaternionic structure on S is a complex 
atlas with the transition functions of the form 

(2.20) ~1 = O~Z 1 ~_ fiZ z .~_ 2,  ~2 ~-. - -  ~Z1 ..~ ~Z2 _[_ ]A, 

where ~, fl, 2, #~C, and the bar denotes complex conjugation. Now, (2.20) 
implies 

d~ 1 dJ* + d,~ 2 d~ 2 = (0~ + flf l)(dz I d~ 1 + dz 2 d~2), 

2 and we see that the local metrics £k= 1 dzt d~k yield an 1.c.K o: structure on 
S. Moreover, the transition functions of the canonical line bundle ~:(S) which 
correspond to (2.20) are positive real constants, whence ~(S) is trivial. 

Conversely, if S has an 1.c.K o . structure, its local K/ihler metrics can be 
• Z k considered as £2=,dz] d~k with respect to some atlas { U ,  ,} of S, and 

the transition functions of this atlas on U c~ U s can be put under the form 

(2.21) z 1~ = c~ ei°~'(a. ~z*~ + b z 2 ) + p~,  

z z* = c  e i ° ~ ( - 5  z~+ a z 2 ) + q ~ ,  

w h e r e c  > 0 , 0  eR, a n d a  d + b f ~ = l .  
The corresponding transition functions of the canonical bundle ~(S) are 

c 2~ e z~°~, and ~(S) is trivial iff 0~ = % - p~ for some numbers (peR.  Then, 
by defining on each U new coordinates ~k = e~o~zk, we get a new atlas for 
which the relations (2.21) are replaced by relations of the type (2.20). There- 
fore S has a quaternionic structure. Q.E.D. 

Moreover, one can see in a similar manner that if the surface S above is 
represented by (2.4), (2.8) then the convering group G of (2.8) must consist of 
transformations whose unitary component belongs to the special unitary 
group, and conversely. 

Proposition 2.7 was introduced here since, in connection with the previous 
results of this Section, it could provide a shorter solution of the problem of 
the determination of all the compact quaternionic 4-manifolds treated 
in [13]. 
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3. THE VERTICAL FOLIATION,  STRONG REGULARITY 

In this section we shall discuss an important foliation which exists on a 
general g.H.m. M n, and describe the geometric structure of M in the case 
where this foliation is regular. 

Let us recall that we had the Lee form co and the Lee vector field B = # co 
on every g.H.m., and [co[ = [B[ = 1 by the normation condition (1.7). Let 
us also introduce 

(3.1) 0 = - c o ° J = [ 1 / ( n - 1 ) ] 6 ~ ,  A = J B =  #0,  

whence again 10l-- IAI  = 1 In [29], co, O,B,A were respectively denoted as 
u, v, U, V (here we use the notation of [32] but with the sign convention of 
[29]), and we proved that [A, B] = 0. accordingly, there is an action of the 
additive group [R 2 on M, whose orbits are tangent to A, B, and define a 
foliation E on M. This will be called the vertical foliation of M. 

T H E O R E M  3.1. The vertical foliation g is a complex analytic 1-dimensional 
foliation of M with complex parallelizable leaves which are totally geodesic 
and locally f lat  submanifolds of M. The metric of M is a bundle-like transversal- 
ly Kiihlerian metric with respect to ~. 

Proof Since by [29] B is an analytic vector field it follows easily that 
is a complex analytic foliation with complex 1-dimensional leaves whose 
holomorphic tangent spaces are generated by B - i A ( i =  ~ - 1 )  and, 
therefore, these leaves are complex parallelizable. Accordingly, M has local 
complex coordinates {z ~} (c~ = 1 . . . . .  n) such that g is given by 

(3.2) d z " = 0  ( a = l  . . . .  , n - l ) ,  

and 

0 
(3.3) B - iA = 2(z ~) c3z"' 

where 2(z ~) is a local and nowhere zero analytic function. 
Furthermore, using the complex connection g? of (2.1) as an intermediary 

where necessary, we can derive easily 

(3.4) VaA = VAB = VBA = VBB = O, 

whence it follows that the leaves of d ~ are totally geodesic and locally flat 
submanifolds of M. 

Now let us note that co + i0 is a form of the complex type (1, 0), and, since 
(co + iO)(B - iA) = 2, (3.3) yields 

(3.5) co + i0 = ix (z ~, U)dz a + 2 dz', 
.¢ 

where the Latin and Greek indices will always be considered with the range 
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ment ioned when we first met  them. Hence {dz a, co + iO} are (1, 0) cobases  on 
M, and, since co = 0, 0 --- 0 obviously  define the or thogona l  distr ibution g±, 
and ]B] = 1, we see that  the metric  of M can be expressed as 

(3.6) ds 2 = 2ga ~ dz" ® d~ b + (co + iO) ® (co - iO). 

The bundle-l ike character  of the metr ic  (3.6) means  that  the coefficients 
g,~ depend only on the z a, 2" [21], which is equivalent  to 

(3.7) (Lxg) (Y ,  Z)  = 0 

for every X e g ,  Y, Z e g  ±, where L x denotes the Lie derivative. But (3.7) is 
an easy consequence of the fact that  A, B are Killing vector  fields [29], 
and this proves  the cor responding  assert ion of T h e o r e m  3.1. 

Finally, the K~ihler form of the metric  (3.6) is 

(3.8) ft = - ig~ dz  ~ /x d2 b - co/x O. 

But, by Propos i t ion  2.4 and F o r m u l a  (2.6) of  [29], one also has £1 = dO - 
co/x 0, and hence 

(3.9) dO = - ig,~ dz" /~ d~ b. 

This implies that  the t ransversal  pa r t  of the K/ihler form ft is closed, which 
is precisely what  we mean t  in the last conclusion of T h e o r e m  3.1. Q.E.D. 

R E M A R K .  The descript ion of the structure of a g.H.m, given in Theo rem 
3.1 leads to a nice reformula t ion  of the definition of this class of manifolds,  
in the spirit of  the theory of the contact  manifolds.  Namely ,  let us define a 
(1, O)-contact s tructure  on a complex  manifold  M" as a 1-form ~o of the com-  
plex type (1, 0) such that  

(*) ~o a ~o A (d~o) "-1  :/: 0 

at every point  of  M. Not ice  that  this s tructure defines a f undamen ta l  complex  

vector f ie ld  Z o of type (1, 0) by 

~o(Zo) = 1, i (Zo)d~  o = 0. 

Now,  the (1, 0)-contact s tructure ~o will be called Hermi t ian  if 

(**) n o = - , i f -  1 (d~ o + ~ o  A $o) 

is a real positive (1, 1)-form. As a mat te r  of  fact, because of the type, (**) 
yields dz~ o = 0, and implies (*). Therefore  (**) is the only condit ion to be 
stated in the definition of a Hermi t ian  (1, 0)-contact structure. 

It is obvious  that  a Hermi t i an  (1, 0)-contact  manifold  has a well-defined 
Hermi t ian  metr ic  go whose K/ihler form is flo, and it is easy to show that  
9o is an 1.c.K. metr ic  with the Lee form Re ~0, and the Lee vector  field B = 
Z o + 2 o . Moreover ,  if B is a Killing field for go or, equivalently,  if B is an 
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analytic field which preserves the (1, 0)-contact form ~-0, M will be a g.H.m. 
Conversely, i fM is a g.H.m., and we take ~o = co + iO, f~o of(**) is the K/ihler 
form of M, as proven by Formulas (3.8), (3.9). 

Let us also note some interesting corollaries of Theorem 3.1. 

COROLLARY 3.2. All the Chern numbers of a compact g.H.m, vanish. 
Proof This follows from the existence of the non-singular complex 

analytic vector field (3.3) on M, and from a known theorem of Bott [2]. 

COROLLARY 3.3. Let M 2 be a compact complex g.H. surface. Then, with 
the usual notation for the invariants of a complex surface [153 one has 

1 1 1), = _ ~(b 1 (3.10) c~[M] -- c2[M ] = 0, P0 5(bl 1), q = + 

b 2=2(b 1 - 1 ) = 4 p g , b  + = b -  = b  1 - 1 .  

Proof These relations are simple consequences of: (a) Corollary 3.2 
above, (b) Proposition 2.3 of [32] stating that the first Betti number of our 
M 2 is odd, (c) the Noether Formula and other relations exhibited in [15]. 
(Note that c2[M ] = 0 is the vanishing of the Euler-Poincar6 characteristic 
of M.) 

The vertical foliation F plays an essential role for a g.H.m., and we shall 
show this by the results of this and of the next section. 

THEOREM 3.4. Let M" be a compact g.H.m. I f  all the leaves o f f  are proper, 
M n is the total space of an analytic V-submersion onto a Kiihlerian Satake 
V-manifold [22] of complex dimension n - 1, and the fibres of this submersion 
are complex S-dimensional toruses. 

Proof The proper leaves hypothesis means that the leaves of F are 
embedded in M, and since they are totally geodesic submanifolds (and M is 
compact), these leaves are also complete, whence closed and compact. 
Moreover, since the leaves of g are complex parallelizable, they will, in our 
case, be complex 1-toruses. Then, the statements of Theorem 3.4 follow from 
known results of foliation theory [8], [21]. 

For instance, if the vertical foliation F is hyperbolic [6], Theorem 3.4 
applies because of the results of [6]. 

An even stronger property o f f  is regularity [20], and if it holds, the g.H.m. 
M will be called strongly regular. In the sequel, we shall see that there are 
enough known results in the literature to allow us a complete description 
of the compact strongly regular g.H.m. 

REMARK. It is obvious that a strongly regular g.H.m, is regular in the 
sense of Definition 4.1 of [29] but the converse may not be true. For instance, 
the product Z x S 1, where 57 is a generalized Brieskorn manifold with a 
non-regular Sasakian structure as constructed by Abe [1], carries a regular 
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but not strongly regular g.H.m, structure which is given by Theorem 4.1 
of[29]. 

Now, let M" be a compact (connected by our general convention of Section 
1) strongly regular g.H.m., for which we shall continue to use the notation 
from the beginning of this section. Then, the space N = M/g  of the leaves 
of # is a compact K/ihler manifold of complex dimension n - 1, with the 
metric induced by the first term of (3.6). On the other hand, as shown by Pro- 
position 2.7 of [29], M is a regular f-manifold in the sense of [4] (in fact, 
a g.H.m, is a good example of an S-structure of Blair [3], [4], and, therefore, 
by Theorem 1 of [4], M is a differentiable principal T1-bundle over N. 
(T~ denotes the complex 1-dimensional torus.) It is also simple to see that 
o~ + iO is a connection form on this principal bundle, and up to a factor 
i = x/-Z1, its curvature projects to the Kiihler form of N. 

Moreover, if M is strongly regular both the trajectories of B and A yield 
regular foliations. By Theorem 3 of [4], and Theorem 4.1 of [29], M fibres 
over the manifold P of the trajectories of B, and P is a regular Sasakian 
manifold with the structure vector field induced by A. The Lee form o) 
defines a fiat connection of this bundle. Then, P fibres as a Boothby-Wang 
fibration [5] over N viewed as the manifold of the trajectories of A in P, 
while 0 defines on P a connection with curvature dO. Thereby, we get a 
commutative diagram 

M q)  P 

N 

where rc and q are principal circle bundles, and p is a principal Tl-bundle. 
Furthermore, since dO is the curvature of a principal circle bundle, it 

represents an integral cohomology class of N, whence by (3.9) N is a compact 
Hodge manifold, and there is an embedding 

(3.12 I :N ' -*CP k 

for a convenient dimension k. Now, let us consider the classical Hopf 
fibration 

(3.13) o~:s2k+I-*CP k, 

which is an S 1-principal bundle endowed with a connection 2 whose curvature 
projects to the K/ihler form A of the Fubini metric of CP k. Since the K/ihler 
form of N is also given by z'A, we see that ~z : P ~ N has a connection with 
the same curvature form on N as the induced bundle l*(a). In other words, 
the Chern classes of ~z and ~*(c¢) differ by a torsion element of H2(N, Z) 
only. 

Conversely, if we start with a compact Hodge manifold N, and a Boothby-  
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Wang fibration rr:P--* N with the same real Chern class as l*(e), we have 
the Sasakian manifold P. Then, we can use the construction of Theorem 4.1 
of [29], and get a corresponding compact g.H.m. M with the two vector 
fields B, A. This manifold M is locally trivial over N. Indeed, let U ~ N be a 
convex open neighbourhood with P/U ,~ U x S 1. Then M/U is a flat S 1- 
principal bundle over P/U. But 

Hz(P/U, 77) = Hz(u  x S 1, Z) = H2(S ~, 7/) = 0, 

hence P/U is trivial over M/U, and M/U ~ U x S ~ x S ~. Finally, we see that 
T ~ ~ S ~ x S ~ acts freely on M by exp(vA) x exp(tB) such as to produce the 

C 

fibration p = ~°g of (3.11), which proves that the obtained g.H.m. M is 
strongly regular. 

By this analysis, we have proven 

THEOREM 3.5. The class of the compact strongly regular g.H.m. M is 
equal to the class of the differentiable T~-principal fibre bundles over the 
compact Hodge manifolds N, where M can be obtained as a fiat principal 
circle bundle over a principal circle bundle P over N whose Chern class differs 
only by a torsion element from the Chern class of the induced Hopf fibration 
~*(~). 

COROLLARY 3.6. The Betti numbers of a compact connected g.H.m. 
M and of its Kiihlerian basis N are related by 

bh(M ) = bh(N) + b h_ I(N) - bh_2(X) - bh_3(N) (0 <~ h <~ n - 1), 

(3.14) bh(M)=bh_2(N)+bh_i (N)-bh(N)-bh+l(N)  (n+ l <.h<,2n), 

bn(M )=2(b ~(N) -b  3(g)). 

Proof. The relations follow from the structure of M given in Theorem 3.5 
by using twice the Gysin exact sequence, and then using Poincar6 duality 
and the vanishing of the Euler- Poincar6 characteristic x(M). 

This corollary will be given an interesting generalization in the next 
section. 

REMARK. Theorem 3.5 determines all the compact strongly regular 
g.H.m., and the induced Hopffibrations [32] form an interesting subclass. 
It is worthwhile noticing that induced Hopf fibrations can provide examples 
of compact g.H.m, which do not admit any 1.c.K o structure. Indeed, let T be 
the induced Hopf fibration over an irreducible algebraic curve of genus g- 
Then, Corollary 3.6 yields 

bo(r )=1 ,  b l ( r  ) = 2  9 + 1 ,  b2(T )=4g ,  

and using (3.10) we get po(T) = g. Therefore, ifg ~> 1, T belongs to the Kodaira 
class VI [15], while, by Theorem 2.2, a compact 1.c.K o complex surface must 
be in the class VII of [15]. Q.E.D. 



246 I Z U  V A I S M A N  

4. H A R M O N I C  F O R M S  A N D  H O L O M O R P H I C  V E C T O R  F I E L D S  

This section is dealing with general compact  g.H.m., and we shall use the 
nota t ion of Section 3 and particularly the local coordinates  z ~ of (3.2), 
(3.6). The elements (functions, forms, etc.) which depend only on the leaves 
of g, i.e., depend locally on z a, £" (a = 1 . . . .  , n - 1) only, will be called g- 
foliate. 

It is well known in foliation theory [22], [26] that the decomposi t ion 
T M  = g @ g± yields a decomposi t ion of the forms of M into sums of 
b ihomogeneous  forms of type (p, q), where p denotes the transversal degree 
and q the leaf degree. Accordingly, there is a decomposi t ion 

(4.1) d = d' + d" + ~3, 

where d' is of type (1, 0), d" is of type (0, 1), and c~ is of type (2, - 1), and 
a differential form go on M is g-foliate iff it is of type (p, 0) (0 ~< p ~ 2n - 2) 
and d" go = 0. (Then, locally, go contains only z", 2", dz ", d2".) 

The Hodge *-operator  of (M, g) acts homogeneous ly  and (4.1) implies a 
decomposi t ion of the corresponding adjoint  operators  [26] 

(4.2) (5 = ( - 1) p+q • - 1 d* = 6' + 6" + ~, 

where (p, q) is the type of the form acted on, and the type of the terms are, 
respectively, ( - 1, 0), (0, - 1), ( - 2, 1). 

Now, any r-form 2 of M has a unique decomposi t ion 

(4.3) 2 = ct + co/x/~, 

where with respect to the cobases (dz ~, d2", co, 0), ct, fl do not  contain co any 
more. Since Vco = 0, (4.3) implies [17, p. 159] 

(4.4) A 2 = Act + co/x A fi, 

and we see that  2 is harmonic  ifct, fi are such. 
Conversely, A2 = 0 and (4.4) yield co/x Act = 0, and, by applying i(B) 

which commutes  with A [17, p. 159], we get Act = 0, then similarly Aft = 0. 
That  is, 2 is harmonic  iff ct and fi are harmonic  forms. 

Now if 2 is harmonic,  and 0 ~< deg 2 = r ~< n - 1, one has by a result of 
[11] (similar to a known result for Sasakian manifolds) i(A)L = 0, whence 
i(A)ct = i(A)~ = 0, and, since de = dfl = 0, it also follows L a e =  LAB = O. 
By (4.3) we also have i(B)ct = i(B)fl = 0 ,  which implies similarly LBct= 
L~/? = 0. All these facts together  mean that ct,/~ are 8-foliate forms. 

Fur thermore ,  for an g-foliate r-form ct we get by type comparison that 
dct = 0 means d'ct = 0, and 3ct = 0 means 

(4.5) 3'ct = 0, 3ct = 0. 

If *, denotes the Hodge * of the transversal par t  of the metric g of M given 
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by (3.6), we have easily 

(4.6) *e  = 0/x co A *'~. 

We have also d'co = 0 and d '0  = 0, which follows from (3.9). Thereby we 
get 

(4.7) 6'c~ = ( -  1)r*- 1 d '*~ = ( -  1)r*'- 1 d'*'c~, 

and we see that  6' is the codifferential with respect to the transversal part  
of the metric g. Hence, if e is harmonic  it satisfies d'c~ = ~'e = 0, i.e., e is 
transversally harmonic. 

Finally, concerning the condi t ion ~c~ = 0, it is clearly equivalent to 

(4.8) ( ~c~,/~ ) = 0 

for every form fl of  type (r - 2, 1), and where ( , ) denotes the global scalar 
product  on M. But, because of the type we have 

3 = O A 3 1 +  CO A 32, 

where i(A)fl h = i(B)fl h = 0 (h = 1, 2), whence 

31=i(A) f l ,  0 3 = d O / x f l l = d O / x i ( A ) f l ,  

and therefore 

(4.9) (~  ~, fl ) = (e ,  ?fl ) = (e,  e(dO)i(A)fl ) = (e(O)i(dO)e, f l ) ,  

where the operators  e, i denote  exterior  and interior products  respectively. 
It follows that  De = 0 is equivalent to e(O)i(dO)e = 0, or, in view of the 

expression (3.9) of dO, to 

(4.10) i(d0)c~ = 0, 

and, because of (3.8), (4.10) means that  e is transversally effective, i.e., effective 
[9], [17] with respect to the first term of  the metric (3.6). 

Hence, we have proven 

T H E O R E M  4.1. Let  M" be a compact g.H.m. Then, an r-form 2 of  M with 
0 <<. r <<, n - 1 is harmonic .iff  2 = c~ + co/x fl, where oc, fl are transversally 
harmonic and transversally effective foliate forms. 

Now, let us consider the linear spaces Jl~h(M, #) Of the #-foliate transversal- 
ly harmonic  h-forms. Clearly, the opera tor  *' considered previously sends 
isomorphical ly ~ h  onto  ~ : , - : - h ,  which means that these spaces satisfy 
the Poincar6 duality. Let  us also denote  

(4.11) e h (M, #) = dim dq~h(M, #). 

Then we can prove 

T H E O R E M  4.2. Let M" be a compact g.H.m. Then, the numbers e h oJ 
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(4.11) are finite, and the Betti numbers b h ( M ) are given by 

b h = e h + e h _ l - - e h _ 2 - - e h _ 3  (0~<h~<n-  1), 

(4.12) b h = e h _ 2 + e h _ l - - e h - - e h +  1 ( n + l ~ h ~ 2 n ) ,  

b - - 2 ( e _ l - e _ 3 ) .  

Proof. Denoting by S h the space of the g-foliate transversally harmonic 
and effective h-forms with 0 ~< h ~< n -  1, it is clear from Theorem 4.1 that 
s h = d i m S h < + o o .  Now, for t ]~) f )h(M,¢)  (0~<h~<n-1) ,  one has the 
following decomposition well known in K/ihler geometry [9, p. 180] 

[h/2] 

(4.13) t /=  ~ (d0) k a (h-2k 
k = 0  

(see (3.8) and (3.9)), where ~h- 2k ~ Sh- 2k. Formula (4.13) implies 

[h/2] 

(4.14) % =  ~ s a _ 2 g < + o o  ( 0 ~ < h ~ n - 1 ) .  
k = 0  

Then e h = eEn_E_h (Poincar6 duality) implies e h ~ q- O0 for n ~ h ~< 2n - 2, 
and, finally, we have e h -- 0 for h < 0 or h > 2n - 2. 

Furthermore, (4.14) gives 

(4.15) s h = e  h - e h _  2 (O<~h<~n-1 ) ,  

and the decomposition of Theorem 411 yields 

(4.16) b h = S h + S h _ l  (0~<h~<n-  1), 

whence we deduce the first relation (4.12). The second relation follows 
from the first by Poincar6 duality, and the third follows by using z(M)  = O. 

Q.E.D. 

REMARK. In the case of a strongly regular g.H.m., the relations (4.12) 
are the same as (3.14). 

It is also interesting to solve (4.12) with respect to eh, and it suffices to do 
this for 0 ~ h ~< n - 1. From (4.12), it follows 

(4.17) b h - - b h _ l = e h - - 2 e h _ 2 + e h _ 4  (0 ~< h-K,< n - 1), 

whence one can prove by induction 

[h/2l 

(4.18) eh= ( -  1) h ~ ([h/2] - i +  1)(bai-b21_(_l)h) ,  
i = O  

for 0 ~ < h ~ < n -  1. 
It follows that e h a r e  topological invariants, and do not depend on the 

g.H.m, structure provided that one such structure exists on M. 
Now, it is clear that the numbers e h behave like the Betti numbers of 
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an ( n -  1)-dimensional K/ihler manifold,  and therefore, as in [9], [17], 
we get 

T H E O R E M  4.3. I f  M" is a compact g.H.m., and if  eh(O <~ h <~ n -  1) are 
the linear combinations of  the Betti numbers of  M defined by (4.18), one has: 

(i) e h ~ O for h even, (ii) e h is even for h odd, (iii) e h_ 2 <~ eh 
For  instance, f rom (4.18), and b o = 1, we get 

(4.19) e~ = b 1 - 1 = even, e 2 = b 2 - b 1 + 2/> l(n ~> 3), 

e 3 = b 3 - b 2 + 2b 1 - 2 = even(n/> 4), etc., 

whence respectively: b 1 is odd  (which is ano ther  p roo f  of  a theorem of 
Kash iwada  and Sato [11], b 2 = 0 implies bl = 1 for n t> 3; b 3 - b 2 is even 
and b 3 >~ b 2 - b~ + 1 (since e 1 ~ e3) for n >t 4, etc. 

R E M A R K .  (1) The  fact that  the opera tors  d', 6' behave on foliate forms 
like in the case o f a  K/ihler manifold can be used to t ranspose  other  K/ihlerian 
results also. Fo r  instance the reader  can easily establish: 

P R O P O S I T I O N  4.4. Let  M" be a compact g.H.m., and ~ an N-foliate 
transversally effective form of  the complex type (p, 0). Then the followin 9 
three properties are equivalent: (i) e is closed; (ii) e is holomorphic ; (iii) ~t is 
harmonic. 

R E M A R K .  (2) The  theory  developed until now in this section is ana logous  
to the theory  of the C-ha rmon ic  forms on a contac t  manifold  [19], [24], but  
with a more  natura l  approach .  

Now,  let us go over  to another  impor tan t  subject, holomorphic (analytic) 
vector fields on a compac t  g.H.m. We shall see that  the vertical foliation g 
plays again a basic role. 

With  respect  to the coordinates  z ~ of  (3.2), (3.6), {~?fl?z ~, B - iA } is a local 
basis for the ho lomorph ic  tangent  bundle of M, and 

(4.20) Z = (a ~ + f ( B  - iA) 

is an analyt ic  vector  field iff (~, f are analytic funct ions which, whenever 
a coordinate  change 

(4.21) 5~ = ~a(zb), 5" = 5"(Z ~, Z') 

occurs, satisfy the transi t ion relat ions 

~ "  rb 1/(75"/(7~" \ ° 

where 2 is the analytic local function defined by F o r m u l a  (3.3). 
Now,  let us regard # z  as the quot ient  bundle T M / g ,  and denote  by 



2 5 0  I Z U  V A I S M A N  

r t :TM ~ g± the natural projection, as well as the projection between the 
corresponding (1, 0)-bundles. The images by Tc will sometimes also be denoted 
by brackets. Then, if Z is the holomorphic vector field (4.20), re(Z) = [Z] is a 
holomorphic section of g ' .  

Conversely, let us start with a holomorphic section of ~" 

and ask whether Z = re(Z) for some holomorphic field (4.20) ? Clearly, there 
are always differentiable fields (4.20) satisfying Z = rr(Z), and two such 
fields z h (h = 1, 2) must have the same components ~" while f 2 - f l  = q~, 
where, because of (4.22), q~ is a global function on M. Hence, a holomorphic 
Z with ~(Z) = Z is obtainable iff this relation holds for (4.20), and there is 
a global function ~0 on M such that f + q~ are analytic local functions, i.e., 
d~ q~ = - d J .  

Furthermore since by (4.22) d ~ f =  d~f, the local forms { -  d J }  define 
a global (0, 1)-form ~:(2). If Z is changed but 7t(Z) remains the same, ~c(2) 
will change to •(2) + d e ~ for some function 0. Therefore, the d~-cohomology 
class [~c(~)], which, by the Dolbeault Theorem, can be seen as a class in 
Hi(M, (9), where (9 is the sheaf of germs of holomorphic functions of M, 
is well defined. It is obvious that a function q~ satisfying d~ q~ -- - d Jex i s t s  
iff [~c(2)] = 0. This proves 

THEOREM 4.5. Let M be a (not necessarily compact) g.H.m., and Z be 
a holomorphic section of the transverse bundle of the vertical foliation ~. 
Then there is a well-defined cohomology class [~(;~) ] e H 1 (M, (9), and ]~ = rffZ) 

for some analytic vector field Z of M iff [~c(2) ] = O. 

REMARK. If Zh(h = 1, 2) are two holomorphic solutions of it(Z)= ~, 
the function cp =f2 - f i  is a global holomorphic function on M, hence it is 
a constant if M is compact. 

Theorem 4.5 is important because it reduces the study of analytic vector 
fields to the study of analytic sections of g_L. For instance, by applying it to 
Z = 0, we get 

COROLLARY 4.6. I f  M is a compact g.H.m., then c(B - iA) (ceC) are the 
only analytic vector fields of M which belong to ~, and, if g I has no nonvanishing 
holomorphic sections, these are the only analytic vector fields of M at all. 

Clearly, if we want to refer to real vectors, we should replace in Corollary 
4.6 c(B - iA) by kA, k'B, k, k' e ~.  

Finally, let us indicate a possibility for studying analytic sections of 
g ' .  Let (4.23) be a C~°-section of ~±, and g,~ be the coefficients of the metric 
(3.6). Then, we get an associated (0, 1)-form by 

(4.24) ~(Z') = ~ = -~i, d~b = (g~ ~a) dsb 
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Now, by [26], the metric (3.6) has a second connection with respect to 
the foliation **, and we shall denote by V" the connection which this second 
connection induces in **±. Using the formulas given in [26] for the connection 
coefficients of V ±, one can see that (4.23) is analytic iff 

(4.25) V l ~" = 0, V ± U = 0, 

and because of the bundle-like character of the metric, this is equivalent 
to 

(4.26) V ± ~ = 0, V ± ~ = 0. ? fi 

Let us restrict ourselves to the particular but important case of the analytic 
**-foliate vector fields defined by the condition that their **±-projection 
is analytic and locally constant along the leaves of **. For instance, it is 
easy to see that if X is a real vector field which is analytic (LxJ = 0), and 
satisfies LxB = 0, then X is analytic **-foliate. In particular, if X is analytic 
and Killing it is analytic **-foliate. The necessary and sufficient condition 
for the analytic vector field X to be foliate is LxB = ~A + fiB for some 
coefficients :~,//. 

In this case, the second condition (4.26) is automatically satisfied, and 
the first is the K~ihlerian condition of analyticity with respect to the K~ihler 
metric given by the first term of (3.6) [18]. We can therefore do the same 
computations as for K~ihler manifolds [18, p. 17-19], [9, p. 250-251] 
(while making an essential use of the relations (4.7)), and get 

THEOREM 4.7. I f  M is a compact g.H.m., a foliate section 2 of **± is 
analytic iff 

(4.27) (A' ~)~ = 2Ra~ ~a, 

where A' is the Laplacian, and R is the Ricci curvature of the **-transversal 
part of the metric g of M. 

Formula (4.27) is a second-order condition, and one could try to exploit 
it, as in the K~ihlerian case. For instance, as in [9], [18], one gets. 

COROLLARY 4.8. I f  M is a compact g.H.m, with a negatively defined 
transversal Ricci tensor, then the only analytic Killing vector fields of M are 
kA, k'B, where k ,k ' e~ .  

5. ANALYTIC SUBMANIFOLDS OF g . H . m .  

It is clear from Formula (1.3) that an analytic submanifold of a general 
1.c.K. manifold inherits either a locally or a globally conformal K~ihler 
structure. Therefore it is natural to inquire what happens in the case where 
the ambient manifold is a g.H.m. The aim of this section is to answer this 
question by 
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T H E O R E M  5.1. Let M be a g.H.m., and j : M' --* M an immersed analytic 
submanifold. Then M' has an induced g.H.m, structure iff it satisfies one oJ 
the following two conditions: (a) M' is minimal; (b) M' is tangent to the Lee 
vector field B of M. 

Proof. We shall denote all the elements of M' by a prime. It is clear that 
the induced metric g' of M' is either 1.c.K., or g.c.K., with the Lee form 
o '  = j* o,  and the Lee vector field B' given by the decomposition 

(5.1) B = B' + B ± 

of B into a tangent and a normal component with respect to M'. 
Now, by using the Gauss-Weingarten equations of M' [14], we obtain 

(5.2) Vx, B'=V'x,B'+c~(X',B'), Vx, B i = - A B ~ ( X ' ) + D x ,  B ±, 

where X' is tangent to M', ~t is the second fundamental form of M', D is 
the induced connection of the normal bundle of M', and for any Y' tangent to 
M' one has 

(5.3) g(Ana(X'), Y') = g(c~(X', Y'), BL). 

If the induced structure of M' is that of a g.H.m., we have Vx, B' = 0. 
By the first equation (5.2), this is equivalent to Vx,B' _k M', and then, by (5.1), 
it is equivalent to Vx,B ± L M', and, by the second equation (5.2), with 
A#_(X') = 0. Finally, by (5.3), our condition is equivalent to c¢(X', Y') _L B -c, 
and, consequently, the mean curvature vector of M' 

1 
(5.4) /~ = ~ tr c~ (h = dim c m' )  

is orthogonal to B ±. 
On the other hand, let us denote by ~ the (local) second fundamental 

form of M' with respect to the local K/ihler metrics of the 1.c.K. structure 
of M. Using (2.1), it is easy to get 

(5.5) a(X', Y') = c~(X', Y') + ~g(X', Y')B ±, 

whence the corresponding mean curvature vectors are related by 

1 ± (5.6) fi = # + ?-B . 

But it is well known that an analytic submanifold of a K/ihler manifold is 
1 ± minimal. Hence fi = 0, and # = - 2 B  . 

The two results about /~ proven above imply kt = 0 and B I =  0, i.e., if 
M' is a g.H.m., M' is minimal and tangent to B. 

Conversely, if M' is minimal, (5.6) yields B ± = 0, and the same is trivially 
true if M' is tangent to B. Therefore, ct(X', Y') L B 1, and we already know 
that this is equivalent with Vx, B '= O. Moreover, we cannot have B ' =  0, 
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since B' = 0 and B ± = 0 imply B = 0, which is false. Therefore M' is a g.H.m. 
Q.E.D. 

COROLLARY 5.2. A generalized Hop f  subrnanifald M'  o f  a regular g.H.m. 
M is also regular. 

Indeed, regularity means the regularity of the foliation of the trajectories 
of B [29]. 

In connection with Theorem 5.1, the classical Hopf manifold H" (see 
Section 1) is again a source of interesting examples. Namely, it is known 
(e.g., [1]) that every sequence (ql ,  . . . ,  qn) of real positive numbers defines 
a natural action of C on C" by means of the formula 

(5.7) t(z j) = ([exp(2rcqJt)]z j) (teC). 

Similarly, if we choose h such sequences q~ (j = 1, . . . ,  n ; e  = 1, . . . ,  h), 
we can define an action of the additive group C h on C" by means of the 
formula 

(5.8) (t~)(z a) = exp 2~z ~, q~t ~ z J ((t~)eCh). 
\ k _  \ ~ =  1 

Obviously, this induces an action of C/' on the Hopf manifold H", whose 
orbits are analytic submanifolds of dimensions k ~< h of M. 

Now, by (2.17) the Lee vector field B of the metric (1.6) is 

_ _ _  Z J _ _  - 

(5.9) B = 2 c~z j + ' 

and the (1, 0)-components of a vector tangent to an orbit L of(5.8) at a point 
(z J) are the values of the 1-forms 

(5.10) dza= 2= q dt ~ z j 
\ ~ = 1  

on that vector. Hence B is tangent to L iff the system of linear equations 

h 

( 5 . 1 1 )  = 1 
e = l  

is compatible with respect to U, or equivalently, iff there are homotheties 
among the transformations (5.8). 

Therefore, for some choices of (q{) L will be a g,H. submanifold, and for 
other choices it will not be such. (For instance, if the matrix (q~) has the 
maximal rank h, (5.11) is compatible, and L is a g.H. submanifold). This 
will provide us with new examples of 1.c.K. manifolds L which are not 
g.H.m. 

Other interesting examples of this type have been given recently by F. 
Tricerri [25], and they consist of a great part of the Inoue surfaces endowed 
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wi th  su i tab le  1.c.K. met r ics .  In  [253 it is a lso  p r o v e n  tha t  the  b l o w i n g  up  

and  b l o w i n g  d o w n  p r o c e d u r e s  [16]  l ead  f r o m  1.c.K. m a n i f o l d s  to  1.c.K. 

man i fo lds .  (In fact, it is s imp le r  to p e r f o r m  the  p r o o f  on  the  1.c.K. s t ruc tu res  

as def ined  in Sec t ion  1 of  this paper . )  Hence ,  if we b l o w  up  a p o i n t  o f  a 

c o m p a c t  g .H.m.  M we get  a 1.c.K. m a n i f o l d  _M which  is no  l o n g e r  g .H.m.  

because  it no  l onge r  has  a v a n i s h i n g  E u l e r - P o i n c a r 6  charac te r i s t ic .  
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