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Abstract. A theoretical model of the acceleration region of the solar wind with major species (p, c~, e) and 
minor ions (e.g., 3He, C, O, Mg, Si) is presented. Observed ne-profiles and the equations of continuity and 
momentum are used to calculate profiles of T, n, and u for all species, as well as charge states of minor ions. 
The disagreement of the results of a pure p-e model with observations is discussed in some detail, and it 
is shown that a model consistent with observations both in the corona and at 1 AU requires a finite 
abundance of He § +. This model predicts a strong enhancement of He/H in the lower corona. The results 
for the frozen-in charge states in the p-~-e model are in agreement with measurements in the low speed 
solar wind, especially for the well determined pair 06+/07+. Finally, a model for a coronal hole is 
investigated and it is found that wave pressure is necessary to model successfully the observed solar wind 
speeds and abundances. 

Although various simplifying assumptions had to be introduced, care was taken to ensure that the model 
remains physically consistent, i.e., that the same physics is used for the major species as well as the minor 
ions. 

1. Introduction 

The heavier components  in the solar wind provide a set of  test particles with widely 

different mass  and charge which can be used to probe the physical conditions in the 

corona  and solar wind. 

The study of  the dynamics of  minor ions helps to delimit possible fractionation 

processes in the corona  which need to be unders tood in order to relate abundances in 

the solar wind to those in the Sun itself. However,  not  only elemental and isotopic 

abundances are of  interest: the distribution of  charge states of  heavy elements carries 

important  information as well. In contrast  to other parameters, e.g., density, velocity, 

or temperature, which vary by orders of  magnitude between the corona  and 1 AU,  the 

charge state distribution is 'frozen-in'  relatively low in the corona. In-situ measurements 

of  charge states in the solar wind can therefore be used to infer the physical state of  the 

low corona. The message contained in the charge states is complex, however, and model 

calculations have to be invoked for its better understanding. 

To date, studies of  heavy minor ions have concentrated either on the charge states 

alone (Hundhausen etaL,  1968; Bame etal . ,  1974; Owocki, 1982; Bochsler, 1983), 

making simple assumptions concerning the expansion kinetics, or else they have treated 

the dynamics o f  ions with fixed charge (Geiss et al., 1970; Nakada,  1970; Joselyn and 
Holzer, 1978; Borrini and Noci, 1979; McKenzie  et aL, 1979). 

In this work, we synthesize the two approaches and treat the evolution o f  charge 
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states and dynamics simultaneously. Particular emphasis is laid on consistency of the 
models for minor and major ions, since any ad hoc choice in the model for major ions 
would invalidate the approach. Also, we introduce a generalized thermal force, thus 
extending thermal diffusion beyond the diffusion approximation by including a heat flow 
interaction in the collision terms that is applicable for arbitrary velocities. 

2 .  M o d e l  A s s u m p t i o n s  

We assume: 
- A steady state solar wind, i.e., all partial time derivatives are set to zero. 
- Equal temperatures for all species. This is of course not the case in the real solar 

wind at 1 AU, where the temperature of ions has been observed to be roughly 
mass-proportional (cf. Schmidt etal., 1980; Bochsler etal., 1985). However, the 
assumption should be a useful approximation in the corona outside coronal holes, where 
the low-speed solar wind is thought to originate. There the densities are high enough 
for the plasma to be collision dominated, and temperatures should be near equilibrium 
at least over the range where charge states are frozen-in. So the charge-state calculations 
should not be affected much by this assumption, and neither should be the dynamics 
of ions in the corona. In contrast, we cannot expect the dynamics of ions at large 
heliocentric distances to be realistic, since there the assumption of equal temperature 
is known to be false, so solutions beyond --- 10 R o are merely illustrative extrapolations 
of the coronal models. 

We also assume: 
- Equal velocities of ions of one species (i.e., an element or isotope). The model thus 

cannot reproduce the effect of unequal flow speeds for different charge states of the same 
species (cf. Owocki et al., 1983). Since the speed differences between protons and ions 
tend to be inversely proportional to ZZ/A (in the diffusion limit, Z being the charge- and 
A the mass-number of the charge state in question), speed differences will not be too 
large as long as Z is large. Moreover, there will also be equilibration of speeds between 
neighbouring charge states by transfer of momentum in ionization/recombination 
processes below the freezing-in level. The assumption of equal velocities considerably 
simplifies the system of momentum equations from one for each charge state, each with 
its own critical point, to a single momentum equation for the mean velocity with a single 
critical point for each species, and thus greatly reduces computational complexity. 

- The flow of protons to be in the radial direction everywhere, in a flux tube which 
is locally symmetric (except for the spiral angle of the magnetic field at large distances), 
and whose cross section is given by 

a(r) = f~(r)(r/Ro) 2, (1) 

where fa(r) contains the 'superradial' divergence of the flux tube and is parametrized 
in the form (Kopp and Holzer, 1976) 

f a ( r  ) = f m  e( . . . .  )/~rl + A (2) 
e (r-rl)/al "~- 1 
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For the p-a-e-plasma, the problem is now to determine the eight unknown profiles 

np,  n~, n e (densities), 
up, u~, Ue (velocities), 
T (temperature), 
E (electric field). 

This can be done by using the 
- continuity equations for all species (3 equations); 
- momentum equations for all species (3 equations); 
- condition of charge neutrality (1 equation); 
- energy equation for the bulk flow (1 equation). 

From these, together with appropriate boundary conditions, the profiles can be 
determined in principle. However, the energy equation poses some problems: 

What should be specified for the electron heat flux ? 
How can we describe the energy source, which we have to include if we want to model 

the region of the coronal temperature maximum ? 
These problems can be circumvented, if we do not use the energy equation, but 

prescribe instead one of the profiles: In the present work this will be the electron density 
profile, which will be fitted to observed electron densities, for which a wealth of data 
exists. The temperature is then in principle determined by the pressure balance in the 
momentum equations. 

This procedure has been used, e.g., by Munro and Jackson (1977) and gives the 
correct temperature profile, provided our momentum equations are complete. 

3. Equations for Minor Ion Charge States 

The continuity equation which describes the evolution of charge states of a minor species 
is 

dne - n e ( q i -  1h i -  1 - ~ i -  1hi - qeni + c~ini+ 1) .  (3) 
d t  

(i = 0, . . . ,  Z; ni, density of charge state X e+; q;, ionization rate from X '+ to X (i+ 1~ + ; 
~;, recombination rate from X (i+ 1)+ to X '+ ; Z, atomic number of the species in 
question.) For the case i = 0 (neutral), respectively i = Z (fully ionized), the first, 
respectively the last two terms of the fight-hand side of Equation (3), have to be omitted. 

For a stationary flow in the flux tube geometry described above, Equation (3) can be 
transformed into a more convenient form by introducing dimensionless fluxes 

niui 
Yi = - -  (4) 

niui 
i 

and with our assumption of equal velocity u for all charge states of one species Equation 
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(3) becomes 

u dyi  = ne[q i_  l Y i -  1 - ( ~ -  x + qi)Y~ + ~iYi+ 1]" 
d r  

(5) 

In the limit u ~ 0 the equilibrium of charge states is given by 

Yi+ 1 _ qi , (6) 

Yi ~i 

whereas for ne ~ 0 the charge states become frozen-in: 

dYe �9 O, Yi--* const. (7) 
dr 

The values of the ionization and recombination coefficients q,. and ~; as functions of 
(electron-) temperature are taken from Shull and Van Steenberg (1982). 

H and He can always be assumed to be fully ionized in the range of temperatures and 
densities considered, so that charge state calculations only apply to minor ions heavier 
than helium. 

To calculate minor ion charge states, we thus need to know rt e and T (contained in 
qe and ~;) as well as the minor ion velocity u, which in turn depends on n, T, and U of 
the major components. 

4. Equations for a Proton-Electron Model 

For simplicity, we first present a one-fluid model in which a-particles are treated as 
minor ions. The equations for the main gas (with Tp = T e = T )  are then: 

and 

np = n e = N (charge neutrality), (8) 

~/p = g e  ---- U (zero current), (9) 

1 d 
a d r  ( a N U )  = 0 (continuity), (10) 

m N u  d U__ = d P  G M m N  d P  w 
(momentum). (11) 

d r  d r  r z d r  

(rip, Re, Up, Ue, density and radial velocity of protons and electrons; P, pressure of p - e  

gas; G, gravitational constant; M, solar mass; m, proton mass; r, radial distance from 
the Sun; Pw, wave pressure.) 

Equation (10) has the integral 

a N U  = F = const. (12) 

By specifying a flux tube geometry a( r ) ,  a density profile N ( r )  - obtained from 
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measured electron densities - and the flux F, the velocity U(r) as well as dU/dr can be 
calculated. Inserting this, and 

P = 2NkT, 

into Equation (11) yields a differential equation for the temperature: 

dT 1 dN m u d U  GMm 1 dPw 
- -  + r - ( 1 3 )  
dr N dr 2k dr 2kr 2 2Nk dr 

An expression for the wave pressure as a function of U (but not T) will be given below. 
Setting 

r - * o  ( r ~ )  (14) 

as a boundary condition, Equation (13) is integrated to give T(r). The integration is 
simplified by choosing x = R U t  as independent variable. The infinite interval [Ro, oo) 
in r then transforms into [0, 1] in x. 

4.1. W A V E  P R E S S U R E  

For the wave pressure we use an expression for nonresonant, undamped Alfv6n-waves 
in the WKB-approximation (cf. Dewar, 1970; Belcher, 1971; Alazraki and Couturier, 
1971; Hollweg, 1974). The wave pressure is 

fiB 2 
Pw = - - ,  (15) 

8~ 

where 3B is the fluctuating part of the magnetic field. Conservation of wave action 
implies (cf. Hollweg, 1974; Jacques, 1977) 

(U + Va)ea ~B 2 
= const.,  (16) 

where V A is the radial Alfv6n speed 

Br 
VA = 4 ~ p "  (17) 

At the coronal base we have U ~ V A, thus 

VAa ~B 2 = const. = 47rfwo, (18) 

where fwo is the wave energy flux entering the corona from below. The acceleration due 
to waves, 

1 
a w = ~Tp~,, (19) 

mN 
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is then given by 

aw _ fwo (3U + VA)UV A __dU + _ da] e,.. (20) 
4mF (U + VA) 3 dr a dr,/ 

4.2 .  P A R A M E T R I Z A T I O N  OF THE DENSITY PROFILE 

We parametrize observed electron density profiles by 

Ro 
N(x) = ~ cjx b', x = - - ,  (21) 

j r 

where the bj are positive, but not necessarily integer. Writing bmi n for the minimum value 
of the bj, it can be shown (for Pw = 0) that T diverges asymptotically for x -+ 0 if 
bmi n > 2. On the other hand, bmi n < 2 gives a decreasing velocity for r + c~. Thus we 
will always take brain = 2. The other remaining exponents bj are chosen such that a given 
set of electron density data can be well approximated with a minimum of terms in the 
sum, and generally such that all coefficients cj are positive (to avoid oscillations). The 
cj are determined by a least-squares fit to a set of data points. 

Since coronal electron density observations are usually restricted to r < 5-10 Ro ,  the 
coefficients of the lowest powers of x (usually x 2 and x 3) in the sum (21) are not well 

determined by the fit. The extrapolation of the density profile to infinity can be made 
unique, however, by also prescribing the density at 1 AU (nAU), together with the fact 
that n e ~ x 2 for x-+ 0 (r--+ o o) as discussed above. 

A model is thus determined by: 
- the choice of a geometry a(r) (parameters f , , ,  r~, ~1); 
- a coronal electron density model given by a set of data points and nAu ; 
- the particle flux F; 

- specification of Pw (parameters fwo and Bo). 
Having chosen a(r) and a set of coronal electron density data, and neglecting Pw in 

the case of the low-speed solar wind, the remaining free parameters are nAU and F. These 
two parameters influence mainly the model-properties at large distances, and they are 
chosen such that the observational values of the solar wind properties at 1 AU are 

matched, i.e., 

UAU = 300 - 400 km s -  1, TA U r~ 105 K (~-- (Zp "b Ze)/2 ) 

for the low-speed solar wind. 

5.  M o m e n t u m  E q u a t i o n  f o r  M i n o r  I o n s  

The momentum equation for minor ions contains terms additional to those in the 
equations for the main gas, describing interactions between major and minor ions. These 
additional terms are: 

- an electric force due to the charge separation electric field; 
- momentum transfer between the main gas and the minor ions in the form of: 
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(a) friction, if the velocities of major and minor ions differ, and 
(b) heat flow interactions in the collision term, which cause a thermal force if the 

distribution functions are asymmetric due to the presence of temperature gradients 
(thermal diffusion); 

- rotational forces, caused by the nonradial magnetic field in the solar wind, and 
- momentum transfer between charge states due to ionization/recombination. (This 

does not enter into the equations in the case studied here, since we assume the velocities 
of all charge states of one species to be equal.) 

The equation of motion for an ion of mass A m  = Amp,  charge Z,:e, density nx, velocity 
u, partial pressure Px = nxkT  is then 

Amnx(u" g)u = - ~Tp~ 
GMAmn x 

r 2 
e, + Z~en~E* + 

+ F~ + F t + F, + Fw, (22) 

where E* is the effective electric field, 

u - U  
E * = E + - - •  

C 

Fc the force density due to Coulomb friction, F t the thermal force density, F, the 
rotational force density and F w the wave force density. 

For the electric field E we take the charge separation electric field obtained from the 
electron momentum equation by taking the limit m e - *  0: 

1 
eE = - - -  ~7pe. (23) 

/7 e 

An additional electric field caused by the thermal force on electrons, which enters 
Equation (23), will be taken into account in the thermal diffusion coefficients of ions. 

Coulomb friction with protons is given by 

with 

Fc-4rce41n(A)npZZx= k T  I ~SP~ G(Xxp)' 

yxe= ( /Zxe ~I/2 lAuxe[ ' 

(24) 

Allxi = U i - U x ,  (25) 

eft(X) - X eft'(X) 
G(X) = (26) 

2X 2 

(cf. Burgers, 1969). For the Coulomb logarithm, we take the constant value In(A) = 21. 
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The thermal force, caused by heat flow interactions, is 

�9 5kT Pi 

H(X) = (1 - 2X 2) e - x2, 

(27) 

(28) 

see Burgers (1969) and Salat (1975) for the velocity dependent part H(X). V~p is the 
Coulomb collision frequency (cf. Schunk, 1975), the summation is over i = p, e (all main 
gases, in general), #~; is the reduced mass and p the mass density of the species in 
question. 

In what follows, we will use the expressions for the heat fluxes in a collision dominated 
plasma. Since the thermal force will later turn out to be important near the coronal base 
only (mainly due to the strong velocity cutoff in Equation (28)), this should be a 
reasonable approximation. In a collision dominated plasma, the heat fluxes can readily 
be calculated, and are proportional to the temperature gradient (cf. St. Maurice and 
Schunk, 1977). For electrons the argument of the function H(Xxe ) is always very small 
and, hence, H(Xxe ) always very close to unity. There results 

dT 
F t = nxk(c~xpH(Xxp ) + ccxe)~ r cos q0 e~; (29) 

C~xp and 7xe are the well-known thermal diffusion coefficients, 

1 5 . ~ (  A ,~3/z I 27 ] 15(A+1)  
C~xP- 8 ~ :  Z2x 1 -  - , 

30A 2 + 16A + 13 30A 2 + 16A + 13 

(30) 

15 x ~  (2  2 _ Zx), (31) 
:~xe 13X/2+ 8 

for the case at hand (see Schunk and Walker, 1969; St. Maurice and Schunk, 1977). 
The term proportional to - Zx in (31) takes into account the electric field caused by 

the thermal force on electrons, which has been neglected in (23), el is a unit vector 
pointing in the direction of the magnetic field, q~ is the angle between the radial direction 
and the magnetic field. In deriving Equations (27), (28), and (29) we have taken into 
account the fact that in the solar wind all heat fluxes and velocity differences are always 
parallel (or antiparallel) to the magnetic field. 

We have also neglected the (small) contribution of speed differences to the heat fluxes, 
which would result in a correction factor of the drag term. There remains, however, the 
question whether the heat fluxes derived for a collision dominated plasma really apply 
(cf. Hollweg, 1976; Ogilvie and Scudder, 1978; Feldman etal., 1979; Scudder and 
Olbert, 1979a, b; Cuperman etal., 1980, 1981b). As of today, there is no generally 
accepted formulation for the collisionless heat fluxes (partly for this reason we have 
avoided to use the energy equations, cf. Section 2), so we use the collisional heat fluxes, 
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but introduce an ad hoc cut-off factor 

f ,  = e - (~eem')~ (32) 

into Equation (29) ('~ee, m e a n  free path of electrons between collisions, Spitzer, 1956; 
H~, temperature scale-height), which is ~ 1 when 2~ ~ H~ and prevents the thermal 
force from being excessively large when the (smaller) collisionless heat fluxes apply. 
Although an exact treatment of collisionless heat fluxes would be highly desirable, even 
more so with regard to the energetics of the solar wind, it would not qualitatively change 
the results presented in this study as far as the thermal force is concerned, since besides 
the factor (32), the velocity dependence of the thermal force (Equation (28)) provides 
a very strong cut-off in the trans- and supersonic regions as well. 

The rotational forces are produced by solar rotation, which winds up the magnetic 
field into a spiral (at large r). We take into account the magnetic and inertial forces (from 
(u - U) x B and (u. ~')u) as worked out by McKenzie et al. (1979). The only difference 
to their momentum equation is, that we have included the thermal force, and that we 
insert f2 = f2(r) for the relative angular velocity of the Sun as seen from the local 
eigensystem &the solar wind (so that f2(r ~ oo) ~ f2 o = const.). The radial acceleration 
due to rotational forces results as 

w 2 f2r d ~(Or_ U 
- -  + - -  - -  ( w r ) ,  w = - u ) ,  (33) 
r U d r  U 

w is the azimuthal component of the minor ion velocity, U and u are the radial velocity 
components of the main and minor species, and f2(r) is given by (Weber and Davis, 
1967) 

O(r) - (1 - r2A/r 2) sin 0, (34) 
( 1 -  V~/ U 2) 

(rA, Alfv6n-radius). Compared to the radial case, we also have an additional factor 

~2r2 1 
1-t 

U 2 c o s  2 ~o ' 

by which the radial components of the drag and thermal forces are multiplied. 
It should be noted that what we call 'rotational forces' does not include the centrifugal 

force, in order not to introduce an extra singularity (at r = rA) into the main gas 
equations. The term Fr in Equation (22) is in fact zero, and written only for a symbolic 
reason, since all the rotational forces arise from the inertial and magnetic terms. 

The wave forces for Alfv~n waves (as specified in Section4.1) have also been 
calculated by McKenzie et al. (1979). Their result for the (nonresonant) acceleration is 

=, .2]ler ' aw [(u+ vA) (35) 
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which becomes equal to (20) for the proton main gas. B r is the radial component of the 
magnetic field, 

Bo 
B~(r) - a(r)" (36) 

The equation of motion can now be written for each charge state. By summing up 
the equations for the charge states of a given species, using the assumption of equal 
velocity, and introducing the mean values 

Z = S nx(r)Z~,  Z 2 - ~" "x(r)Z2 , (37) 
~,n~(r) Zn~(r) 

the radial equation of motion for minor ions then finally becomes 

16. I ( 
u drr u2 1+ - ~  + B~(U + VA) 2) - ~ m  = 

k d T  k T  1 da GM Ze 
- + + E r+ 

Am dr Am a dr r 2 A m  

1 4xe 4 ln(A)np Z 2 
- -  G(Xxp ) + 

cos q~ mk T A 

dT k [ ~H(X~p)  + + 
Am ~xe l drr f~ 

o2r2[ 2u2 16o 
- -  + u ( U -  u ) -  - -  + - -  + 

+ U 2 r I2 dr U 

+ 
Bo ~ ~ 1+ 

(3u + vA) ) 
U 2 + 

(u + v,,) ~ 

+ - -  1 u 2 �9 ( 3 8 )  
a dr (U + VA) 2 

We have expanded the derivatives in Equations (33) and (35), since the complete 
momentum equation has to be solved numerically. 

The procedure for numerical integration is iterative: to start, we assume u(r) --- U(r), 
solve (5) for the charge states yi(r), then use these solutions to calculate Z(r),  Z2(r) 
which are used to get a new u(r). The two steps are repeated until the solutions have 
sufficiently converged to bu/u < 10-4, which is usually the case after 3-4 iterations. 

A method developed by Beutler (1979) is used for all numerical integrations, its details 
are described by BOrgi (1984). 
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6. Low-Speed Solar Wind: Results for the One-Fluid Model 

Our aim is to present a model for the low-speed solar wind, i.e., with 
U(1 AU) = 300-400 km s - 1 and T(1 AU) -~ 105 K, using the procedure described in 
Sections 2 and 4. 

For the first set of models (Model 1, 1A-1D), we use the ne-data obtained by Saito 
(1970) for the quiet equatorial corona at solar minimum. For the basic model (Model 1) 
we take nAu = 10 cm-  3. We also fit two other sets of coefficients to the same coronal 
densities using nAu = 8, respectively, 12 cm-3  (Models 1A and 1B). The resulting 
density profiles are shown in the top panel of Figure l(a). Next we decide to use a simple 
radial geometry, neglect wave pressure, and determine the particle flux by requiring that 
the velocity at 1 AU be 360 km s - 1. For comparison, we also calculate models with 
U(1 AU) = 330 and 390 km s - a (Models 1C and 1D), using the density fit of Model 1. 
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(a) The one-fluid ( p - e  gas) model for the equatorial background corona. Solid line: Model 1 ; 
broken lines: variations of boundary conditions at 1 AU (Models 1A-1D). The adopted n e profile is a fit 
to the data points of Saito (1970). Also shown are data points (MEA 77) that were calculated from an 
analytical fit given by Muhleman et al. (1977). These data are for the equator only for r > 10 Ro, where they 
agree well with our extrapolation. (h) Comparison of one fluid models for the minimum corona (Model 1, 
solid line), a coronal streamer (Model 2, long dashes), and a coronal hole (Model 3, short dashes). Data 
points are for streamer Ba of Saito (1972), the polar corona at solar minimum (Allen, 1973), and an 

equatorial coronal hole (Salto et al., 1977, SPM 77). 
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The parameters of these, and models described below are summarized in Table VII at 
the end of the paper. 

The temperature profiles resulting from Equation (13) are shown in the bottom panel 
of Figure l(a). The main features are the following: below r - 2 R o the model tempera- 
ture is insensitive to our choice of parameters. The maximum temperature (at 1.25 Ro) 
is only 1.23 x 106 K. This can easily be understood from Equation (13): in the subsonic 
region we have 

2kT 
U 2 ~ . - -  

m 

and also, since except in the transition region the temperature varies much more slowly 
than the density, 

l d T  l d N  

T dr N dr 

Equation (13), therefore, reduces to an algebraic equation for T: 

- - _ _  f l  "~aN - 1  

T~- GMmlN~drl2kr 2 \ ]  . (39) 

The temperature (in the subsonic region) is thus entirely determined by the slope of the 
density, and is insensitive to the choice of our free parameters nau and F, as well as 
to the geometry of the subsonic region (although the extent of the latter region is of course 
affected by these parameters). 

In the trans- and supersonic region, the temperature increases when U(1 AU) is 
increased, which is to be expected in a thermally driven model. Increasing nAu, on the 
other hand, decreases the temperature at 1 AU. 

A probably artificial feature of all profiles is the existence of a secondary temperature 
maximum near r = 4-5 Ro, i.e. in the main acceleration region of these models (cf. the 
middle panel of Figure l(a)). This feature gets more pronounced, with increasing nAU 
or U(1 AU), i.e., increasing flux F. Structures with two temperature peaks have also 
been found by Sittler (1978) in a similar model. These secondary peaks always appear 
in the region where we have extrapolated the ne-data. Since our aim is mainly to model 
the inner corona, we shall not be concerned about the physical significance of these 
secondary peaks. 

Regardless of the choice of the boundary conditions, we obtain maximum tempera- 
tures much lower than coronal temperatures inferred from spectroscopic and solar wind 
charge-state measurements. Table I summarizes some of these determinations: it can 
be seen that the freezing-in temperature of oxygen ( 0 6 + / 0  7+ ) should be around 
Tf = 1.6-1.8 x 10 6 K, which is a well determined average, but from our model we cannot 
expect a freezing-in temperature which is higher than the maximum temperature. In fact 
the solution for velocity and charge states of oxygen in Model I gives 
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TABLE I 

Determinations of coronal temperatures 

359 

Authors T/106 K Remarks Method 

Fort et aL (1972) 1.95 Tm~x at r = 1.23 R e Fe xIv green line 
Bame et al. (1974) 1.7-2.5 Tm~x at R e Freezing-in temperatures 

1.84 + 0.13 mean value of 0, Si, Fe 
Ogilvie and Vogt (1980) 1.6 + 0.2 Low speed S.W., Freezing-in temperature 

mean value 06+/0 7+ 
Withbroe et al. (1982) 2.6 r = 1.5 R e H Lc~ Doppler width 

1 .2  r = 4 R o 

Kunz etal .  (1983) 2.13-2.45 Three selected Freezing-in temperatures 
1.94-2.12 periods, low 
1.66-1.75 speed S.W. 

Bochsler (1984) 1-2.5 Freezing-in temperature 
1.7 Mean value 0 6 +/07 + 

Zf (O6+/O 7+) = 1.13 x 106 K only. The radial  evolution o f  carbon  and oxygen charge 

states in Mode l  1 is shown in Figure 2. I t  can be seen that  the charge states remain  near  

equilibrium around  the temperature  max imum and freeze in only at -~ 1.5 R e .  
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Fig. 2. Development of charge states of carbon and oxygen in Model 1 (minimum corona, one fluid). 
Dashed lines correspond to equilibrium values at local temperature. The low temperature of Model 1 gives 

charges that are significantly lower than those usually.qbserved in the low speed solar wind. 

Since our first model  turns out to be unrealistic,  we have to find out  whether  the 

reason for this is incomplete  physics,  or  whether  it is the wrong choice of  the densi ty 

model  for the source region of  the low speed solar wind. 

We will first explore the second possibili ty.  Figure 3 shows several sets of  coronal  

electron densities.  Three groups can clearly be dist inguished:  (a) the quiet background  
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Fig. 3. Comparison of measured electron densities for the background corona, coronal streamers, and 
coronal holes. Some of the 'data points' have been calculated from analytical expressions given by the 
respective authors. Data are for the equatorial background corona at solar maximum (Allen, 1973), the 
equatorial background corona at solar minimum (Allen, 1973, Saito, 1970), three different coronal streamers 
(Koutchmy, 1972; Saito, 1972), the polar corona at solar minimum (Allen, 1973), the polar coronal hole 
(MJ1) and its extension to ~ = 45 ~ (MJ2) by Munro and Jackson (1977), and the polar coronal hole of 

Koutchmy (1977). 

corona with average densities, (b) coronal streamers, and (c) coronal holes. The latter 
two have densities which are about an order of magnitude larger (b) or smaller (c) than 
the quiet background. For both streamers and coronal holes the ne-profiles seem to be 
flatter than for the background corona, which indicates a higher coronal temperature 
(see Equation (39)). 

Coronal holes are associated with high speed solar wind (cf. Krieger et al., 1973; 
Nolte etal. ,  1976; Sheeley et al., 1976; Bame etal. ,  1977) whereas the signature of 
streamers in the solar wind is low speed, very high density, unusually low nJnp,  and 
association with reversals of the magnetic field (Borrini et al., 1981; Gosling et al., 1981). 
Furthermore, both types of structures deviate significantly from radial geometry. Since 
the average low speed solar wind could originate in the surroundings of either coronal 
holes or streamers, where the nonradiality is less pronounced, but the density is still 
significantly different from the average quiet corona, we fit a profile to one representative 
of each group, and use a simple radial geometry to facilitate comparison with Model 1. 

Model 2 is fitted to the density of streamer B 2 from Saito (1972), the streamer nearest 
to the equator in that work. To extrapolate the high densities to large distances, we 
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choose a relatively high/'tAU of 15 cm-  l, and a low UAu of 300 km s - ], in order not 
to get an excessively high secondary temperature peak. The profiles for N(r), U(r), and 
T(r) in Model 2 are shown in Figure l(b). The maximum temperature is in fact higher 
(1.57 • 106 K) than in Model 1, but is still too low compared to the observed freezing-in 
temperatures at t AU. The situation for charge states has not even improved, as 
Figure 4 shows for C and O: the temperature maximum is very near to the Sun, and 
the temperature falls off rapidly beyond (a feature which is insensitive to boundary 
conditions). Due to the high densities the charge states freeze-in at larger distances than 
in Model 1, i.e., at even lower temperatures, leading to a freezing-in temperature of only 
0.99 x 106 K for 0 6 + / 0 7 + .  
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Fig. 4. Charge states of carbon and oxygen in Model 2 (streamer). Due to the high density and steep 
temperature gradient of this model the equilibrium (dashed lines) is followed out to low temperatures, and 

frozen-in charges are again too low compared to observations. 

Model 3 is fitted to the data for the polar coronal hole of Allen (1973), which covers 
the largest radial range of the available coronal hole data. Since equatorial coronal holes 
are about twice as dense as polar ones (Saito et al., 1977), we have then doubled the 
ne-fit obtained. Parameters of Model 3 are nAU = 6 cm - 3 and UAU = 400 km s - 1, the 
resulting profiles are included in Figure l(b). The maximum temperature (1.54 x 106 K) 
is again higher than in Model 1, but it is reached quite far from the Sun (at 3.2 Ro). This, 
together with the low density, is again problematic for minor ions: the proton drag, 
which goes roughly as 

tip U T -  3/2, ( 40 )  

is very small near the temperature maximum. The upper panel of Figure 5 shows the 
topology of the solutions for the velocity of 0 6 +. There are three critical points, and 
the solution goes through the outermost one. The steady state velocity in the corona is 
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Fig. 5. Solution topology for the velocity of the ion 0 6 + (with fixed charge) in the coronal hole Model 3 
(upper panel) and in Model 1 (lower panel). In the coronal hole case there are three critical points, and the 
solution goes through the outermost one. This solution has such low velocity in the lower corona, however, 
that the time required to build up the steady state is far longer than the lifetime of coronal structures. There 
is no such problem in Model 1 (lower panel), where the solution goes through a critical point near the Sun, 
even though two additional critical points which have not been resolved may exist in the region 15-20 R e. 
Dashed lines correspond to the proton speed and to the critical velocity for which the left-hand side of 

Equation (38) becomes zero. 

practically zero, so that we have to interpret this as the absence of  oxygen from the solar 

wind, because a solution of  this type would require far longer times to reach steady state 

than times over which coronal features exist. The situation might be changed if there 

were another force contributing to the acceleration o f  oxygen near r ~ 3 -5  R o, e.g., 

waves. But waves would also contribute to the pressure, and since we derive the model 
temperature from the pressure balance, the presence of  waves would again lower the 

model temperature. For  comparison, the lower panel of  Figure 5 shows the same 

topology for Model  1, where the solution goes through a critical point near the Sun. 

Thus we have to reject both Models 2 and 3. Since the exploration of  alternative 

density models has led to no improvement in the reproduction of  coronal and oxygen 

freezing-in temperatures, we now investigate the second plausible cause for this failure, 

i.e., incomplete physics of  our model. 
We have to improve either (a) the calculation of  charge states, (b) the minor ion 

dynamics, or (c) the model for the main gas (or all of  them). 
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Regarding (a), an obvious shortcoming of the model is that our ionization and 
recombination rates are based on Maxwellian electron distributions. As has been shown 
by Owocki and Scudder (1983), tails in the electron distribution functions would lead 
to stronger ionization especially of the pair 0 6 §  7 +. These tails, however, are likely 
to be more pronounced in regions of low density (i.e., coronal holes), and less so in the 
high density regions from where we suspect the low speed solar wind to originate, where 
electrons are collision dominated and therefore more nearly Maxwellian. 

As regards (b), our assumptions of equal velocities for all charge states of an element 
might be in error. As has been shown by Owocki (1982) and Owocki et aL (1983), this 
would again influence the frozen-in charge states. We will therefore check the relevance 
of unequal ion speeds for a particular example. 

Under the diffusion approximation (neglecting thermal diffusion) the speed differ- 
ences can be approximated by 

2 A - Z - 1  
U -  u x ~ (41) 

Z z 

(cf. Geiss etal., 1970). In the freezing-in region of Model 1 (r = 1.5 Ro)  we have the 
speed u 6 of 0 6 +, 

u6_ u = 0.583. (42) 
U U 

u 6 ----- U since we have relative abundances of 95 ~o 0 6  + and only 4.5 ~o 07 +. Evaluating 
the speed of 0 7+ (UT) from Equations (41) and (42) we find 

U7 = 1.35. 
U6 

For the case of unequal flow speeds the relation (6) for the frozen-in fluxes would change 
to 

Yi  + l Ui + l qi 

Y~ ue ~i 

(cf. Owocki et al., 1983). The ratio of fluxes would therefore be lifted by an estimated 
35~o, but we would still have less than 6~  of 0 7+ compared to the -~25~o required 
for a freezing-in temperature of 1.7 • 106 K. 

Even if the mechanisms of (a) mad (b) should be more pronounced (e.g., in regions 
of low density), there remains still the fact that coronal temperatures derived from 
spectroscopy (see Table I) are much higher than those resulting from our model. 

Therefore, we consider case (c) and look for possibilities of lifting the model 
temperatures by improving the physics of the main gas. We repeat Equation (39), 

GMm ( 1 d N ) -  I 
T -  ~ \ N  ~-r (subsonic region). 
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Apart from the density profile, only fundamental constants appear in this equation. An 
additional force acting on the gas, however, would be equivalent to a change of G (the 
measure of the retarding force). To increase T, the additional force has to be directed 
towards the Sun, a requirement which rules out the most popular candidate for an 
additional force in the solar wind, i.e., momentum transfer from waves propagating 
away from the Sun. Changing the geometry of the flow tube would not help either, since 
this only produces additional inertial forces which cannot contribute substantially 
enough in the subsonic region. 

There seems to be just one likely candidate of a retarding force other than gravitation: 
the friction from a-particles slowing down the p-e main gas (see Noci and Porri, 1983). 
Up to now we have treated a-particles as minor ions with n~ = 0. Evidently we now have 
to drop this assumption and construct a two-fluid model with n~ > 0 for the a-p friction 
to have an effect on the protons. 

We can look at Equation (39) from another viewpoint: the factor m/2 is the mean 
mass per particle in the one-fluid model. Including a finite abundance of c~'s in the 
effective mass, we get 

1 + 4nJnp 
T ,-~ ~ = m (43) 

2 + 3nJnp 

According to this, we need nJnp ~ 0.25 to raise T from 1.25 to 1.8 • 106 K. This is not 
unrealistic in the corona, where U~ may be much smaller than Up (see Figure 6) and 
helium is correspondingly enhanced (in the steady state). 
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Fig. 6, Velocities for protons, He, C, O, Mg, and Si in the one-fluid Model 1 (minimum corona). In the 
steady state the large relative lag especially of He behind H implies a corresponding enhancement of density 

ratios in the corona. 
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Finally we note that our one-fluid model is not the only one which fails to reproduce 

high values for both coronal densities and temperatures together with reasonable 
boundary conditions at 1AU (i.e., n A u _ 1 0 c m - 3 ) .  Thus, e.g., one finds 
Tm~ x = 1.75 X 106 K, but only N(Ro) = 3.85 x 106 cm-3  in the one-fluid model of 
Cuperman et al. (1972), or Tm~x > 2 x 106 K but N(Ro) < 2 x 106 cm - 3 in the models 
of Steinolfson and Tandberg-Hansen (1977), and Tin, x > 2 x 10 6 K, 

N(Ro) < 2 x 107 cm -3 in the two-fluid models of Couturier (1977). 

The results of simultaneous calculations of the charge states and velocities of minor 
ions lead to strong constraints on models for the main gas and point to the inadequacy 
of the one-fluid approximation. 

7. The Two-Fluid Model 

The term 'two-fluid model' is not used here in its usual sense, i.e., a p-e  model with 
Te # Tp. Instead we use it for ap-c~-e gas with equal temperatures, but different speeds 
for the species, because we solve two momentum equations (for p and a). 

7.1. MODIFICATION OF THE EQUATIONS FOR THE TWO-FLUID MODEL 

The main modification to be made for taking into account a finite abundance of helium 
is to introduce two additional terms describing the collisions of ions with helium: one 
for dynamical friction and the other for the interaction with the a-heat flux. Dynamical 
friction with helium is given by Equations (24) to (26), provided the index p is changed 
to an index ~ and Zx 2 to 4Z~ in Equation (24). The thermal force is still given by Equation 
(27), but the summation has now to be over i = p, ~, and e, and Equation (29) is replaced 

by 

dT  
F t = nxk[O~xpH(Xxp ) + O~x~H(Xx~ ) + O~xe ] ~rCOS cpe 1 . (44) 

In the calculation of the heat fluxes for deriving (44) from (27) we use again the 

procedure outlined by St. Maurice and Schunk (1977) and we neglect all dependencies 
of the qi on Up - U~. This is justified since (a) the main effect of the thermal force is 
to be found low in the corona, where the diffusion approximation is valid, and (b) at 
large distances we have nJnp ~ 1, so that the correction is again small. Even so, the 
thermal diffusion coefficients are now complicated functions of n~/np. They were given 
by B0rgi (1984) and will not be repeated here. 

After inserting these two additional terms into Equation (38) we have the momentum 
equation for the two major as well as the minor ions in the two-fluid model, provided 
that U is reinterpreted as the bulk velocity of the two main gases and that the total mass 
density is used in the calculation of VA. To keep the calculations tractable, howeyer, 
we still use U and VA as in the one-fluid model for the wave and rotational forces. These 
forces are of importance mainly near and beyond the Alfv6n point, and as long as 
n~/np ~ 1 in this region the error introduced by this simplification is small. 
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7 .2 .  N U M E R I C A L  P R O C E D U R E  FOR THE T W O - F L U I D  M O D E L  

The differential equations to be solved to obtain a solution for the two-fluid model are 
the two momentum equations for p and a, which we solve for T and U~. In addition 
we have a continuity equation for each species and the condition of charge neutrality 

np+ 2n~ = he, (45) 

which are used to derive Up from U~, Fp, and F~. The latter, 

F~ -- a(r)n~U~, (46) 

is an additional integration constant of the two-fluid model, and can be prescribed in 
terms of F~/Fp. Usually we take the canonical value F~/Fp = 0.04. 

The method of solution is again iterative: we start with the one-fluid model for T and 
U~ and then iterate: solutions for U~ (and Up) starting at the a-critical point, using T 
from the previous solution, and solutions for T from the proton equation starting at 
x = 0 (r = oc) using the previously found U~ and Up. 

The iteration is stopped when the solutions have converged to better than 0.5~.  
This cycle does not converge for every value of F~/Fp, however, but generally does 

so if the maximum nJnp is smaller than unity, which also seems a physically realistic 
upper limit. The mathematical reason is that the coupled system of the momentum 
equations has singular points which differ from the pure p- or a-critical points (see 
Metzler and Dryer, 1978). The problem is illustrated by the hypothetical case of a pure 
a-solar wind (np/n~ -- 0): the role of the two momentum equations has to be inter- 
changed, i.e., the a-equation solved for T and the p-equation for Up. 

p-e and p-a-e models with the same electron density profiles cannot have equal Up 
and Fp simultaneously, since helium also contributes to the electrons. To make models 
comparable, we use for the proton flux of the two-fluid model 

Fp = Fpl 1 - - ~ - / ,  (47) 

where Fpl is the proton flux in the corresponding one-fluid model. Corresponding 
models have then roughly equal proton speeds at 1 AU (cf. Table VII). (Up would be 
exactly equal only for Us = Up at 1 AU.) 

7.3 .  N O N S P H E R I C A L  GEOMETRY 

We have found it necessary to introduce a nonspherical flux tube geometry for the 
following reasons: 

(1) Since part of the corona is filled with closed magnetic structures, open magnetic 
structures have to expand superradially near the Sun. 

(2) Near the temperature maximum, the ratio Up/U~ can become very large, particu- 
larly in the two-fluid models which have higher temperature and thus less proton friction 
than the one-fluid models. Unreasonably large values of n~/np around r(Tma• can be 
avoided if the flux tube is superradial in this region, as has been extensively discussed 
by Joselyn and Holzer (1978). 
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(3) Given the same boundary conditions at 1 AU, nonspherical geometry increases 
the velocity at R e from Up ~ 0.33 km s - ~ (in Models 1, 1A-1D) to higher values. With 
f m >  3 (Equation (2)) values Up > 1 km s - 1 are obtained, which are probably more 
representative of flow velocities in the low corona. 

7.4. I N F L U E N C E  O F  F I N I T E  H e - A B U N D A N C E  

We have calculated models corresponding to Model 1 (minimum corona), with the 
exception of the geometry for which we chose the parameters 

f,,, = 3, ~1 = 0.3 R e ,  r 1 = 1.0 R e (48) 

(cf. Equations (1) and (2)). We have varied the flux ratio F~,/Fp from 0.00 to 0.05 in steps 
of 0.01. The resulting temperature profiles are shown in Figure 7(a). The temperature 
in the corona increases with increasing F=/Fp as expected (of. Equations (39) and (43)), 
whereas T at large distances decreases. For F=/F v = 0.04 the maximum temperature is 
2 x 10 6 K at r --- 1.3 R e ,  so that the chances for obtaining the observed charge state 
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Fig. 7(a-b) .  (a) Influence of finite e-abundance on the main gas model for the minimum corona. The 
electron density (top) is the same as in Model 1. The ratio F~/Fp has been varied from 0.00 to 0.05 in steps 
of 0.01. The proton velocity and the coronal temperature increase with increasing helium flux whereas the 
temperature at 1 A U  decreases. (b) Effect of variation of boundary conditions at 1 A U  on Model 4 
(minimum corona, FJFp = 0.04). Solid line: Model 4, broken lines: Models 4A-4D.  For values of parame- 

ters see Table VII. 
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distributions are greatly improved. Another effect of the finite He abundance is that the 

secondary temperature maximum flattens out with increasing n~,/np. 

8. The Adopted Two-Fluid Model: Model 4 

We now carry out the same variation of parameters U and n e at 1 AU (cf. Table VII) 
as for models 1, 1A-1D and call the corresponding two-fluid models 4, 4A-4D.  These 

models all have the geometry given by the parameters (48) and FJFp = 0.04, except for 

Model 4A with FJFp = 0.02 only, which already gives n~/np = 0,72 at 1.5 R o (cf, 

Table II). 

TABLE II 

Helium enhancements and T ~ ,  in the two-fluid models 4, 4A-4D 

r/R o nJnp 

4 4A 4B 4C 4D 

1.0 0.050 0.024 0.048 0.050 0.049 
1.2 0.275 0.511 0.092 0.471 0.150 
1.5 0.454 0.722 0.185 0.688 0.298 
2 0.243 0.263 0.132 0.363 0.179 
5 0.151 0.086 0.129 0.162 0.141 

10 0.111 0.059 0.103 0.113 0.108 
215 0.049 0.024 0.049 0.474 0.050 

Tma x (10 6 K) 2.00 2.31 1.62 2.22 1.80 
npUp at 1 AU 3.31 2.76 3.98 3.04 3.59 
(108 cm -z s- 1) 

The results are plotted in Figure 7(b), the values for n~/np are summarized in Table II. 

Whereas the maximum temperature in the one-fluid model was determined solely by the 
density profile, there are now large variations is coronal temperature depending on the 

average atomic mass (cf. Equation (43)) which in turn depends on FJFp and on the 

proton flux. (The latter determines UJUp and thus nJnp .) From Table II  we can see 
that models with smaller proton flux have indeed higher maximum temperatures. The 

peak values of n~/np are in the range of 0.2-0.7 (Table II). 
Helium enhancements in the corona have been found before in calculations of Geiss 

et al. (1970; implied by their low value of uJup), by Nakada  (1970), and, to an extent 
depending on the adopted geometry, also by Joselyn and Holzer (1978). Nakada  (1970) 

used a constant temperature and found the largest enhancement of n~/np at R o . Using 
a positive dT/dr near R o ,  which allows for upward thermal diffusion of He and larger 
drag at low temperature, we find only a moderate enhancement of nJnp at R o, but a 
strong peak near r(Tmax). As has been shown by Joselyn and Holzer (1978), the amount 
of coronal He-enrichment is also strongly dependent on coronal geometry: forcing the 
solar wind through a narrow flux tube in the corona can greatly enhance frictional 
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coupling between H and He and reduce the He-enrichment. We need not repeat their 
parameter study here, but have chosen a geometry (48) which gives an appreciable, but 
not excessive He-enhancement (depending on the other parameters) and thus leads to 
a corresponding increase in the derived coronal temperature, compared to those 
obtained in the one-fluid models. 

The largest values of nJnp (Models 4A and 4C) have limited significance. We have 
integrated the time needed for 4He-ions to traverse the distance from 1 to 10 R o and 
found times as long as 28, respectively, 14 days (4A, respectively, 4C), and still 10 days 
in Model 4. Since thep- and e-velocities in the highly subsonic part are inferred not from 
the dynamics, but merely from the steady state continuity equation, these large enhance- 
ments will take correspondingly long times to build up and might never reach their 
steady state value, either due to changing conditions in the corona or due to some sort 
of turbulent mixing. 

There is no direct observational evidence for the strong He/H enhancements in 
certain coronal strata as suggested by our models. However, indirect evidence exists: 
the solar wind plasma in the driver gas of flare related shocks has high He (up to 
He/H = 0.3) and Fe contents (Hirshberg et aL, 1972; Borrini et al., 1982; Ipavich et al., 
1985), and this is interpreted (cf. Hundhausen, 1972) as reflecting an enrichment of the 
heavier elements in the unperturbed low corona. 

This question ofa He/H build-up could be clarified by the ensuing direct measurement 
of He/H as a function of coronal altitude with the Coronal Helium Abundance 
Experiment on Spacelab 2 (Patchett et al., 1981). 

Our two-fluid model shows several features which can be compared to the results for 
three-fluid p - e - e  models, except for our simplification regarding equal temperatures. 
In fact, our findings are in general agreement with the results of the three-fluid model 
of Joselyn and Holzer (1978). The main difference between their models and ours is to 
be found near the coronal base, where we find a positive temperature gradient, lower 
temperature and higher densities than these authors, and a much smaller enhancement 
of He/H over the flux-ratio. This is rather a consequence of different procedures than 
a different result, however, Joselyn and Holzer prescribed a monotonous non-increasing 
electron temperature, whereas the density profiles we used correspond to an increasing 
temperature. 

The comparison to the three-fluid models of Cuperman and Metzler (1975), Metzler 
and Dryer (1978), and Cuperman etal. (1981a) is more difficult to make: in all these 
models the transport coefficients have been modified, e.g., the p -e  friction coefficient 
has been increased by a factor of 3. As a consequence of this adhoc increase of frictional 
coupling, all these authors find much smaller coronal He/H enhancements, in fact one 

of the main conclusions of Cuperman etaL (1981a), i.e., that there are only small 
differences to be found between models with and without a finite e-abundance is quite 
opposite to our results. The tendency for the He/H enhancement to be small for strong 
collisional coupling is also reflected in our model, cf. its dependence on the proton flux 
discussed above. The approach of the authors quoted above seems to be aimed mainly 
at modelling the solar wind at large distances and reproducing the solar wind properties 
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at 1 AU: to obtain this, some modification of the collisional physics has to be allowed 
for, whereas in the present model, which intends to model the corona and inner solar 
wind mainly, we think that the no ad hoe modification of friction is necessary. 

8.1.  M I N O R  IONS IN THE TWO-FLUID MODEL:  CHARGE STATES (MODEL 4 )  

The frozen-in charge state distributions of C, N, O, Ne, Mg, and Si resulting from Model 
4 are summarized in Table III. All elements have now much higher charges than in 
Model 1 (one-fluid). The freezing-in temperature for 06+/07+ is now 1.61 x 106 K ,  

which corresponds well to the observationally determined mean values for the solar 
wind quoted in Table I. The p-c~-e model has thus been successful in reproducing this 
pair of charge states which is observationally the best determined (due to the relatively 
large abundance of oxygen), whereas the p - e  model has failed to do so. 

TABLE III  

Frozen-in charge states in the two-fluid Model 4 

Ion Relative Freezing-in Ion Relative Freezing-in 

abundance temperature abundance temperature 
(106 K) (106 K) 

C 4 + 0.03 Mg 8 + 0.03 
1.40 1.36 

C 5+ 0.24 Mg 9+ 0.13 
1.51 1.41 

C 6 + 0.72 Mg 1~ + 0.82 

N 5 + 0.27 Si 7 + 0.lg 
1.53 1.26 

N 6 + 0.48 Si s + 0.50 
1.67 1.22 

N 7 + 0.25 Si 9 + 0.04 
1.61 

Si 1~247 0.03 
1.91 

0 6+ 0.73 Si n +  0.08 
1.61 1.85 

O v + 0.25 Si 12+ 0.16 

Ne s + 0.98 

Shown are only ions with relative abundance > 2~o. The freezing-in temperatures are for the 

pairs of ions in the line above and below. 

The relative abundances in Table III reflect the stability of ions with closed electron- 
shells, especially 06 +, Ne s +, Mg 1~ +, and Si la +. It can be seen from Table III that the 
freezing-in temperature varies not only from element to element, but also between ion 
pairs of the same element (cf. the observations of Zastenker and Yermolaev, 1981). This 
is especially the case for Si, which has a broad range of charge states with two peaks 
at Si 8 + and Si 12 + with widely different freezing-in temperature. Figure 8 shows the 
radial development of the relative abundances of charge states of C, O, Mg, and Si 
together with the equilibrium values corresponding to the local temperature. It can be 
seen that the charge states follow the local equilibrium fairly well initially, so that the 
results become independent of the boundary condition imposed at R o. The secondary 
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Fig. 8. Solutions for charge states of C, O, Mg, and Si in the two-fluid Model 4. Dashed lines correspond 
to equilibrium at the local temperature. Note that all ions freeze-in in about the same region, although 

freezing-in temperatures (Table III) differ considerably. 

temperature peak around 4 R 0 shows up in the equilibrium curves, but hardly influences 
the charge state distributions which are essentially frozen-in at this solar distance. The 

case of silicon shows that the freezing-in temperature of a pair of ions sometimes has 

no correspondence at all to the local temperature in the region where the ions freeze-in: 
from TableIII one might conclude that Si 11+ and Si a2+ freeze-in very near the 

temperature maximum, while a glance at Figure 8 shows that this is not so. The 
correspondence between freezing-in and local temperature is found in cases such as 
0 6 + / 0  7+ where two neighbouring charge states are the dominant ones, but less well 

when the recombination of the two ions in a pair goes more or less in parallel, as for 
the pairs Si 11 +/Si 12+ or Si7+/Si8+. 
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8.2. MINOR IONS IN THE TWO-FLUID MODEL: VELOCITIES (MODEL 4) 

The solutions for the velocities of He, C, O, Mg, and Si are plotted in Figure 9: all ions 
are slower than the protons, which is to be expected since our model contains no force 
which is able to accelerate them to velocities greater than the proton velocity. 
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Fig. 9. 

i0 -tl i ~ I I I ~ ~ ~ - -  
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Solutions for the velocities of H, He, C, O, Mg, and Si in Model 4 (minimum corona, twoiftuid). 

Observations show that heavy ions travel as fast or faster than protons (Schmidt 
et al., 1980; Neugebauer, 1981; Marsch et al., 1982a; Ogilvie et al., 1982), the velocity 
increment is usually somewhat smaller than the local Alfv6n speed. This, and the near 
mass-proportionality of ion temperatures is attributed to some form of resonant 
wave-particle interaction (cf. Marsch et al., 1982b; Isenberg and Hollweg, 1983). Where 
exactly this takes place is yet unclear, except that it must be at r < 70 R e (the Helios 
perihelion). The theoretical work quoted above indicates that a likely range for the 
resonant wave-particle interaction to take place is r = 10-40 R e so that our results for 
smaller r should remain valid. 

In Model 4 helium is slower than all minor ions in the range 1-10 R e. Comparing 
the results of Model 4 to those of Model 1 (corresponding one-fluid model) in Figure 6, 
it can be seen that the introduction of a finite flux of helium leads to a convergence of 
the minor ion speeds towards the helium speed. Even though the helium drag is an order 
of magnitude smaller than the proton drag (around r = 10 Re), the helium drag is quite 
efficient in bundling up the minor ion speeds. 

Table IV shows the relative strength of the individual terms in the momentum 
equations for H, He, and O: while partial pressure and electric field alone accelerate 
the protons, the relative importance of the pressure decreases as 1/A and is almost 
negligible for oxygen and heavier ions. This would not be the case if temperatures were 
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TABLE IV 

Relative importance of terms in the momentum equation of H, He, and O in Model 4, normalized to 
gravity 

Element r/R o I P G E Cp C~ T R 

H 1.0 - 0.56 - 1.00 0.56 - - 0.07 - 0.04 - 
1.2 - 1.01 - 1.00 0.69 - -0.58 -0.12 - 
2.0 0.01 0.66 - 1.00 0.74 - - 0.46 0.07 - 

10 1.26 1.19 - 1.00 1.22 - - 0.14 - 0.01 - 
50 3.13 2.10 - 1.00 2.12 - -0.11 0.01 - 

He 1.0 - 0.13 - 1.00 0.28 0.38 - 0.21 - 
1.2 - 0.03 - 1.00 0.34 0.52 - 0.10 - 
2.0 - 0.23 - 1.00 0.37 0.48 - - 0.07 - 

10 0.28 0.33 - 1.00 0.60 0.32 - 0.01 0.01 
50 2.64 0.56 - 1.00 1.06 0.34 - - 0.04 1.73 

O 1.0 - 0.04 - 1.00 0.21 0.25 - 0.25 0.76 - 
1.2 - - - 1.00 0.28 1.06 - 0.91 0.57 - 
2.0 - 0.06 - 1.00 0.29 1.20 - 0.17 - 0.38 - 

10 0.26 0.08 - 1.00 0.48 0.78 - 0.03 - 0.06 0.01 
50 2.42 0.14 - 1.00 0.83 0.63 0.30 - 0.29 1.81 

I, inertia; P, partial pressure; G; gravity; E, electric force; C v , proton drag; Ca, helium drag; T, thermal force; 
R, rotational forces. 
Terms smaller than 0.01 have been omitted. 

m a s s  p r o p o r t i o n a l :  in  th i s  c a s e  t he  p r e s s u r e  for  all i ons  w o u l d  h a v e  t he  s a m e  re la t ive  

m a g n i t u d e  as  for  t he  p r o t o n s  a n d  t he  ve loc i ty  t h u s  get  m u c h  c lose r  to  Up. Since  ion  

t e m p e r a t u r e s  equ i l ib ra t e  re la t ive ly  fast ,  we  e x p e c t  n e a r l y  equa l  t e m p e r a t u r e s  in  the  d e n s e  

c o r o n a .  W e  a s s u m e  in o u r  m o d e l  c a l c u l a t i o n s  t h a t  t he  t r a n s i t i o n  to  T ~ A o c c u r s  on ly  

at  a re la t ive ly  la rge  so la r  d i s t a n c e .  A t r a n s i t i o n  d i s t a n c e  o f  - 10 R o w o u l d  h a v e  n o  

a p p r e c i a b l e  effect  o n  t he  c h a r g e  s t a t e  d i s t r i b u t i o n s .  H o w e v e r ,  t he  ve loci t ies  o f  the  

h e a v i e r  i ons  w o u l d  b e  s igni f icant ly  a u g m e n t e d  d u e  to  (a)  t he  i n c r e a s e d  p r e s s u r e  t e r m  

(cf. T a b l e  IV), a n d  (b)  t he  m o m e n t u m  t r a n s f e r  f r o m  the  w a v e s  t h a t  p r o v i d e  t he  hea t ing .  

T h e  electr ic  force ,  w h i c h  goes  as  Z / A ,  c o n t r i b u t e s  s igni f icant ly  to  the  a c c e l e r a t i o n  o f  

all ions ,  t h o u g h  less  for  t he  heav ie r ,  n o t  fully c h a r g e d  ones .  T h e  p r o t o n  d r a g  is a 

d o m i n a n t  t e r m  in t he  a c c e l e r a t i o n  o f  h e a v y  ions ,  a l t h o u g h  in t he  r eg ion  o f  h ighes t  

H e - e n h a n c e m e n t  it is n e a r l y  c o m p e n s a t e d  b y  t he  h e l i u m  drag.  In  t he  c o r o n a ,  t he  h e l i u m  

d r a g  a lso  c o n t r i b u t e s  s igni f icant ly  to  the  r e t a r d i n g  force  o n  t he  p r o t o n s .  T h e r m a l  

d i f fus ion  is s t r o n g  for  h ighly  c h a r g e d  h e a v y  ions  in t he  low c o r o n a ,  b u t  b e c o m e s  

u n i m p o r t a n t  b e y o n d  a few so la r  radi i ,  m a i n l y  b e c a u s e  o f  t he  s t r o n g  ve loc i ty  cu t -o f f  (cf. 

E q u a t i o n  (28)).  I ne r t i a l  a n d  r o t a t i o n a l  fo rces  a re  s ign i f ican t  on ly  a t  la rge  d i s t a n c e s .  T h e  

a c c e l e r a t i o n  t e r m  I is equa l  to  the  s u m  o f  all t h e  o t h e r  t e r m s  ( a p a r t  f r o m  r o u n d i n g  e r ro r s )  

as it s h o u l d  be.  T h e  f ind ing  t h a t  t he  f r ic t ion  w i t h  a -pa r t i c l e s  c a n  b e  s i g n i f i c a n t  b o t h  for  

p r o t o n s  a n d  m i n o r  i ons  is aga in  in a g r e e m e n t  w i th  the  r e su l t s  a n d  c o n c l u s i o n s  o f  J o s e l y n  

a n d  H o l z e r  (1978).  

F ina l ly  we  h a v e  i n v e s t i g a t e d  t he  poss ib i l i ty  for  i s o t o p e  s e p a r a t i o n  in t he  c o r o n a .  W e  
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cannot, of course, derive abundances in a steady state model, especially not in the minor 
ion approximation, as discussed by Borrini and Noci (1979). We can conclude, however, 
that differentiation of elements or isotopes may only occur if their dynamical behaviour 
differs significantly. Figure 10 shows the flow speeds for 3He, 4He, 2~ and 22Ne in 
the corona. There is in fact a considerable difference between the two helium isotopes, 
but almost none for neon. Thus isotope fractionation in the corona is likely to occur for 
helium, but not for any other pair of isotopes of significant abundance, since all other 
such pairs have a smaller relative mass difference than 2~ 
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Fig. 10. Velocity solutions for isotopes of He and Ne in Model 4. There is a considerable difference in the 
dynamics of the He isotopes, but almost none for Ne. 

9. Model 5: Wave-Driven High Speed Solar Wind 

Munro and Jackson (1977) have presented a model for a coronal hole and derived 
velocity and temperature profiles from observed electron density (the procedure that we 
also have adopted in this work) assuming a thermally driven solar wind (no wave 
pressure). The most striking result was a very high temperature (> 3 x 106 K) in the 
range 3-5 R o. 

A thermally driven model (Model 3) did not provide sufficient Coulomb drag for 
acceleration of heavy ions such as oxygen (Figure 5), and for models with higher speed 
(and thus higher temperature in the thermal case) the drag would be even lower (cf. 
Equation (40)). Also, we would encounter serious difficulties when trying to model 
two-fluid solutions, as they would imply a tremendous He-enhancement throughout the 
corona, as well as travel times for 4He of the order of 100 days. Thus, unless ion 
temperatures were mass-proportional right from the coronal base, thermally driven 
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models tend to predict the absence of heavy ions from the high speed solar wind, which 
is contrary to observation. Furthermore, it is well documented by both E U V  obser- 
vations (of. Huber et al., 1974) and charge state measurements in the solar wind (Ipavich 
et al., 1985) that coronal holes are colder than the surrounding corona. The explanation 
at hand is that high speed streams are not only thermally driven, but that wave pressure 
also contributes significantly to their acceleration. In fact Alfv6n waves have been 
observed by Belcher and Davis (1971) to be particularly strong in high speed streams. 

We have fitted a density profile to the polar coronal hole data of Alien (1973), which 
cover a larger radial range than the Munro and Jackson data, but agree well with them 
in the region of overlap. We have then multiplied these densities by two, to obtain a 
profile more appropriate to the somewhat denser equatorial coronal holes (cf. Saito 
et al., 1977). The boundary value at 1 AU was taken to be n, = 4 cm - 3. Due to the lack 
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Fig. 11. The model for the wave-driven coronal hole (Model 5, solid thick line). Also shown is a 

corresponding, but thermally driven one-fluid model (thin line), and one-fluid models with incoming wave 
flux of 20% (uppermost dashed line), 40, 60, a n d  8 0 %  (lowest dashed line) of the proton kinetic energy at 
1 AU.  The electron density data are from Allen (1973) for the polar corona at solar minimum, the coronal 
hole of Munro and Jackson (1977) at the pole (MJ1) and at 0 = 45 ~ (MJ2) ,  and from Saito et  al. (1977) for 

an equatorial and a polar coronal hole (SPM).  
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of other data, we adopted the geometry of the polar coronal hole observed by Munro 
and Jackson (1977), with the parameters (rounded numbers) 

f , ,  = 7.5, a t = 0.5 Ro,  r I = 1.3 R o (49) 

(cf. Equation (2)). We chose aflow speed of 600 km s - ~ at 1 AU as boundary condition, 
and FJFp = 0.04. The magnetic field was taken to be B 0 = 7.5 G at Ro,  which gives 
the Alfv6n critical radius at 11.3 R o, consistent with the lower bound given by Marsch 
and Richter (1984). Only the proton density is taken into account in calculating the 
Alfv6n speed (cf. Section 7.1). Taking into account helium as well would change the 
results somewhat quantitatively, not qualitatively, but greatly increase computational 
complexity. 

The remaining free parameter is the wave energy flux entering the corona from below, 
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Fig. 12. Solutions for charge states of C, O, Mg, and Si in Model 5 (wave-driven coronal hole, two-fluid). 
Due to the low density, all ions depart from local equilibrium (dashed lines) at low solar altitude, and are 

essentially frozen-in below the temperature maximum. 
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which we took to be 1.78 x 105 ergcm -2 s - l ,  corresponding to 80~o of the proton 

kinetic energy flux at 1 AU. The result for the main gas of Model 5 are plotted in 

Figure 11. We get a relatively cool corona with Tm~• = 1.39 x 106 K at 2.1 R o. Also 

plotted are the profiles for a thermally driven one-fluid model (no waves) and one-fluid 

models with wave energy fluxes of 20, 40, 60, and 80~o of the proton kinetic energy at 

1 AU. The model without waves resembles the Munro and Jackson model, except that 

its speed and temperature are lower. Figure 11 shows how the increasing wave power 

decreases the temperatures that one obtains from a given ne profile. 

9.1. MINOR IONS IN MODEL 5: CHARGE STATES 

Figure 12 shows charge state profiles for C, O, Mg, and Si in Model 5. It is seen that 

all charge states freeze-in before the plasma gets to the temperature maximum, because 

the density is low and the maximum is relatively far from the Sun. 

The frozen-in charge states and the corresponding freezing-in temperatures are 

shown in Table V. Compared to Model 4 the distribution has shifted to lower charges. 

The freezing-in temperatures are low, though not much below the 1.4 x 10 6 K observed 

by Ipavich et aL (1986) for iron charge states in the high speed solar wind. The trend 

among freezing-in temperatures has reversed compared to Model 4: higher charge states 

now freeze-in at lower temperature (cf. the results for C and Mg in Table V), which is 

the signature of freezing-in on the rising part of the temperature profile. 

TABLE V 

Frozen-in charge states in the two-fluid Model 5 (wave-driven coronal hole model) 

Ion Relative Freezing-in Ion Relative Freezing-in 
abundance temperature abundance temperature 

(106 K) (106 K) 

C 4 + 0.24 Mg 6 + 0.02 
1.09 1.24 C 5+ 0.63 Mg 7+ 0.15 
0.97 1.20 C 6+ 0.13 Mg 8+ 0.29 

1.03 Mg 9 + 0.33 
N 5 + 0.84 0.91 

0.99 Mg ~~ + 0.22 N 6+ 0.16 
Si 6 + 0.02 

06 § 0.99 1.26 Si 7 + 0.23 
1.27 Ne 7 + 0.03 Si s + 0.67 

1.17 1.23 Ne 8 + 0.97 S i  9 + 0.06 
1.24 Si 1~ 0.01 

Cf. comments to Table II1. 

However, these results for charge states are somewhat questionable, since two of our 

assumptions become critical in the low density of a coronal hole, i.e., the assumptions 

of Maxwellian electron distribution (ionization rates) and the assumption of equal 

velocity of charge states. Some of the freezing-in temperatures might easily be modified, 

and probably shifted to higher values, if tails in the electron velocity distribution or 
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differential velocities between charge states played an important role (Owocki, 1982; 
Owocki and Scudder, 1983; Owocki et al., 1983). 

9.2. MINOR IONS IN MODEL 5: VELOCITIES 

The velocities of the major and some minor ions (C, O, Mg, Si) are plotted in Figure 13. 
Beyond several Re ,  all minor ion velocities converge towards the helium velocity, which 
in turn almost reaches Up at large distances. Still, He and minor ions cannot be 
accelerated to u > Up by nonresonant waves alone (McKenzie et al., 1979), and a 
resonant interaction has to be invoked to give u > Up. 
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Solutions for the velocities of H, He, C, O, Mg, and Si in Model 5 (wave-driven coronal hole, 
two-fluid). 

Although parameters characterizing the waves have been chosen so as to maximize 
wave acceleration even at small heliocentric distances (large wave energy flux and low 
Alfv6n critical point), all heavy ions are still markedly slower than protons in the radial 
range 1.5-5 R e,  since the wave force is ineffective for U ~ VA. Unless a resonant wave 
force operates so near to the Sun, we expect that local densities of ions heavier than 
protons are enhanced in this part of the corona. 

The influence of waves on minor ions is twofold: besides the direct acceleration, 
waves also give lower temperatures compared to a purely thermal model. Only at low 
temperatures are Coulomb collisions strong enough to accelerate the heavy ions through 
the first few R e after which waves can further accelerate them. 

Table VI lists the relative strength of the individual terms in the momentum equations 
of H, He, and O in Model 5. As in Model 4, pressure and electric field become less 
important with increasing mass. Since the density is lower and the coronal He-enhance- 
ment less pronounced, both proton and helium drag are less effective than in Model 4. 
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T A B L E  V I  

Relative importance of terms in the momentum equation of H ,  H e ,  a n d  O in Model 5, normalized to 
gravity 

Element r/R o I P G E Cp C a T R W 

H 1.0  - 0 . 5 5  - 1 . 0 0  0 . 5 5  - - 0 . 0 9  - 0 . 0 1  - 0 . 0 1  

2 . 0  0 . 2 0  0 . 7 1  - 1 . 0 0  0 . 6 6  - - 0 . 3 4  - - 0 . 1 6  

5 . 0  1 . 0 6  0 . 6 7  - 1 . 0 0  0 . 6 9  - - 0 . 0 6  - - 0 . 7 6  

10  2 . 8 0  0 . 8 1  - 1 . 0 0  0 . 8 2  - - 0 . 0 4  - - 2 . 2 1  

5 0  10 .1  1 . 9 9  - 1 . 0 0  1 . 9 9  - - 0 . 0 3  - - 7 . 1 8  

H e  1 .0  - 0 , 1 3  - 1 . 0 0  0 . 2 7  0 . 5 2  - 0 . 0 6  - 0 . 0 1  

2 . 0  - 0 , 1 4  - 1 . 0 0  0 . 3 3  0 . 3 7  - - - 0 . 1 6  

5 . 0  0 . 6 1  0 . 2 1  - 1 . 0 0  0 . 3 4  0 . 2 1  - - 0 . 0 1  - 0 . 8 6  

10  2 . 6 1  0 . 2 2  - 1 . 0 0  0 . 4 1  0 . 2 0  - - 0 . 0 1  - 2 . 7 8  

5 0  1 2 . 9  0 . 5 1  - 1 . 0 0  0 . 9 9  0 . 1 8  - - 0 . 0 1  0 . 1 9  1 2 . 0  

O 1.0  - 0 . 0 3  - 1 , 0 0  0 . 2 0  0 . 7 2  - 0 . 1 8  0 . 2 2  - 0 . 0 1  

2 . 0  - 0 . 0 1  0 . 0 1  - 1 , 0 0  0 . 2 5  0 . 7 9  - 0 . 2 2  - - 0 . 1 6  

5 . 0  0 . 6 0  0 . 0 5  - 1 . 0 0  0 . 2 6  0 . 4 9  - - 0 . 0 7  - 0 . 8 6  

10  2 . 5 8  0 . 0 6  - 1 . 0 0  0 . 3 1  0 . 4 7  . - - 0 . 0 6  - 2 . 7 9  

5 0  1 3 . 0  0 . 1 3  - 1 . 0 0  0 . 7 5  0 . 4 6  0 . 0 1  - 0 . 0 3  0 . 2 0  1 2 . 4  

I ,  i n e r t i a ;  P ,  partial pressure; G, gravity; E, electric force; 
R ,  rotational forces; W, wave forces. 
Terms smaller than 0.01 have been omitted. 

C p ,  proton drag; C~, helium drag, T, thermal force; 

Thermal diffusion is unimportant except at the lower boundary, while wave forces are 
by far dominant beyond the first few solar radii. 

10. Conclusions 

The conclusions of the work presented can be summarized as follows: 
- One-fluid models do not give high coronal temperatures, and as a consequence they 

do not reproduce the charge state distributions observed in the solar wind at 1 AU. 
- The reason for this failure of the one-fluid model is not the particular approach 

chosen here, but the fact that a consistent simultaneous modelling of major and minor 
ions taking into account measured density profiles in the corona and solar wind data 
at 1 AU imposes more constraints on solar wind models. 

- These constraints would be further tightened if additional observations were 
available, e.g., data on densities and speeds of the coronal plasma, magnetic field 
configurations in the source region of the solar wind, and more comprehensive data on 
abundances and charge states in the solar wind. 

- The two-fluid model for the low speed solar wind reproduces the observed charge 
state distributions, especially the ratio 0 6 +/O 7§ , for which a freezing-in temperature 
- 1.6 • 106 K is obtained. Freezing-in temperatures for most other ion pairs are usually 
somewhat lower, consistent with the scarce observations available so far. 
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- In a thermally driven coronal hole model the Coulomb drag seems to be insufficient 
to accelerate heavy ions into the solar wind. If non-resonant momentum transfer of 
waves is included, acceleration of heavier ions occurs and freezing-in temperatures 
lower than those in the slow solar wind are obtained in general agreement with 
observation. However, the freezing-in results depend critically on the validity of our 
assumptions. 

- The models give u < Up for all heavy ions. We propose that this is a real effect in 
the corona, and that the local density of heavy ions is enhanced there, up to the degree 
predicted by the steady state model. Near the temperature maximum helium will be 
particularly enhanced, there the models give He/H in the range 0.2-0.7. However, the 
larger values may not actually occur. 

- In the wave-driven coronal hole model, the speeds of heavy ions converge towards 
the proton speed for large distances, whereas the models for the low speed solar wind 
give u < Up. We agree with other authors that u > Up as is observed results from 
resonant wave particle interactions in outer corona and/or interplanetary space. This 
question is not addressed in the present paper. 

- Isotope separation in the corona is possible for helium isotopes, but ought to be 
ineffective for neon and most other elements. 

- Finally, we emphasize that the influence of parameters or boundary conditions in 
our model does not reflect physical causality. Many of our parameter studies were 
performed with a fixed electron density, whereas a change in the dynamics or energetics 
of the solar wind source would certainly affect these profiles as well. Thus, we do not 
mean to imply that a helium enhancement actually heats the corona (Section 7.5), or 
that waves cool the solar wind (discussion of Figure 11). 

The most serious limitations of our models, which could be improved upon in future 
work, seem to us: 

- The assumption of equal temperatures, especially Tp = T e . This assumption in fact 
becomes critical very low in the corona, i.e., in the freezing-in region of the charge states. 
With T e r Tp the electron temperature profile would tend to be flatter than what we 
infer, due to the high thermal conductivity of electrons. Relaxing this assumption would 
require a correct treatment of the energy equations, however, with all the complexities 
and uncertainties of heat fluxes and energy sources. 

- Allowing for differential speeds between charge states might in certain cases 
significantly modify the calculated charge state distributions. However, this would 
require the solution of a coupled system of very nonlinear differential equations, and thus 
an elaborate treatment of a multitude of interdependent critical points. 
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