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1. INTRODUCTION 

For finite incidence structures (whose elements are called points and blocks), 
Dembowski [2], p.5, defines the regularity conditions (R.m) and (R.n), for 
positive integers m and n, as follows: 

(R. m) Any m blocks are incident with v,, points, for some positive integer 

V m • 

(/2-n) Any n points are incident with b, blocks, for some positive 
integer b,. 

A tactical configuration is an incidence structure satisfying (R" 1) and (/2.1). 
We shall always use v, b for the numbers of points and blocks, and k = vl, 
r=bl. In a tactical configuration, (R'm) implies (R 'm ' )  for m'<.m, and 
(R.n) implies (R.n') for n' <<.n. 

It is a remarkable fact that the only tactical configurations satisfying (R" 2) 
and (R. 3) are the 'degenerate' ones in which either v = k, b = r, or v - 1  = k = 

- - r = b - l ( [ 2 ]  p.5). In addition, the only known tactical configurations 
satisfying (/2.6) are those in which every set of k points is incident with a 
block. This suggests the general question: which conditions of  this type can 
be satisfied non-trivially? 

In this paper, Dembowski's conditions are refined with 'near-regularity 
conditions' stating, for example, that the number of  points incident with any 
m blocks takes only a few values. On this finer mesh of conditions, the border- 
line between possibility and impossibility can be charted, and configurations 
adjacent to this borderline studied. 

A t-design is a tactical configuration satisfying (_R. t); a design is a 2-desigu. 
(In a design, the integer b2 is denoted by 2.) A symmetric design (called a pro- 
jective design in [2]) is a design which also satisfies (R-2). (Symmetric designs 
are interesting as a 'borderline case'.) A design is quasi-symmetric if the num- 
ber of  points incident with two blocks takes just two values. The nth multiple 
of an incidence structure is obtained by replacing each block by a set of  n 
blocks all incident with the same set of  points as the original block. A t- 
design will be called non-trivial if k ~< v -  t. (In a trivial t-design, any set of  k 
points is incident with a block.) 

Fisher's inequality states that a design with k~< v -  1 satisfies b~> v; further- 
more, equality holds if and only if the design is symmetric. Recently this has 
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been generalised by Wilson and Ray-Chaudhuri as follows: A 2s-design with 

k ~< v -  s satisfies b 1> s ; furthermore, if equality holds, the design is called 

tight, and has the property that the number of points incident with two blocks 
takes just s distinct values. (This result was communicated to me by J. 
Doyen; part of it was reported in [7]. Part was proved independently by 
Bannai.) Here I investigate the reverse problem. Suppose D is a (2s-2)-design 
in which the number of points incident with two blocks takes just s values. 
Then the dual of D is a partial design with class number s. (This generalises 

a result of Goethals and Seidel [3].) Furthermore, either b,,< ( ; )  or D is a 

multiple of a tight (2s-2)-design. As a consequence, the property that the 
number of points incident with two blocks takes just s values is equivalent 
to tightness in a 2s-design, and cannot be satisfied in a non-trivial (2s + 1)- 
design. The last fact generalises Dembowski's result on the incompatibility 
of (R'2) and (R.3). In particular, a quasi-symmetric design with more 
than -}v(v- 1) blocks is a multiple of a symmetric design; a quasi-symmetric 
4-design has -}v(v-1) blocks and is tight; and there is no non-trivial quasi- 
symmetric 5-design. 1 

The final section of the paper contains a discussion of the two kinds 
of configuration adjacent to the exclused (R.2)&(R. 3). The first is the 
class of symmetric designs in which the number of blocks incident with 
three points takes just two values. Designs in which one of these values 
attains the obvious upper or lower bound are considered, and the Hadamard 
designs in the class are determined. The second class consists of quasi-sym- 
metric 3-designs. Apart from the facts about quasi-symmetric 4- and 5-de- 
signs already mentioned, only one observation on this class is recorded. 
(Some of these results were announced at a conference in Oxford in July 
1972.) 

An incidence structure has repeated blocks if two different blocks are 
incident with the same set of points. (If an incidence structure has no re- 
peated blocks, a block can be identified with the set of points incident with 
it.) If p is a point of the incidence structure D, the derived (resp. residual) 
structure with respect to p is defined to have the points different from p and 
the blocks incident (resp. non-incident) with p, with incidence inherited 
from D. (See [3] p.610; this terminology is not standard.) A Steiner system 
~(t, k, v) is a t-design with bt = 1. 

1 p. Delsarte has obtained similar results. 
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2. t - D E S I G N S  A N D  P A R T I A L  D E S I G N S  

L E M M A  1. The determinant 

(o o) (o (o 
(1 o) 
(:) 

is equal to zero i f  and only i f x i = x J o r  some i, j with 0 ~ i < j <. h. 
Proof Multiplying by 0! 1 !...h! and performing row operations transforms 

the given determinant into a Vandermonde determinant. 

L E M M A  2. Let D be a ( s -  1)-design in which the number of  points incident 
with two blocks takes just the s distinct values Xo, ..., x s - l  (s> 1), of which Xo 
is the greatest. 

O) The number ni of  blocks having xi points in common with a given block 
depends only on i. 

(ii) I f  D has repeated blocks (that is, i f  Xo =k)  then it is the (no + 1)th 
multiple of  a ( s -  1)-design D' in which the number of  points incident with two 
blocks takes just the s -  1 values xl, ..., xs- , .  

Proof (i) Given a block b, count in two ways the number of  choices o f j  
points incident with b and another block e incident with all these points: 

n~ ' = ( b j - 1 ) ,  0 ~ < j ~ < s - 1 .  
i=0 

By lemma 1, these equations determine no, ..., ns_ 1 uniquely. 
(ii) I fx  0 = k then each block is repeated n o + 1 times. 
An association scheme with class number s on a set P is a partition of  the 

set of  (unordered) pairs of  elements of  P into s classes 6"1, ..., Cs with the 
properties 

(i) given p ~P, the number of  q ~P with {p, q} ~Ck depends only on k; 
(ii) given {p, q} ~Ck, the number of  r~P with {p,r} eCi, {r, q} ECj de- 

pends only on (i, L k). 
(An association scheme is a particular case of  what Higman [4] calls a co- 
herent configuration: it is a 'homogeneous coherent configuration with trivial 
pairing'. An association scheme with class number 2 is essentially the same 
thing as a complementary pair of  strongly regular graphs [3].) 

Let A~ be the basis matrix corresponding to the class C~. The rows and 
columns of A i are indexed by the elements of  P, and the (p, q) entry is 1 
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if {p, q} eCt, and 0 otherwise. The real vector space spanned b y / ,  At .... , As 
(where / i s  the unit matrix) is an algebra, called the centralizer algebra of the 
association scheme (see [4]), and is commutative since each At is symmetric. 
So the vector space V= RP with basis vectors indexed by elements of  P (the 
natural module for the centralizer algebra) can be expressed as V= 
Vo@VI@.'.@V,, where each Vt is an eigenspace for every matrix in 
(LA1 .... ,A~)~. 

If  P is the set of  j-element subsets of  a set containing at least 2j points, 
then the classes Ct=({p ,  q} ][pnq[=i}, O<.i<~j-1, form an association 
scheme on P. 

A partial design with class number s is a tactical configuration together 
with an association scheme with class number s on the points, with the prop- 
erty that the number of  blocks incident with two points p and q depends 
only on the class containing {p, q}. (A partial design with class number 1 is 
simply a design.) Goethals and Seidel ([3] Theorem 3.1) proved that the dual 
of  a quasi-symmetric design is a partial design with class number 2. The first 
part of  the main theorem below is a generalisation of  their result; the proof  
owes much to their argument. 

T H E O R E M  1. Let D be a (2s-2)-design in which the number of points in- 
cident with two blocks takes just the s distinct values Xo,..., x~_ l ( s> l ) .  

(i) The dual of D is a partial design with class number s. 

(ii) Either b<<.(:) or D is a multiple of a tight (2s-2)-design. 

Proof. O) Note that 2s-2<<.k<v-s+ 1; so by the result of  Wilson and 

> ( v ) Let P and B be the sets of  points and blocks of D. Ray-Chaudhuri, b s -  1 " 

There is a natural partition of the set of  pairs of  blocks into s classes. 
We must show that this is an association scheme. By Lemma 2, part (i) of  
the definition is satisfied. Let Ao .... , A ~_ ~ be the basis matrices; it is sufficient 
to show that (L Ao,..., As-1)~=S is an algebra. (See [4] p. l l . )  

Let Mj  be the matrix with rows indexed by the j-element sets of  points and 
columns by blocks, with ({Pl, ..., P j}, b) entry 1 ifp~,... ,  pj  are incident with 
b, 0 otherwise. 

Then Mo is a single row of ones; and, for O<<.j<~s-1 (indeed, for all 
positive j) ,  

2- -1  

t=O 

By Lemma 1, these equations can be solved to express Ao, ..., A~_I in terms 
ofM~Mo, . . . ,  Mf_~Ms_I, and/ .  So 
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S (I, MTMo, r = ..., M~_ 1M~- 1)~. 

Let V= [¢B. We shall show that there is an expression 

V = V o e V l @ . . . e v ~ ,  

where each IT/is an eigenspace for every matrix in S. Since d i m ( S ) = s +  l, 
it follows that S is the set of all matrices that act as scalars on each V i. This 
set is clearly an algebra. 

Let P(j) denote the set of j-element subsets of P, carrying the association 
scheme described earlier; let Rj be the centralizer algebra of this association 
scheme, and Wj--•P(i)" For i<~j, let B,3 be the matrix with rows indexed 
by P(o and columns by P(j), with ({pl,..., pi}, {ql .... , q3}) entry 1 if 
{P~ ..... P,} - {ql,..., q j}, 0 otherwise. Note that 

BijBjh= ( ~ -  i) Bih, 

B~iMi= ( ~ -  :) M,, 

B~iB ~ E Ri, B~Bzj ~ Rj. 

A result of Kantor asserts that, for i <j~< ½ (v + 1), the rank of Bii is ]P(ol; in 
particular, B~jB T is non-singular. 

Suppose W~ = W~, o $ " "  @ Wi, ~, where each W~, j is an eigenspace for each 
element of R~. Let W'i= WiB~.~+lc Wi+ 1 and R'i=Bri+lRiBi.i+lcR~+l. 
W,+~=W',GU,+a, where U,+~={weW,+~ l wBT,+~=O}=(W',) ±, since 

T t B,,i+IB,,,+I is non-singular. R~ is a subspace of R,+ 1 of codimension 1. 
It has eigenspaces W,, jB,, i+ ~ (0 ~<j~< i) and Ui+ 1; indeed, every element 
of R~ has eigenvalue 0 on Ui+l. It follows that, with W,+1,1 = W~,jB,,,+~ 
(O<~j~i) and W~+~,,+I--- Ui+~, 

Wi+l = Wi+l, o ~ ' " @  W~+l,~+l, 

where each W~+1.1 is an eigenspace for R~+l. Then we have, by induction and 
choice of notation, 

Wi, jBih = Wh, j for O <~ j <~ i < h < s. 

Since D is a (2s-2)-design, MjMfeRj  for O<~j<<.s-1, and so W~,h is an 
eigenspace for M~M r, and Wj, hMj is an eigenspace for MTMI. Now 

Wj,~M~ = Wj,~B~,,_~M~_I = W~_~,~M~_~ 

So the subspaces Vh= W~_~,hM~_~(O<<.h~s-1) are eigenspaces for each 

MT Mj" Since b > ( v i , Vo@...@ V~_~= W~_~M~_~ is a proper subspace 

of V; and V~= (W,_~M~_a) ± is a zero eigenspace for all M~Mj (since it is 
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contained in all (WjMs) ±). Thus 

V=Vo@...@v~_~@v~, 

where each Vh is an eigenspace for each MyMj, and clearly also for L So the 
result is proved. 

(ii) Suppose b > ( ~ ) .  For real numbers So .... ,ss-1,  define a matrix 

Ms(%, ..., ss-1) with rows indexed by P(s) and columns by B as follows: the 
({Pl .... ,P,}, b) entry is 1 if b is incident with all of pl .. . .  ,Ps, and s h if b is 
incident with just h of these points (0 ~< h ~< s -  1 ). Ms(0,..., 0) is the matrix we 
have already called Ms. We find that 

s--1 

i = 0  
s - 1  

h=O 

Mr, Ms(%,..., ss- ,)eS.  Also, since b > ( ~ ) ,  this matrix is singular for all SO 

choices of %,... ,  s s - , ;  so it has zero eigenvalue on a particular one of the 
eigenspaces of S, say V*, for all such choices. Let ao, ..., as-, be the eigen- 
values of Ao,..., As_ , on V*. 

Putting s o . . . . .  s ,_,  =0, we have 

s--1 

0= E (;,) ,+ (:) 
i=O 

Equating the coefficient of e h to zero, 

s - 1  

0=E(;,)(:-;,)..=0 
i=O 

k - x   ow(, h) 
tion of 

is a polynomial of degree s -  h in x, and so is a linear combina- 

x - h  
l ' h +  1 , 

( x -  h) ( x -  h -  1) 
( h + l ) ( h + 2 )  ' " "  

(x - h) (x - h - 1 ) . . .  (~ - s + 1 ) .  

(h + 1) (h + 2)...a 
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say 

=/~o +/h )i~-i" + ' " '  (x) 
Putting x = h shows that flo # 0. Multiplying by h ' 

s - h  X 

Then 

Assuming 

s - 1  

i = 0  
8 - 1  {Z('/ 

= t~=O fit h + t ei + h + t " 
i = 0  

s - 1  

i=O 

it follows that 
s--1 

i = 0  

By induction, this equation holds for O<.h<.s. But the expression is just the 
eigenvalue of M[Mh on V*. 

The subset S* of S consisting of matrices with zero eigenvalue on V* is a 
subspace of codimension 1, and so must be r r (MoMo,... ,  Ms-IM~-I>R. 
We have M[Ms eS* but I~S*. 

Now 
S--1 

i = 0  

By Lemma 1, if k is not equal to any x~, then these equations can be solved 
for Ao,..., A~-I, I in terms of M~Mo,.. r . ., M, M,, in particular, they imply 
that IeS*, which is false. So, without loss of generality, we can assume 
that k = x o. Then, by Lemma 2, D is a multiple of a (2s-  2)-design D' with 
no repeated blocks. By what has already been proved (with s -  1 replacing s), 

(°) D' has at most s -  1 blocks; by the theorem of Wilson and Ray-Chaudhuri, 

D'hasatleast(s:l)blocks. ItfollowsthatD'istight. 
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COROLLARY. O)A 2s-design with k < v - s  has the property that the 

numberofpointsineidentwithtwoblockstakessvaluesif andonlyifit has(~) 
blocks. 

(ii) In a non-trivial (2s+ 1)-design, the number of points incident with two 
blocks takes at least s + 1 distinct values. 

Proof (i) The sufficiency is the second part of the result of Wilson and 
Ray-Chaudhuri; the necessity comes from combining the first part of their 
result with Theorem 1. 

(ii) If D is a (2s+ 1)-design in which the number of points incident with 

two blocks takes just s values, then b = ( : )  and (considering the derived 

designDp)r=(V:X)." " Sincebk=vr([2]p.57) thisimpliesk=v-s;  so Dis  
trivial. 

Remark. Theorem 1 and the corollary are 'best possible' for small values 
of s. 

For example, the 'pair design' whose blocks are the 2-element sets of 
points, is quasi-symmetric, with b=½v(v-1), and has no repeated blocks. 
The Steiner system 6:(4, 7, 23) ([3] p.610) and its complement also have 
these properties - they are the only known non-trivial tight 4-designs, and 
indeed the only known non-trivial tight 2s-designs for any s~>2. 

The design of points and planes in affine 4-space over GF(2) is a 3-design 
(indeed a Steiner system S:(3, 4, 16)) in which any two blocks are incident 
with 0, 1, or 2 points. However, ifb and c are disjoint planes, the number of 
planes disjoint from both b and c depends on whether or not b and c are 
parallel. So the dual is not a partial design with class number 3. 

The Steiner system 5:(5, 8, 24) and its residual, and the Steiner system 
5:(4, 5, 11), are 4-designs in which the number of points incident with two 
blocks takes just three values. (So their duals are partial designs with class 
number 3.) The first of these is even a 5-design (compare (ii) of the corollary). 2 

3. DESIGNS ALMOST SATISFYING ( R . 2 )  & (-R.3) 

A design will be called quasi-3 if the number of blocks incident with three 
distinct points takes only two values. In this section, symmetric quasi-3 
designs and quasi-symmetric 3-designs are considered. First, however, some 
special classes of designs are defined. 

A projective plane is a symmetric design with 2 = 1. Projective planes have 
received much investigation; another class considered in the literature is the 

The results of this section can be generalised without difficulty to the situation in which 
vector spaces and subspaces replace sets and subsets. 
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class of  Hadamard designs. A Hadamard 2-design is a symmetric design with 
parameters v = 4 n -  1, k = 2 n -  1, 2 = n -  1 for some integer n (greater than 1) 
called its order. A Hadamard 2-design of  order n is uniquely extendable 
([2] pp. 76, 113) to a 3-design with v=4n, k=2n,  b a = n - 1 ,  canonically iso- 
morphic to its complement, which we shall call a Hadamard 3-design of 
order n (it is called a double Hadamard design in [3]). There are unique 
Hadamard 2- and 3-designs of orders 2 and 3. For an integer d >  2 and a prime 
power q, PG (d, q) will denote the symmetric design of  points and hyper- 
planes in the d-dimensional projective geometry over GF(q) ;  it has v=  
= (qd +1 _ 1 )/(q - 1 ), k = (qe _ 1 )/(q - 1 ), 2 = (qe-1 _ 1 )/(q - 1 ). PG (d, 2) is a 
Hadamard 2-design of  order 2 d-1. 

The class of  symmetric quasi-3 designs is a large one. It is dosed under 
complementation, and contains all symmetric designs with 2 =  1 or 2=2 ,  
all the designs PG (d, q), and a family of  designs with v = 2 TM, k = 22m- 1 
_ 2 m- 1, 2 = 2  TM- 2 2 =- 1, m > 1. An unsolved problem about this class: is it 
dosed under taking duals ? (all examples mentioned with 2 > 2 are self-dual.) 

T H E O R E M  2. In a symmetric quasi-3 design D with parameters v, k, 2, let 
the number o f  blocks incident with three points be either f o r  g, where f < g. 
Clearly f>l  0 and g <~ 2; furthermore, we have: 

(a) Dp is the dual o f  a quasi-symmetric design, for  any point p. 
(b) l f  f =O, then one o f  the following is true: 

O) g = 1 = 2, D is a projective plane; 
(ii) g = l ,  2 = 2 ;  

(iii) g = 2 d - * ( d > 2 ) ,  D is the complement of  PG(d, 2); 
(iv) g > l ,  v = g ( g 2 + 5 g 2 + 6 g - 1 ) ,  k = g ( g 2 + 3 g + l ) ,  2 = g ( g + l ) ;  
(v) g=2,  v=1037, k = l 1 2 , ~ = 1 2 .  

(c) I f  g = 2, then D is either a projective plane or PG (d, q) for some d, q. 
(d) I f  D is a Hadamard 2-design o f  order n, then either n = 2  or 3, or D is 

PG (d, 2) with n = 2 a- 1. 

Proof. (a) is immediate from the definitions. 
(b) Assume f =  0. g = 1 if and only if 2 = 1 or 2 = 2; so assume 2 > 2, g > 1. 

Let b be a block; let Db denote the incidence structure whose points are the 
points incident with b and whose blocks are the blocks distinct from b. 
D'=Db is a 3-design with parameters v '=k ,  k ' = 2 ,  ba = g - 1  (for any three 
points incident with b are incident with g - 1  more blocks). If  p is a point 
incident with b, then the design D*=(D ' )p  has parameters v * = k - 1 ,  
k* = 2 - 1 ,  2" = 9  - 1, and has just k -  1 blocks; so D* is a symmetric design. 
Also, it is non-trivial. 

According to the main theorem of [1 ], if the derived design of  a 3-design D' 
is a non-trivial symmetric design D* with parameters v*, k*, 2*, then one of  
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the following is true: 
(1) D' is a Hadamard 3-design of  order 2" + 1 ; 
(2) v*=(g+l)(g2+2g-1),k*=g2+g-l,  2*=g-1, for some g > l ;  
(3) v*=lll, k*=ll ,2*=l; 
(4) v*=495, k*=39,  2*=3.  

In each of  these cases, the parameters (v, k, )~, g) can be determined. 2 and 3 
yield (iv) and (v) of  the theorem. 

The Bruck-Ryser-Chowla theorem ([2] pp. 61, 63) shows that 4 does not 
arise here. (It also restricts the values of  g that can occur in 2: for example, if 
g is even, then g + 2  is a square.) In case 1, an inclusion-exclusion argument 
shows that the complement/3 of  D is quasi-3 with parameters ~= 8 g - 1 ,  
r:= 4g - 1, ~ = 2g - l, f =  g - 1, ~ = 2g - 1 = ~. It will follow from (c) t h a t / )  
is PG(d, 2) for some d>2.  

(c) Suppose g = 2 .  If  2 =  1 then D is a projective plane; so assume 2 >  1. 
The line through two points p, q of  D is defined to be the set of  points inci- 
dent with every block incident with p and q. So D has the property that any 
three noncollinear points are incident with f blocks. The Dembowski- 
Wagner theorem ([2] p. 67) asserts that a design with this propertyis PG(d, q) 
for some d, q. 

(d) Suppose D is a Hadamard 2-design of  order n. Select a point p. D v is 
the dual of  a quasi-symmetric design. Form a graph whose vertices are the 
points different fromp, with q and r adjacent if the number of  blocks incident 
with p, q, and r takes one particular value. By [3] theorem 3.1 this graph is 
strongly regular, and the eigenvalues of its adjacency matrix have multiplici- 
ties 1, 2 n - 2 ,  2n - 1. Replacing the graph by its complement if necessary, we 
can assume it has valency less than 2 n -  1. 

If  the graph is not connected, consideration of  multiplicities shows that it 
is the disjoint union of 2 n -  1 edges; it and its complement have valencies 1 
and 4 n - 4 .  Take two points of D, and count in two ways the number of  
choices of  a third point and a block incident with all three: we obtain 

(an - 4 ) f +  g = ( n -  1) (2n - 3). 

So 2 = n - 1  divides g, whence g = L  By (c), the design is either a projective 
plane (with n=2)  or PG(d,  2) (with n=2 a-l, d>2) .  

Suppose the graph is connected. Inspection of  Wielandt's argument in the 
proof  of  [6] Theorem 31.2 on primitive permutation groups of  degree 2p 
shows that, from our hypotheses, we can conclude that n=aZ+ a +  1 for 
some positive integer a, and the graph and its complement have valencies 
a(2a + 1) and (a + 1) (2a + 1). Counting as before, 

a (2a  + 1) f + (a + 1) (2a + 1) g = a ( a  + 1) (2a 2 + 2 a -  1). 

So 2a + 1 divides a(a + 1) (2a z + 2 a -  1). Applying the remainder theorem, 
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2a+  1 divides 3, whence a =  1. The unique Hadamard 2-design of order 3 is 

quasi-3, since 2=2.  
The class of  quasi-symmetric 3-designs is closed under complementation. 

It contains the plethora of (self-complementary) Hadamard 3-designs (it is 
conjectured that these exist for every order n > 1), but appears to contain 
little else. The only other known designs in this class are the Steiner system 
5:(4, 7, 23), its complement, and their derived and residual designs (see 
[3] p. 610). Apart from corollary 2, the result given below is the only restric- 
tion I know on designs in this class. 

PROPOSITION. I f  D is a 3-design in which any two blocks are incident with 0 

or # points, then b 3 = # - 1 ,  and Dp is symmetric for  any point p. 
(Now, of course the classification of [1 ], mentioned earlier, for extensions of 

symmetric designs applies to this subclass.) 
Proof. Any two blocks of Dp are incident with p and hence w i t h / 2 - 1  

more points. So Dp is a symmetric design with 2 = # -  1. 
Note. In practice, regularity or near-regularity conditions often arise 

because a tactical configuration has a large group of automorphisms. For 
example, if the automorphism group of  D is transitive and has rank t +  1 on 
the blocks, where the number of  points incident with two distinct blocks 
takes t values, then the dual of D is automatically a partial design with class 
number t. Again, if D is a nontrivial symmetric design and Aut (D) has two 
orbits on ordered triples of points, then it has two orbits on ordered triples of 
blocks also, and D and its dual are quasi-3. 
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