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If a probability density function has bounded support, kernel density estimates often overspill 
the boundaries and are consequently especially biased at and near these edges. In this paper, we 
consider the alleviation of this boundary problem. A simple unified framework is provided 
which covers a number of straightforward methods and allows for their comparison: 'general- 
ized jackknifing' generates a variety of simple boundary kernel formulae. A well-known 
method of Rice (1984) is a special case. A popular linear correction method is another: it has 
close connections with the boundary properties of local linear fitting (Fan and Gijbels, 
1992). Links with the 'optimal' boundary kernels of M011er (1991) are investigated. Novel 
boundary kernels involving kernel derivatives and generalized reflection arise too. In com- 
parisons, various generalized jackknifing methods perform rather similarly, so this, together 
with its existing popularity, make linear correction as good a method as any. In an as yet unsuc- 
cessful attempt to improve on generalized jackknifing, a variety of alternative approaches is 
considered. A further contribution is to consider generalized jackknife boundary correction 
for density derivative estimation. En route to all this, a natural analogue of local polynomial 
regression for density estimation is defined and discussed. 

Keywords: Boundary kernels, derivative estimation, generalized jackknifing, local linear regres- 
sion, mean squared error, optimal kernels, reflection, renormalization 

1. Introduction 

Kernel convolution smoothers have difficulties at and near 
the boundaries when curve estimation is at tempted over a 
region with one or more known boundaries. This is illus- 
trated in the case of  kernel density estimation for univari- 
ate positive data in Fig. 1. The solid curve is the kernel 
density estimate 

f ( x )  = n -l s Kh(x - Xi) (1.1) 
i=1 

based on the suicide data of  Copas and Fryer (1980) given 
in Table 2.1 of  Silverman (1986). Here, n = 86 and we com- 
promise between Figures 2.9(a) and 2.9(b) of  Silverman 
(1986) by taking the bandwidth h = 40 when the kernel 
function K is the standard normal density function. Kh(.) 
means h-lK(h-t.) .  Clearly, f ( x )  overspills the known 
boundary at the origin. This results in considerable 
increased bias of  the estimator at and near the origin 
compared with the estimator 's bias in the interior of  
0960-3174 �9 1993 Chapman & Hall 

the density's support. Simply truncating f ( x )  to [0, o~) is, 
therefore, inappropriate, and even truncating and then 
renormalizing f to integrate to 1 makes insufficient differ- 
ence, as also noted by Silverman (1986, p.29). The dashed 
curve in Figure 1 is the result of  applying one of the simple 
boundary correction methods discussed below to these 
data; in fact it uses (3.4) when h and K remain as 
above. It suggests a continued increase of  the density as x 
approaches zero, as opposed to the artifactual mode at 
around x = 50. We imagine that this curve is a consider- 
ably improved estimate of  the underlying density at and 
near the origin. 

Our straightforward, and largely unified, treatment 
of  the boundary problem is based on easy manipulations of  
simple asymptotic approximations t o f ' s  bias and variance. 
We first describe how the boundary problem manifests 
itself in such theoretical terms. Suppose for simplicity that 
there is a single known boundary to the support  of  f which 
we might as well take to be at the origin, so we are dealing 
with positive data. (Obviously, there is no loss of  generality 
in this choice, nor is it very difficult to extend our work to 
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Fig. 1. Raw kernel density estimate (solid line) and boundary 
corrected kernel density estimate (using (3.4); dashed line) for 
the suicide data (n = 86, h = 40, normal kernel) 

two boundaries, for example, at 0 and 1.) For convenience, 
take K to be a symmetric probability density with support 
[-1, 1] (although our results can be modified to allow, for 
instance, normal kernels). Away from the boundary, which 
thus means at any x > h, there is no overlap of contributing 
kernels with the boundary, and hence the usual asymptotic 
mean and variance expressions apply. Suppose f has two 
continuous derivatives everywhere, and that as n ~ cr 
h = h(n) ~ 0 and nh --* c~. Then, 

 -ilxl+�89 
and 

V { f ( x )  ) ~- (nh)-lt~f(x), 

where s t = f l  I utK(u)du and tr = f l  1 K2(u)du. 
Near the boundary, however, things are rather different. 

Write x =ph  and bear in mind throughout that p is a 
function of x. Also, set at(p) =~P_lutK(u)du and 
b(p) = .[P] K2(u)du. Then, 

E {j'(x)} ~_ ao(p)f(x)- h a l ( p ) f ' ( x ) +  �89 

and 

V{.)?(x)} --(nh)-lb(p)f(x) 
(e.g. Gasser and Miiller, 1979, H~irdle, 1990, Eubank and 
Speckman, 1991). When p > 1, these expressions reduce 
to those of the interior. Notice that the basic kernel esti- 
mator is not even consistent within h of the boundary 
(unless f ( x ) = 0  there) with, in particular, E{f(0)} = 
f(0)/2.  Of course, these expressions pertain equally to the 
naive modification of truncating f ( x )  to [0, cr with or 
without overall renormalization. 

Section 2 is devoted to two simple and well-known meth- 
ods of achieving consistency at and near the boundary, and 
to a comparison of the two. It has to be stressed that these 
methods still have a bias of order h which remains an order 
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of magnitude worse than the O(h 2) bias in the interior of 
the support. 

Simple methods which also achieve O(h 2) bias every- 
where are the main focus of the paper. The methods 
described in Section 3 form a unified whole as special cases 
of applying the simple technique of generalized jackknifing 
(Schucany et al., 1971) to the boundary bias problem. Rice 
(1984) made one of these proposals. Another (a linear cor- 
rection formula, (3.4)) has close links with the boundary 
properties of local linear fitting (Fan and Gijbels, 1992); 
these are explored in Section 5 (which also describes a 
natural adaptation of local polynomial regression to 
density estimation). Novel boundary kernels involving 
kernel derivatives and generalized reflection arise too. The 
methods of Section 3 are compared in Section 4. Our 
comparison is concerned with the kernel-dependent coef- 
ficients of h2f"(x) /2  (for the bias) and (nh)-l f(x) (for the 
variance) induced by these boundary corrections. The 
main message is of little to choose between generalized 
jackknife alternatives in these terms. The relationship 
between linear correction and the 'optimal' boundary 
kernels of Gasser et al. (1985) and Miiller (1991) is 
explored in Section 6. 

The major role played by the linear boundary correction, 
which is as good as any generalized jackknife in perfor- 
mance terms, and which is already popular in the literature 
both as an ad hoc device and because of its connections 
with other viewpoints, becomes clear. We therefore give 
some examples of its use in Section 7. We are happy to go 
along with the view that this linear correction is as good a 
method as any to recommend for practice, although we 
also note that there seems still to be scope for improve- 
ment. A variety of (largely unsuccessful) attempts to do 
better than linear correction is described in Section 9, 
together with some further references to more sophisti- 
cated methods (of promise). 

A further contribution is to consider boundary cor- 
rection for density derivative estimation in Section 8. 
While the boundary effect gets worse for raw derivative 
estimation, appropriate generalized jackknifing achieves 
boundary derivative estimators almost as good as esti- 
mation in the interior of the support. Polynomial correc- 
tion, linked with local polynomial fitting, retains a high 
profile. Some final remarks are made in Section 10, includ- 
ing some comments on the otherwise ignored questions of 
bandwidth selection and adaptation. 

2. A first step: ensuring consistency 

The consistency requirement is that the leading term in 
the expectation of a 'boundary-corrected' kernel density 
estimate is f ( x )  itself. There are two well-known ways 
of doing this. Noting that the multiplier of f ( x )  is 
fP-i K(u)du, it is clear that the driving force here is indeed 
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the kernel mass 'lost' beyond the boundary. Forcing inte- 
gration of each kernel to unity by renormalization is one 
obvious method of accounting for this (e.g. Diggle, 1985; 
H/irdle, 1990). (Note that this 'local' renormalization is 
quite different from the 'globa!' one alluded to in the 
previous section.) That is, use fN(x) ==-.f(x)/ao(p); since 
ao(p) = 1 for p > 1, this formula also covers using .f in 
the interior. The effect of this is immediately clear: 

al(p) 

and 

,,(p/ 
ag(p) f(x)" 

The result is now consistent, but still has a bias of order h 
near the boundary (except wheref ' (x)  = 0): this continues 
to compare poorly with the O(h 2) bias term which leads 
in the interior (that is, at boundary points, an optimized 
MSE of order n -2/3 is obtained as opposed to n -4/5 
elsewhere). 

Let us now look at a second way of enforcing consistency 
that has been quite popular in the literature. This is to 
reinstate the 'missing mass' by reflecting the estimate in 
the boundary (e.g. Boneva et al., 1971, Hominal and 
Deheuvels, 1979, Schuster, 1985, Silverman, 1986, Ghosh 
and Huang, 1992). That is, utilize 3~R(X)=--f(x) +J'(--X) 
or, equivalently, replace K h ( x - X i )  by Kh(x--Xi)+ 
Kh(-x  - Xi). Since 

^ - P  - -  h - P  

we have 

E {jCR(X) } ~--f(x) -- h2[a, (p) +1) {1 - ao(p)}]f '(x ). 

This formula atp = 0 is given by Cline and Hart (1991), and 
in general by Marron and Ruppert (1992). The variance of 
.re. (x)is 

V{j'R(X) } ~_ (nh) -' K(u)K(u- 2p)du f (x) .  
1 

Cline and Hart (1991) give the p = 0 version of this 
formula, noting that it corrects the variance expression 
given by Schuster (1985). 

A theoretical comparison of J~N and A?R can now be 
obtained by comparing kernel-dependent quantities in 
biases and variances as functions of p for various 
choices of K. This is done for the biweight kernel, 
15(1-x2)2/16,  x E I - l , 1  ], in Fig. 2. In Fig. 2(a), we 
see that the bias of fR is not greater than that of fN for 
any p C [0, 1], but the differences are not great. Diggle and 
Marron (1988) allude to this result. Likewise, in Fig. 2(b), 

for variances roles are reversed for p less than about 
one half, although reflection also 'wins' marginally for 
larger p. Finally, Fig. 2(c) is an attempt to produce a 
meaningful combination of squared bias and variance. 
There, the curves are the kernel-dependent quantities in 
the pointwise optimized mean squared error, namely 
{B(p) V(p)} 2/3 where B(p) and V(p) are here the multi- 
pliers of -h f ' ( x )  and (nh)-lf(x) in bias and variance, 
respectively, for x = ph (this can be achieved by canonical 
scaling; see Section 10). Remember, however, that f ' and 0.3. ~,\,,~x~x~ 
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Fig. 2. (a) B(p), (b) V(p) and (c) {B(p)V(p)}2/3 for renormaliz- 
ation (solid line) and reflection (dashed line). B(p) refers to O(h) 
bias. The horizontal line in (b) indicates V(1). Biweight kernel. 
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f have a major influence on complete bias and variance. 
Reflection apparently beats renormalization for all p, but 
the difference remains minor. Analogous pictures for the 
uniform kernel and for the normal kernel (for which take 
the bottom limit as -oo  rather than -1  and allow any 
p > 0) are very similar, although for the normal kernel, 
renormalization is slightly better for p less than about 1/2, 
and reflection wins otherwise. Note that reflection imposes 
)?'(0) = 0 (Silverman, 1986) while renormalization does 
not. But the main points here are that there is really very 
little to choose between these two approaches (Diggle and 
Marron, 1988, give an example in which the two edge cor- 
rections yield similar results) and, of course, that neither is 
as good as those to follow. 

3. Boundary correction for O(h 2) bias: using 
generalized jackknifing 

Let us now consider obtaining O(h 2) bias near the bound- 
ary as well as in the interior. Rather than start from existing 
methods, of which there are many, we will first take a simple 
approach to the problem, of which there are many special 
cases, and relate these to existing methods as we go. The 
idea is this. Take a linear combination of K and some other 
function L, closely related to K, in such a way that the 
resulting kernel has the desired properties ao(p) = 1 and 
al(p) ----- 0. Writing c l ( p ) =  IPl utL(u)du (and reserving 
at(p) for the corresponding quantities based on K), we 
see that the linear combination 

{cl(p)K(x) - al ( p)L(x)  } / { cl ( p)ao( p) -- al ( p)co( p) } 

(3.1) 
will have the desired O(h 2) bias property. 

This idea is not entirely novel, having been explicitly pro- 
posed (in a regression context) for essentially the choice 
L(x) = cK(cx) by Rice (1984): that is, combine density esti- 
mates using the same kernel but different bandwidths h and 
ch, where 0 < c < 1 without loss of generality. Immedi- 
ately, the resulting 'boundary kernel' is 

Kc(x) = 

{al(pc) - al (c) }K(x) - al (p)eZK(cx) 
{al(pc)  - al(c) }ao(p) - al (p)c{ao(pc)  + ao(c) - 1}" 

(3.2) 

(Note that Rice's (1984) formula (2.6) is applicable to ver- 
sions of K(x) and cK(cx) pre-normalized to integrate to 
1: this formula and Rice's are then identical). ((3.2) is not 
useful for the uniform kernel). See also H/irdle (1990, Sec- 
tion 4.4). 

Notice that (3.2) is actually a family of boundary kernels 
indexed by 0 < c < 1. One could think of choosing 
c(= c(K)) to optimize some further measure of effective- 
ness of the kernel, or by some other criterion such as 
mentioned by Rice (1984, p.896). But, like Rice, we will 

not pursue this here; preliminary investigations suggest 
that there is very little to be gained. Instead, we will men- 
tion a related boundary kernel, that obtained by letting 
c ~ 1 in (3.2). This is, writing alO(p) = .[P-I x tK ' ( x )  dx, 

a~t)(P)K(x~)- - al(p)xK-------~(x) (3.3) 
Kpo(X) = a~l) (p)ao(p) _ al (p)alO (p  ) 

(except for K uniform). An alternative derivation of (3.3) 
would simply be to seek the appropriate linear combi- 
nation of K(x) and x K ' ( x )  to use as a boundary kernel. 

The development of (3.2) and (3.3) has exactly paralleled 
the methodology for obtaining fourth-order kernels 
(ignoring boundary problems) from second-order ones 
described by Jones and Foster (1993). (While the practical- 
ity of higher-order kernels is in doubt, Marron and Wand, 
1992, the need for boundary kernels is much clearer). Both 
procedures are simple instances of the generalized jack- 
knifing idea of Schucany et al. (1971). Moreover, the 
combination of kernels with different bandwidths pro- 
posed by Rice (1984) is the exact analogue of the method 
of Schucany and Sommers (1977) in the higher-order 
kernel context. Formula (3.3) also has its analogue in 
Jones and Foster (1993) as do several of the remaining 
ideas in this section. 

A particularly useful boundary kernel formula comes 
from linearly combining K(x) and xK(x)  (in the higher- 
order kernel context, one needs x 2 rather than x). The 
kernel is 

KL(X ) = (a2(P) -- al (p)x)K(x)  
ao(p)a2(p)  _ aZ(p ) . (3.4) 

Relations between this formula, especially, and existing 
methods in the literature will be made clear in Sections 5 
and 6, although here we mention Gasser and MiJller 
(1979) as an early suggestion of it, and Hart and Wehrly 
(1992) as a recent one. 

Other boundary kernels include 

a(U(p)K(x)  - a l (p )K ' ( x )  (3.5) 
K D (x) = a~l)(p)ao(p) - al (p)a~ 1) (~p) 

(the analogue in Jones and Foster, 1993, involves K"  rather 
than K'). It arises rather naturally as a combination of 
renormalization for consistency and using j~' (albeit with 
the same bandwidth h as used in 9~) to estimate bias and 
remove it. Formula (3.5) is not applicable to the uniform 
kernel, and is the same as (3.4) for the normal. Analogues 
of formulae based on convolutions or on powers of K (as 
in Jones and Foster, 1993) or others could be pursued as 
well. Relating L to K allows boundary kernels 'derived 
from K',  but it is also reasonable to combine two unrelated 
kernels. 

While renormalization apparently continues to play a 
role if the above are thought of  as extensions of the 
methods of Section 2 to achieve zero O(h) bias too, can 
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we also incorporate reflection in methods that achieve bias 
of order h 2 everywhere? The answer is yes, and the method 
is more specific to the boundary kernel case than others, 
having no analogue in higher-order kernel provision. It is 
to combine K(x) with K(2p - x ) ,  so that)?Rl, say, uses the 
boundary kernel 

KRI(X) = 
{2p(l - ao(p) ) + al(p) }K(x) - al(p)K(Zp - x) 

{2p(1 - ao( p) ) + al( p) }ao(p) - a l (p ) ( l  - ao(p) ) " 
(3.6) 

Like formulae (3.3) and (3.5), (3.6) is entirely novel. Com- 
parisons of  these suggestions follow. 

4. Properties of generalized jackknife boundary 
corrections 

As we did for the O(h) bias reflection and renormalization 
methods in Section 2, in this section we compare kernel- 
dependent coefficients in leading bias and variance terms 
for the O(h 2) bias methods of  Section 3. This time, write 
B(p) for the multiplier of h2f"(x) /2  and V(p) as before. 
General formulae in terms of K and L can be given to cover 
all generalized jackknife boundary kernels. In fact, 

B(p) ={cl(p)a2(p) - al(p)c2(p) } / 

{ cl ( P)ao( p ) - at ( p)co( p ) }. 

Also, writing e(p) and g(p) for ~PtK(x)L(x)dx and 
~P-l L2(x) dx, respectively, we have 

V (p) -- { c~(p)b(p) - 2cl (p)al ( p)e(p) + a~(p)g(p) } / 

{cl(p)ao(p) - al(p)co(p)} 2. 

To make more of  these, see Fig. 3. There, B(p) (Fig. 3(a)) 
and V(p) (Fig. 3 (b)) are shown for each of formulae (3.3) 
to (3.6) as a function of  p for the biweight kernel. All 
bias curves have much the same shape and range of 
values. Each has a single point where the bias crosses zero. 
The four variance curves are also very similar to one 
another. Optimized mean squared error curves, now 
{B(p) V2(p)} 2/5, a r e  shown in Fig. 3(c), but are not very 
edifying except in as much as all curves are, again, simi- 
lar, and they will not be displayed in similar figures later 
on. One might, however, note that the slightly increased 
variance offL close to p = 0 is balanced by its better bias 
there. The difficulty is around the points of zero leading 
bias. A more realistic approximation near these points 
should also incorporate the next term in the bias expansion 
(Schucany, 1989), and if this were done, we could expect 
monotone decreasing curves as for the variance. 

Aside from broad equivalence of  all generalized jack- 
knives - -  and this extends to other possibilities mentioned 
in Section 3 but not dealt with further - -  the major point 
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Fig. 3. (a) B(p), (b) V(p) and (c) {B(p) V2(p)}2/S forgeneralized 
jackknives (3.3) (dotted line), (3.4) (dashed line), (3.5) (solid 
line) and (3.6) (dot-dashed line). B(\, p) refers now to O(h 2) 
bias. The dotted horizontal line in (a) is at zero, the solid horizontal 
lines indicate values of quantities at p = 1. Biweight kernel 

to make concerns the variance of boundary corrected 
estimates at (and very close to) p = 0. For example, for the 
biweight kernel, V{fL(O)}/V{fL(1)}  ~_ 7.16; meanwhile, 
V{fN(O)}/V{fN(1)}  = 2 (and V{fL(l)} = V{fN(1)} = 
V{ f (1  )}). This considerable increase in variance is disturb- 
ing (see also the end of  Section 5), and makes one hope 
that perhaps other boundary correction techniques 
might appear that beat generalized jackknifing in this 
regard. 
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5. Linear multiples, local linear regression, and local 
linear density estimation 

Of all the generalized jackknives so far considered, the one 
that is already quite popular in the literature is the linear 
multiple (of K) one, (3.4). Hart and Wehrly (1992) is 
entirely concerned with it in a regression context. An 
appealing property of (3.4) is its link with local linear fit- 
ting, the subject of this section. 

There are various good reasons why kernel weighted 
local linear regression (the stuff of lowess, Cleveland, 
1979) is an especially attractive approach to kernel-based 
regression estimation (Fan 1992, 1993; Hastie and 
Loader, 1993). One of these reasons is its attractive perfor- 
mance at boundaries (Fan and Gijbels, 1992). The work of 
Ruppert and Wand (1993) makes it clear that this perfor- 
mance is due to local linear fitting implicitly resulting in 
the use of the appropriate linear multiple of K at the bound- 
ary. See also Section 7 of Miiller (1993). The beauty of local 
linear regression is that this boundary behaviour is not 
imposed by the user but is an automatic consequence of 
the algorithm itself. 

We now make this explicit in the density estimation con- 
text in which the rest of this paper is set. (Also, as we shall 
see, the density estimation context affords exact 'equiva- 
lences', while in the regression setting, these equivalences 
remain asymptotic; see also Lejeune, 1985; Mfiller, 
1987). To do so, we follow Lejeune and Sarda (1992) in 
considering the (kernel weighted) local fitting of lines to 
the empirical distribution function Fn. That is, choose a 
and/3 to minimize 

I Kh(x  - u ) { F , ( u )  - a - f l ( x  - u)}2du, (5.1) 

for each x, and take/~(x) as the minimizing value of a ( x ) .  

To estimate f itself, either differentiate F(x) with respect 
to x or else obtain precisely the same result by minimizing 

I Kh(x  - u){f~(u) - a - f l (x  - u)}2du; (5.2) 

here, fn(U) = n - l  ~ 7 =  1 6(x  - Xi) ,  where 6 is the Dirac delta 
function, is the empirical density function. 

In the interior o f f ' s  support, this yields precisely the 
ordinary kernel estimate (1.1) with kernel K. The main 
interest internally, then, is in fitting higher order poly- 
nomials, which turns out to be exactly equivalent to using 
higher order kernels that are appropriate polynomial 
multiples of K (the kernel order is 2([//2] + 1), where [.] 
denotes 'integer part of '  and l is the degree of the poly- 
nomial being fitted) (Sarda, 1991; Lejeune and Sarda, 
1992). Jones and Foster (1993) give a generalized jack- 
knifing derivation of such kernels. 

To get the boundary behaviour of this approach, simply 
restrict the integral in (5.2) to the desired support, here 
[0, o~), and proceed as before. The answer is precisely  f in 
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(1.1) with kernel  given by (3.4), as is easy to verify. This 
simple density estimation development (at the boundary) 
appears to be novel (although in as yet unpublished work, 
C. Z. Wei and C. K. Chu appear to be on a similar 
track). (A different, and more complicated, expression 
arises from (5.1); but one should not really mix differen- 
tiation and local polynomial fitting: see Section 8.) 

While Fan and Gijbels (1992) stress that convergence 
rates of local linear regression fitting are maintained right 
up to the boundary, Ruppert and Wand (1993) introduce 
a cautionary note by stressing its increased variance in 
terms of constants. We now see that this is precisely the 
same point as was being made at the end of Section 4, since 
.fL and .fN parallel local linear fitting and the Nadaraya- 
Watson estimator, respectively. 

6. Linear multiples and optimal boundary kernels 

A number of papers by H.-G. Miiller and colleagues con- 
sider optimal kernel theory for the interior; Granovsky 
and Mfiller (1991) is a good reference. Various versions of 
the problem all involve minimization of kernel-dependent 
quantities appearing in appropriate performance mea- 
sures. The minimization has to be carried out under 
additional constraints (see Scott, 1992, Section 6.2.3.2 for 
a nice explanation). For example, the minimum of asymp- 
totic mean squared error, under the constraint of zero 
sign changes on the kernel's support, is achieved by the 
Epanechnikov kernel, (3/4)(1 - x2) , -1  < x < I. 

In some of these papers, e.g. Gasser et al. (1985), optimal 
boundary kernel theory was also considered: Miiller (1991) 
is the main reference on this. (Azari et al., 1992, set up an 
approach to regression in which such boundary kernels 
naturally arise). The analogue for minimum (asymptotic) 
mean squared error is a cubic expression closely related to 
the Epanechnikov kernel. But it is not  the result of apply- 
ing the linear correction (3.4) to the Epanechnikov kernel. 
This is because of the additional constraint imposed by 
Miiller and colleagues, namely, that K ( p )  = 0 (as well as 
K(-1)  = 0). Thus, optimal kernels are examples of what 
Scott (1992) calls 'zero boundary kernels' while generalized 
jackknifing results in 'floating boundary kernels'. 

The current author finds it difficult to understand why 
setting K ( p )  = 0 is particularly natural. In Fig. 4, we com- 
pare B ( p )  and V ( p )  for Mfiller (1991) and (3.4) extensions 
of each of the uniform, Epanechnikov, biweight and 
triweight ( c x ( 1 - x 2 )  3 on [-1,1]) kernels (the other 
kernels are associated with certain optimization problems 
involving derivatives). (Correction: formula (4.2) of 
Mfiller, 1991, should start its second line with a negative 
rather than a positive sign.) We see (i) again, that there is 
not all that much to choose between the two, but (ii) the 
generalized jackknife seems a little better than the 'opti- 
mal' kernel: this is certainly true of variance, and appears 
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Fig. 4. (a) B(p) and (b) V(p) for generalized jackknife (3.4) 
(dashed lines) and optimal zero boundary kernels (solid lines) asso- 
ciated with uniform, Epanechnikov, biweight and triweight kernels. 
Reading down the vertical axes, in (a) the lines correspond to tri- 
weight, biweight, Epanechnikov, uniform lines coincident and then 
Epanechnikov, biweight, triweight, while in (b) we have triweight, 
biweight, triweight, Epanechnikov, biweight, Epanechnikov, coinci- 
dent uniforms. The dotted horizontal line in (a) is at zero 

to carry through to mean squared error (not shown). So, 
rather than disparaging generalized jackknifing for not 
obtaining Mfiller boundary kernels, a minor inappropriate- 
ness of Miiller kernels might be concluded. Indeed, it can 
be conjectured that a formulation of  optimal kernel theory 
in which the constraint amounts to truncating K with 
K(p) # 0 and K(1) = 0 would result in applying (3.4) to 
interior (second-order) optimal kernels. 

Miiller (1993) is also relevant to this section. 

7. Examples of linear correction 

This section is intended to give the reader the briefest of  
feels for what boundary corrected kernel estimates might 
look like, using the linear correction generalized jackknife 
(3.4). We use this because it is reasonably representative 
of generalized jackknife boundary kernels while already 
having, as we have just seen, some degree of  popularity in 
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Fig. 5. Truncated kernel estimates (dotted lines) and linearly cor- 
rected estimates (dashed lines) based on six datasets 
(n = 100, h = 1, normal kernel) simulated from an exponential 
distribution. The true density (solid line) is also shown 

the literature. A first example of its application (to the 
suicide control data) was given in Fig. 1. 

Representatives of  some simulations involving X 2 distri- 
butions are given in Figs 5 and 6. In the first of these, six 
datasets each of  100 points were simulated from the expo- 
nential distribution (X22) and truncated and boundary cor- 
rected kernel estimates, each using h = 1, are shown. It is 
clear that the latter are indeed a considerable improvement 
on the former. The extra variability of the linear correction 
near p = 0 is, however, apparent. Interestingly, the 
improved bias of  the linear correction over, for example, 
ordinary reflection, is also quite clear. After all, although 
reflection would give rise to curves shaped like the dashed 
ones, they would still intercept too low; recall that reflec- 
tion would only double)?(0). 

Figure 6 repeats the exercise for simulations from a X 2 
distribution (again using n = 100, h = 1). In these particu- 
lar samples, the most severely non-zero intercept of  the 
basic kernel estimate results in linear correction erro- 
neously increasing the estimate near the boundary, but in 

0; .r I 2 3 4 

Fig. 6. Truncated kernel estimates (dotted lines) and linearly cor- 
rected estimates (dashed lines) based on six datasets 
(n = 100, h = 1, normal kernel) simulated from a X~ distribution. 
The true density (solid line) is also shown 
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Fig. 7. Truncated kernel density estimate (solid line) and boundary 
corrected kernel density estimate (using (3.4); dashed line) for the 
length biased shrub width data (n = 46, h = 0.23, normal kernel) 

the other five samples, estimates hit zero before reaching 
x = 0, and do seem to constitute an improvement. The 
one potential disadvantage here, of course, and this is 
common to all generalized jackknives, is that the estimate 
continues into negative values near the boundary (and 
this is not unrelated to its increased variance property). 
An obvious practical remedy is to truncate the estimate to 
non-negative values. Whatever the reader's reaction to 
negativity of density estimates, this property is not a 
problem in regression estimation. Note also that general- 
ized jackknifing does not result in unit integral density 
estimators either. 

Further experiments with other degrees-of-freedom 
values (not shown) indicated a generally favourable, but 
by no means infallible, performance of linear correction 
in terms of increasing or decreasing density estimates near 
zero, in a manner closely connected with the behaviour of 
the X 2 distribution in the boundary region. 

One further real data example is shown in Fig. 7. If  the 
smoothing problem is formulated in the most appropriate 
way, just the same boundary correction methodology is 
immediately applicable to situations involving indirect 
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Fig. 8. Standard normal kernel (solid line) together with linearly 
corrected boundary versions when p = 1 (dotted line), p = 1/2 
(dashed line) and p = 0 (dot-dashed line) 

data. One example is that of length biased data. Here, the 
data arise from g ( x ) =  x f ( x ) / # ,  where # = f x f ( x ) d x ,  
and interest remains in estimatingf. If we use the estimator 
n - l ( ~ = l  Xj-1) -1 ~--~= l XTlKh( x -- Xi) (Jones, 1991), all 
generalized jackknifing arguments carry through. Linear 
boundary correction is used in Fig. 7 on the length-biased 
shrub width data of Muttlak and McDonald (1990); it is 
compared there with the truncated estimator used by Jones 
(1991) (n =46 ,  h =0.23). It is encouraging to note that 
linear correction brings the estimate down near zero, while 
in Fig. 1, linear correction increased .f(0), although each 
started f r o ~  an apparently similar truncated estimator. 

Finally in this section, we display a few linearly corrected 
boundary kernels themselves. In Fig. 8 are shown the 
standard normal kernel together with associated boundary 
kernels when p = 0, 1/2 and 1. The general formula for 
these curves is 

{~(p) + ( u - p ) O ( p )  }O(u) 

(I)(p){~(p) - PO(P)} - ~b2(P) ' 

for u < p .  

8. Boundary correction for derivatives 

As the reader might imagine, boundary problems are 
exacerbated when density derivatives are of interest. This 
shows up in the asymptotics. For instance, the usual estima- 
tor of the first derivative given by 

)?'(x) = n - l  ~ K~h(x - Xi) (8.1) 
i = l  

(where K~(.) - h-2K(h-l .))  has expectation 

h-l a~O(p)f (x)  - a lO(p ) f ' ( x )  + O(h) 

for x < h. That is, not only is there a constant multiplying 
the desired f ' ( x )  near the boundary, but there is also an 
additional term of order h-l! Likewise, for r th derivatives 
in general, the leading term in the expectation is of order 
h--r. 

Generalized jackknifing can, however, be utilized to 
obtain bias of order h 2 for derivative estimation too. Con- 
centrate for the moment on the first derivative o f f  only. 
We revert to the general idea at the beginning of Section 
3: take a linear combination, J, of K and other functions 
related to K such that the resulting kernel has the required 
properties, which are now that ~PlJ(u)du = 0 = 
~Pl u2j(u) du and fP-I uJ(u)du = 1. That is, we need appro- 
priate K, L and M. Division of everything by an extra h is 
also necessary. 

Write dr(p) = fP-1 utM(u) du. Then, in general, a bound- 
ary kernel for the first derivative is h -l times 

- A o ( p ) K ( x )  + Bo(p)L(x)  - Co(p)M(x)  (8.2) 
ao(p)Al (p) - co(p)Bl (p) + do(p)Cl (p) 
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Fig. 9. Derivative of standard normal kernel (solid line) together 
with quadratically corrected boundary derivative versions when 
p = 1 (dotted line), p = 1/2 (dashed line) andp = 0 (dot-dashed 
line) 

where Ai(p) : ci(p)d2(p) - c2(p)di(p), Bi(p) : ai(p)d2(p) 
-a2(p)d i (p)  and Ci(p) = ai(p)c2(p) - a2(p)ci(p), i =  0.1. 
We will concentrate on two special cases of this. For the 
first, take L = K'  and M =  K". For the second, take 
L = x K  and M = x 2 K  (so that q ( p ) = a t + l ( p )  and 
dr(p) = at+ 2 (p)). Of course, there is no distinction between 
these special cases when K is normal, while only the latter 
is available when K is uniform (or triangular). These bound- 
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Fig. 10. (a) B(p) and (b) V(p) for generalized jackknife derivative 
estimates based on derivatives of K (solid line) and power multiples 
of K (dashed line). The dotted horizontal line in (a) is at zero. Bi- 
iveight kernel 
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ary kernels for K normal and for p = 0, 1/2, 1 and oc are 
shown in Figure 9. 

If (8.2) is written as h - l { a ( p ) K ( x ) + f l ( p ) L ( x ) +  
,,/(p)M(x)}, the bias coefficient B ( p ) = a ( p ) a 2 ( p ) +  
fl(p)c2(p) +'y(p)d2(p)  (which multiplies - 
and the variance depends on V ( p ) : a Z ( p ) b ( p ) +  
2a(p)fl(p)e(p) + fl2(p)g(p) + 2a(p)7(p ) j-p_, K(x)M(x)dx  + 
2fl(p)7(p) .[P-I L (x )M(x )dx  + 72(p) .~P-I MZ(x)  dx, where 
V(p)  is the multiplier of (nh3)- l f (x) .  These formulae 
have been utilized to make comparisons of polynomial mul- 
tiple and derivative methods for the biweight kernel in Fig. 
10. The main messages are that (i) B(p) and especially V(p)  
are very large near p = 0 and that (ii) there is little to choose 
between the two approaches. 

The reason for concentrating on just these two special 
cases is that they alone reduce to appealingly simple esti- 
mates o f f '  in the support interior. The combination of 
derivatives leads, unsurprisingly, to (8.1); the other combi- 
nation yields the alternative derivative estimator 

n 

]"(x) : -(nh2s2) - 1 Z { h - l ( x  - Xi)}K{h-l(x - Xi)}, 
i = l  

(8.3) 
i.e. use of the kernel -uK(u) /s2 .  

The same approach can be generalized to estimating 
higher-order derivatives at the boundary. For instance, 
for estimating f " ,  take h -2 times a linear combination of 
K and three related functions (such as K',  K"  and K "  or 
xK, x2K and x3K). In the interior, the latter results in the 
kernel 2 ( u 2 - s 2 ) K ( u ) / ( S a - S ~ ) .  We will not pursue 
further details here. 

These polynomial multiples of K relevant to estimating 
derivatives also arise from local polynomial fitting, of 
course. In the regression situation, the work of Ruppert 
and Wand (1993) shows that the first and second derivative 
estimates here are obtained as the slope of (either linear or) 
quadratic local fits, and as the quadratic term of (either 
quadratic or) cubic fitting, respectively. 

9. Alternative boundary corrections for O(h 2) bias 

In this section, we consider three other simple boundary 
correction devices which have met with less success than 
generalized jackknifing, and end with references to yet 
other boundary methods proposed in the literature. 

9.1 Simple alternatives 
The first of these methods is based on support transfor- 
mation. The idea is simply to transform the x-scale by a 
suitable additive constant (in addition to renormalizing). 
Define 

.fT(x) = f ( x  + C(p)h) /ao(p) ,  
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where C -  C(p) solves 

C = al(p + C)/ao(p + C). 

Then, 

g { f T ( x ) )  ~-- f ( x )  + �89 + C)ao(p + C) 

- a2(p + C)}/a2(p + C)]f"(x)  

and 

r~,fT(X) ~ ~-- (nh)-l(b(p + C)/a](p + C))f(x) .  V 

Notice that fT is necessarily positive everywhere whereas 
generalized jackknifing methods are not. Also, C(p) is 
necessarily negative, meaning that the excess mass in the 
negative half-line is moved to a position above zero, and 
renormalized. If  K is uniform on [-1, 1], C(p) =p  - 1. 
Unfortunately, V(x) is then (2p) -l which tends to c~ as 
p ~ 0: therein lies the first disappointment of this tech- 
nique. For non-uniform K, too, simplicity is compromised 
by the need to solve a non-linear equation for C(p) for 
each p. Finally, in practice finite support kernels result in 
a raw density estimate extending only as far as min Xi - h 
while, for instance, C(0) = -1  a n d f ( - h )  = 0; fT is there- 
fore necessarily zero near the boundary in places where 
one would often desire a non-zero estimate. Infinite sup- 
port kernels ameliorate this only at the expense of much 
greater numerical effort and accuracy. 

(As fT is a renormalization version of the x-transfor- 
mation idea, so there also exists a reflection version which 
only works for p _> I/2. This will not be considered 
further.) 

Here is a second alternative approach. Generalized jack- 
knifing (and optimal kernel theory) produces boundary 
kernels that vary with point of estimation x. An alternative 
is to consider utilizing different kernels for different data- 
points Xi. The latter is quite natural in the sense that it, 
and not the earlier approach, results if a single picture dis- 
playing all kernels associated with the Xi's which are then 
averaged out to produce the final estimate is envisaged. 
Formulawise, the distinction is of the form 

n- l~ '~K~;h(x-Xi )  versus n -I KX,;h(X-Xi). 
i=l  i=l  

While reflection is unaffected by the change from 
x-dependent kernels to Xi-dependent ones, renormalization 
and generalized jackknifing techniques very much are. For 
instance, use of a(Xi)K(u), which we might expect to lead 
to the renormalization formula a(Xi ) : l /ao(Xi /h) ,  
instead demands that a satisfies f f_[/ha(xi/h-u) 
K(u)du = 1. We do not follow this up here, but mention it 
to warn the reader that this approach is quite different 
from the one we have been mostly considering. 

Thirdly, extended forms of generalized jackknifing might 
be contemplated. For instance, combine three kernels in 
such a way that the coefficients of f (x ) ,  -h f ' ( x )  and 
h2f"(x)/2 are l, 0 and s2, respectively. Unfortunately, 
the variance appears to be greatly inflated. A further exten- 
sion in which four quantities are combined in the hope of 
achieving B(x) = s2 and V(x) = ~ at all points x immedi- 
ately runs into intractability problems, even in the case of 
a uniform kernel. 

9.2 More sophisticated alternatives 

A natural reaction of many to the boundary problem is 
'transform!' While this is indeed an approach of much 
potential, details of how to implement it, as is the case for 
use of transformations in the interior (Wand et al., 1991, 
Ruppert and Cline, 1992) are not immediately obvious. 
(Here, of course, we mean transform the data, estimate 
the density of the transformed data, and make a final 
change of variables.) Marron and Ruppert (1992) is a fine 
initial investigation into the possibilities. Simplicity may 
have to be sacrificed, although estimates based on transfor- 
mations should retain non-negativity. Marron and Ruppert 
(1992) are also concerned with densities with poles, which 
other methods fail to cope with. 

Two further interesting papers based on ideas specific 
to the case of non-parametric regression are Eubank 
and Speckman (1991) and Hall and Wehrly (1991). Yet 
another interesting recent contribution to kernel boundary 
problems is that of Miiller (1993) in which polynomial 
multiples, local bandwidth variation and support transfor- 
mation are all involved, wrapped up in a general weighted 
optimality theory. 

This dichotomy is the exact analogue of the distinction 
between local (h ~ h(x)) and variable (h ~ h(Xi) ) band- 
width variation to improve performance of kernel esti- 
mates in the interior (Jones, 1990). Some authors, e.g. 
Scott (1992, Section 6.2.3.5), consider just X/-dependent 
boundary kernels. Scott observes that the restriction 
K(p) = 0 imposed in optimal boundary kernel theory 
then necessarily results in density estimates which are zero 
at zero; floating boundary kernels for which K(p) ~ 0 are 
therefore particularly advantageous in this context by not 
resulting in this unwanted constraint. 

10. Closing remarks 

We have already mentioned that it is not difficult to extend 
this work to boundaries at points other than zero, or to a 
closed interval provided the bandwidth is small relative to 
the length of the interval. See Hart and Wehrly (1992) for 
interesting work when the bandwidth is relatively large (in 
finite support regression). 

We have not yet considered automatic bandwidth selec- 
tion taking account of boundary corrections. As a first 
approximation, one can clearly use a procedure which 
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ignores boundary considerations, and this we did, using 
Sheather and Jones' (1991) method, in Fig. 7. The trun- 
cated estimators in Fig. 5 might give us pause, however: 
there, any boundary-unaware estimator is likely to have 
greater roughness than the true exponential density 
because of  a spurious mode near zero, with the conse- 
quence of  suggesting too small a bandwidth for the bound- 
ary-corrected case. 

Another question is local bandwidth choice near the 
boundary. Many would say it was obvious that larger band- 
widths should be used there. Some simple ways of choosing 
h as a function of  x are considered in Section 4 of Miiller 
(1991). We mention a further alternative, which is closely 
related to Miiller's hi(x). There is a natural 'canonical' 
scaling which separates bandwidth and density effects (at 
least asymptotically). Marron and Nolan (1989) describe 
this for the interior. The immediate extension to the bound- 
ary problem is to take h(x) o({B(x)  -1V(x)} 1/5. Note that 
this is independent o f f ,  and hence immediately practicable 
except for B(x) taking a zero value for some p. See Fig. 3 
and Miiller's (1991) Fig. 3. 

Finally, this paper has tried to summarize, and set a frame- 
work for, simple approaches to boundary correction for ker- 
nel methods. We failed to do better than the generalized 
jackknifing methods, of which the linear correction (3.4) is 
proving to be particularly popular. For the moment, then, 
we agree with various proponents of this method, that it is 
as good as anything to use in practice. However, we still 
wonder if the inflated variance of such methods means that 
there may remain scope for improvement. 
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