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ABSTRACT. The translation planes of  order 16 are completely classified. The exceptional 
isomorphism A s -~ GLI4. 2)gives a crucial computational  approach to this problem 

1. I N T R O D U C T I O N  

All translation planes of order 2"(n ~< 3) are known [4]. The purpose of 
this paper and its successor is to settle the first open case and give the complete 
classification of the translation planes of order 16. Various partial results 
have already been obtained;for instance, [6], [7], [8], [10] and [1J. Nearly 
all of these results use, in some way, detailed information about certain 
translation planes and classify these planes with these properties. Reference 
[1] does not quite fit into this row. Here a certain computational approach, 

which only works in the case of translation planes of order 16, gives a good 
tool to complete a classification problem even when little information is 
available. Indeed, the methods of [1] are powerful enough to complete, 
in this paper, the full classification of the translation planes of order 16. 

The planes that will come up (see Section 3) are already known and have 
fairly large translation complements. The method we employ for the classi- 
fication (see Section 2), however, discovers translation planes with small 
automorphism groups better than those with large automorphism groups. In 
fact, the Desarguesian plane of order 16 is the most difficult to find with our 
method. This will make the validity of our results highly stable even where an 
oversight occurs. A new, unknown, translation plane of order 16 would, by the 
previous classifications, have a 'small' automorphism group. Hence, during 
our investigation we would have had many cases to handle, where this plane 
would come up. This remark will become clearer after reading Section 2. 

A large part of our work was done on a computer. The printouts comprise 
well over 1000 pages. However, to make the computations accessible to 
the reader we shall provide the reader with the necessary computer programs 
in the second part of the paper. 

The terminology we use is standard and may be found in [2] or [1 i]. 
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2. N O T A T I O N ,  P R E L I M I N A R Y  L E M M A S  A N D  

T H E  G E N E R A L  M E T H O D  

We always think of a translation plane ~ of order  p" as a 2n-dimensional 
vector space W over GF(p) having a collection n (spread) 
Voo, V o, V 1 . . . .  , Vp,_ 1 of n-dimensional pairwise disjoint subspaces which 
are called the components. The lines of  ~ different from l are the cosets 
w + U for w e W  and U a component .  The points off lo~ are the elements of 
W. The points on lo~ are a~umbered by i ~- V i for i =  ~ , 0 ,  1 . . . .  , p " - 1 .  
As usual, using points ( ~ ,  0, 1) on l~o as points of reference, we introduce 

coordinates  on ~ as follows: 
Let V be an n-dimensional GF(p)-vector space and write W = V @ V such 

that  by a suitable choice of the basis we have V = {(O,v)lveV }, V o = 
{(v,O)lveV } and V i = { ( v , v ) l v e V  }. Then there are elements 

1 = t~, t a , . . . , t p . _ t e G L ( n , p )  with V i = {(v, vt i ) lveV} for i =  1 , 2 , . . . , p " -  1 
and 

(t) t~t7 1 is a fixed-point-free t ransformat ion on V for 1 ~< i < j  
p" - 1. 

We call a set M ~_ GL(V), M = {1 = t~, tz, . . . ,  tp._ 1 } a coordinate set if 
M satisfies condit ion ($). If the translat ion plane ~ = (W, ~) has coordinate  
set M for some points of reference on l~ (which we denote  by (o% 0, 1)), 
we also write N = N(M). Conversely, if M is a coordinate  set then M defines 
on W = V • V in the described fashion a t ranslat ion plane ~ ~ N(M). 

The next lemma shows how a coordinate  set M changes if one chooses 

different points of reference on loo. 

2.1. Let M be a coordinate set of  ~ with respect to ( ~ ,  O, 1). Then a coordinate 
set with respect to (x, y, z) for x, y, z e { ~ ,  O, 1 . . . . .  pn _ 1} is: 

(a) U -1 = { m - l l m e M } f o r ( x , y , z ) = ( O ,  ~ ,  1). 
(b) Mt71 = {mt~ l lmeM}  for(x,y ,  z)= ( ~ , 0 , / )  and 1 <~i<. p n -  1. 
(c) 1 - M = {1} u {! - m [ m e M -  {1} } for (x,y,z) = (o% 1,0). 

Proof Set T = ( 0 I  I0), ( I  0 0 ) or ( I  0 1 i ) ,  where T is 
t? 

2n x 2n matr ix decomposed in n × n blocks and I denotes the identity 
matrix. Then V T, V o T, V1 T are for the cases (a), (b) and (c) of the desired 
shape. Determining the coordinate  set with respect to V i/', V o T, and 

V 1 T gives the assertions. 

R E M A R K .  Lemma 2.1 tells us that for any choice of (x, y, z) as points of 
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reference for x, y, z e { ~ ,  0, 1, . . . ,  p " - 1  } the coordinate set with respect 

to this triple is obtained by a successive application of some of the operations 

(0) M -~ M - 1 ,  M ~ M m  -1 for some m e  M or M ~ l - M.  

Conversely, any successive application of some of the operations (0) to a 

coordinate set M gives a coordinate set N which defines the same plane with 
respect to some other points of reference. 

2.2. Let  W = V ®  V and ~@ = (W, 7z) and ~ '  = (W, 7r') be translation planes 
with coordinate sets M and M'  with respect to (0% O, 1) and (or', 0', 1'), respec- 

tively. There is an isomorphism t p : ~ '  with z~ '=z '  for  z E { ~ , 0 ,  1} /ff 
there is an x ~ GL( V) such that 

(1) x M x -  1 = M'.  

Proof. [3]. 

REMARK.  Let M and N be coordinate sets. Then ~(M)  -~ ~(N)  iff N is 
obtained by M by a successive application of some of the operations (0) 

and (1). 

From now on we restrict our attention to the case p " =  16. We use the 

fact that A 8 -~ GL(4, 2). 

2.3. Let  V be a 4-dimensional vector space over GF(2) and ~o :A 8 ~ GL(V) 

an isomorphism. I f  x ~ for  x ~ A  8 is a f ixed-point-free automorphism in GL(V), 
then x has cycle structure (abc), (abede), (abc)(de)(fg) or (abc)(defgh). 

Proof. Clearly, a fixed-point-free element in GL(V) is not centralized 

by a transvection. As transvections lie in the centres of Sylow 2-subgroups 

of GL(V) they correspond to the product  of four disjoint transpositions in 

A 8. So if r c A  8 has order 3 and r ¢ is fixed-point-free, then the centralizer 

of r in A 8 only contains involutions whose cycle structure is (ab)(cd). Hence, 

r is a 3-cycle. Now 7 does but 5 does not divide I GL(3, 2)]. Thus elements of 
order 5 in A s map onto fixed-point-free transformations while elements of 
order 7 do not act fixed-point-free on V. All assertions of 2.3 follow. 

Let F be the collection of all elements of A s of type (abc), (abcde), 

(abc)(de)(fg), (abc)(defgh) together with 1. A subset I ~ S ~ _ F  is called 

compatible if s t - l ~ F  for all s , t~S.  In accordance with definition (~) we 
call a compatible subset M of F a coordinate set if I M I = 15. 

Let V be again a 4-dimensional vector space over GF(2). Let ~0, ~ be two 

isomorphisms from A 8 onto GL(V). Then ~p~-1 is an automorphism of A 8. 
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Now Aut(As)= S 8. So ~ = aq~, where ~ S  8. Let M be a coordinate set 
in A 8. If seAs, then N(M~) "-~ ~ ( M  °) by 2.2. Take zeS 8 - A  s and set 
q~* =~q~ for a (fixed) isomorphism (p : A s ~ G L ( V  ). We write ~ = ~ ( M )  
for N = N(M ~) and N * =  ¢~*(M) for N * =  ~(M~°*). Note that, in general 
N* (M) ¢ N(M). Let 6 e be the collection of compatible subsets in F. We 
call S, S' ~ ~ equivalent and write S ~ S' iff S' is obtained by S by a successive 
application of some of the operations (0) and 

(1)' S - - , x S x  -1 for x~S 8. 

Our discussion yields the following lemma: 

2.4. Let  M e 5  P be a coordinate set. 

(a) ~(M) -~ ~ ( x M x - i ) f o r  x e A  s. 
(b) ~*(M) ~- ~ ( x M x -  1 )for x s S  8 - A s . 

(c) I f  M'  e 5  a, M ~ M', then ~ ( M )  ~- ~ ( M ' )  or .~(M) ~- ~*(M') .  

Let x = (abc)(defgh)eF. We say x is of ( + )-type if x is conjugate in A 8 
to (123)(45678). Otherwise x is of ( - ) - type .  Let y = (abe)(de)( fg)eF.  We 

{ 12345678 
say y stands in the (+)-representation if sgn~abcdefg * ) =  1. Otherwise 

y stands in the (-)-representation.  Note that y =(123)(45)(67) is a (+)-  
representation while y = (123)(45)(76) is a ( -)-representat ion of y. Only 
for the following lemma shall we use an explicit isomorphism q~ : A 8 ~ GL(4, 2). 

2.5. Let  q~ :A s ~ GL(4, 2) be an isomorphism chosen as in [5; II, 2.5]. Identify 

x ~ A s with x °. Then we have: 

(1) (abc) + 1 = (acb); 
(2) (abcde) + 1 = (abcde) 3 ( f g h y  and c~ has to be chosen as 1 or 2 such that 

(abcde) + 1 is o f  ( - )-type; 

(3) (abc)(de)(fg) + 1 = (acb)(df)(eg) if (abc)(de)(fg) is (+)-representation 

and (abc)(de)(fg) + 1 = (acb)(dg)(ef) i f  (abc)(de)(fg) is a ( - ) - represen-  

tation; 

(4) (abcde)(fgh) + 1 = (abcde)4(fgh) i f  (abcde)(fgh) is o f  ( + )-type and 

(abcde)(fgh) + 1 = (abcde) 2 if (abcde)(fgh) if o f  ( - )-type. 
Proof. By the choice of q~ one easily verifies that (123)(45678)+ 1 = 

(123)(48765) and (123)(45)(67)+1=(132)(46)(57). Now two elements 
(ab. . . ) (cd. . . ) . . .  and (a'b' . . .)(c'd' . . .) . . .  of the same cycle structure are 
conjugate in S s by the element 

ab'  .., c'd' 
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The assertion now follows if we take into consideration that under A 8 

all elements of order 3, 5 or 6 in F are conjugate and that F contains precisely 

two As-conjugacy classes of elements of order 15. 

Let J / /denote  the subset of the coordinate sets of 5:. In order to determine 
all isomorphism classes of translation planes of order 16 we determine a 

set ~ of representatives of the classes on d/d for the equivalence relation 
we just introduced on 5:. Then {~(M), ~ * ( M ) I M e N  } contains at least 

one member  of each isomorphism class of translation planes of order 16. 

In order to decide precisely how many isomorphism classes occur we only 

have to determine weather ~(M)-~  ~*(M) holds or not. The program of 

determining N is now carried out in the following manner:  

Step I. We consider the subset 6: o __ Y of compatible subsets with I sI = 4 
or 5 for SsS"  o. Denote by [TIk t he  number  of elements of order k in T e 5  p. 

We find representatives of each equivalence class ~ on 5: o in the following 

order: 

(i) max{IS[3lSe<g } ~>4; 

(ii) max{IS[3]Se~ } = 3; 
(iii) max{]SI3 [ S ~ }  = 2; 
(iv) max{IN[g]S~<g } = 1; 

(v) max{[SI3[S~¢} = 0 but max{IS]5 ISLe} >i 1; 
(vi) IS]k = 0 for k = 3, 5, 15 and each S e Z .  

Use 2.5 to observe that for each S ~ Y  o one of the properties (i)-(vi) is 

true if we let :g = IS] be the equivalence class containing S. 

Step II. Let :g be an equivalence class on 50 o. Pick a representative 

Se:g and say that we are in case (x) of Step I. Then we determine all M~J¢/ 
with S _c M. Whenever M contains a subset TeS"  o such that T belongs to 
case (y) of I and (y) is handled before (x), we can delete M from further 

consideration. Note that if M is a coordinate set and N __ M lies in 6: o, 

then the class :g containing N must satisfy one of the conditions (i)-(vi) 
of I. Thus we are sure to pick at least one representative out of each equi- 

valence class on .~.  

Step III.  Let { M 1 , M 2 ,  ... } be the coordinate sets obtained in Step I1. 

For a known plane ~ (K)  we compute various different coordinate s e t s -  
say K, K', K", .... A 'structural '  description of the sets K, K', K", ... (see 
Section 5) will be sufficient to decide quickly whether there is a K ...... , an 

index i, and an x ~ A  8 with x M ~ x - 1  = K ...... . 

3. THE TRANSLATION PLANES OF ORDER 16 

We describe the known translation planes of order 16 in the language of 

coordinate sets. We also determine essential parts of the automorphism 
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group which makes it possible to recognize that these planes are pairwise 
non-isomorphic. The objective of this section is to show that the list of 
planes we provide contains a member of each isomorphism class of transla- 
tion planes of order 16. 

1. The Desarguesian plane of order 16 

Set M 1 = {((123)(45678))kl0 ~< k ~< 14}. Set M' = M1 w {0}. M', consider- 
ed as a subset of the set of 4 x 4 matrices over GF(2), is according to 2.5 
isomorphic as a subalgebra to GF(16). It is clear that ~(M~ ) is Desarguesian. 

2. The semifield plane with kern GF(4) 

Set M 2 = {1, (678), (687), (456), (465), (45678), (45687), (46785), (46875), 
(123)(47586), (123)(47658), (123)(47)(58), (132)(48)(57), (132)(48576), 

(132)(48657)}. Now CAB(M2)= ((123))  which shows that ~ (M2)  has 
kern GF(4). Let H be the translation complement fixing (0,0)sW. 

As NA~ (M 2 ) = ((123), (45)(78), (12)(78)) we have that the stabilizer H ,  0, 
of the points o% 0, 1 on l contains a subgroup isomorphic to S 3 x Z 2. 

The equations M 2 --- M2(456) = (678)M 2 show that H o,o -~ (Z 3 X Z 3 X Z3).  

(Z 2 x Z2). Finally, M 2 + 1 = M a . This induces a shear a with fixed-point oo 
on 1B. One easily verifies that (~,Hoo,O) contains a normal elementary 
abelian subgroup E of order 16 whose non-trivial elements are shears 
fixing oo. Thus ~ ( M 2 )  m u s t  be the unique semifield plane with kern GF(4) 

(see[9]). 

3. The semifield plane with kern GF(2) 

Set M a = { 1 ,  (346), (364), (587)(16243), (587)(13426), (287)(16453), 
(287)(13546), (187)(24536), (187)(26354), (587)(14)(23), (578)(12)(34), 
(287)(14)(56), (278)(15)(46), (187)(23)(56), (178)(25)(36)}. We observe that 

(125)(364) normalizes M 3 and that (346)M3(346)=Ma. This induces an 
elementary abelian group D of order 9 in Aut (~(M3)  ) which fixes the points 

~ ,  0 on l~o. With the help of 2.5 one verifies that (M 3 + 1)- 1 = M 3  + 1 

and (M3(187)(25)(36) + 1)- a = M3(187)(25)(36) so that we have two shears, 
r; and z, interchanging on l~ the points oo and 1 and oo and 15, respectively. 
Further, a and r both fix 0 on loo. One now checks that the conjugates of 
a and z under D generate an elementary abelian group of order 16 whose 

non-trivial elements are shears fixing precisely 0 on loo. As CAB(M3)= 1 
the plane ~ (M3)  has kern GF(2). By [9], N(M3) is the unique semifield 
plane with kern GF(2). 
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All o ther  known t ransla t ion planes of  order  16 we described in Section 2 

of [1]. They all possess a 4-group E of au tomorph i sms  such that  the non- 

trivial e lements  in E are Baer involut ions which centralize the same Baer 
subplane.  F r o m  [1] we repeat :  

Set E = ( ( 4 5 ) ( 6 7 ) , ( 4 6 ) ( 5 7 ) ) .  For  t~F set tE={etele~E} and M 0 =  

{1,t 2 = (123),t 3 = (132)]. Then we have: 

4. The Hall plane of order 16 

Set M ,  = M 0 w { (45678) e, (45786) L, (46587)E}. Now M 4 - M o is a conju- 

gacy class of  elements  of order  5 of A 5 acting on R = {4, 5, 6, 7, 8}. Thus 

L -~ A 5 acting on R normalizes  M 4 and induces a subgroup  of Aut( .~(M4)) 

which fixes the c o m p o n e n t s  V ,  V o . . . . .  V 3. Kern  .~(M4I~-GF(4) as 
CA,(M 4) = ( (123)5 .  As Me = M 2  1 there is a shear interchanging V o and 
V .  Without  verifying we ment ion  that  for either i = 2 or i = 3 (the choice 

of i depends  on the i somorphism ~o:A 8 ~ GL(4, 2)) the m a p  ~: W ~ (v, u) --, 
(u + vt~, v) defines an a u t o m o r p h i s m  of order  5 fixing the componen t s  

V, . . . . .  V1 s '  Fur thermore ,  ( a ) L  = ( a ) x L. 

5 and 6. The Lorimer-Rahilty plane and the Johnson-Walker plane 

Set Ms=mow{(345)  ~, (246) E, (147) E} and m6=mow~345) E, (247) E, 

(146)E}. The  suppor t  of the 3-cycles of M s or m6 ,  respectively, forms a 
projective plane of order  2. Hence the subgroup  X~(i = 5, 6) of  A s, X~ ~- 
GL(3, 2) normal iz ing  this plane also normalizes  M~. Assume we have chosen 
the i somorph i sm q):A s -~ GL(4, 2) such that  X~ is the stabilizer of a point. 

Then X~ is the stabilizer of  a hyperplane.  Moreover ,  . ~ ( M s ) - ~ . ~ * ( M  6) 
and ~ ( M 6 ) -  ~ * ( M s ) .  However ,  ~ ( M s ) : ~  ,¢~(M6), as in both  cases a full 

t ransla t ion complemen t  is i somorphic  to S 3 x GL(3,2) (see [10]). With 
the no ta t ion  chosen as above,  ~ ( M  5) is the Lo r imer -Rah i l l y  plane while 

,,@(M6) is the J o h n s o n - W a l k e r  plane (i.e. these are the only translat ion 

planes of order  16 where ~ ( M ) N  .~*(M)). 

7. The derived semi field plane of order 16 

Set M 7 = M 0 w {(148) E, (248) e, (348)~}. Here H = (E, (123), (456), (23)(56)) -'- 

{A 4 × Z 3 ) ' Z  2 obviously  normalizes  M 7. Since M 7 + 1 = M~ -~ there is a 

coll ineat ion p of order  3 such that  p fixes the componen t s  V z . . . . .  V15 and 

interchanges V o, V o, V s . H ( p )  = H x (p)  is a full t ranslat ion complement .  

8. The Dempwotff plane 

Set M 8 = M o w { (348) E, (12483) E, (14832) E }. Since (48) (56)M s (34) (56) = 
M s there is a coll ineat ion p of order  2 such that L =  (p ,E)~-As .  
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M s = (123)M 8 means that there is a homology ~ of order 3 fixing V point- 
wise. Finally (12)(56)Ms(12)(56)= M s induces an involution a and one 

readily checks that L{z, o-)_~ FL(2, 4). This, in fact, is a full translation 
complement. 

4. THE DETERMINATION OF THE COORDINATE SETS 

In this section we show how the solution of the crucial problem (i.e. to find 
at least one coordinate set for every translation plane of order 16) is organized. 

By direct counting arguments we see that the list F introduced in Section 2 
contains exactly 5825 elements. Thus, in this section we are confronted with 
the problem of finding M 1 ,  M 2 ,  . . . ,  E J// such that [M1] w [M2] w . . . .  - ~ ,  

where [Mi] denotes the equivalence class on dg containing M i. 
By the computer program provided in Part II of this paper it turns out 

that the following problem can be solved by a machine in a few seconds. 
Suppose S ESP such that [{f  ~F[S u {f} is compatible} [ ~ 100, then deter- 
mine all M ~ Jd with S _ M. 

For the sake of completeness we remark that we normally need I SI = 5 
or [ S I = 4, provided that there are some side conditions which we will have 
in a later stage of the proof. As described at the end of Section 2, our first 
objective will be to find up to equivalence all M e ~ / s u c h  that M contains at 
least four elements of order 3. So we need a list of all compatible sets S o of 
size 4 consisting of elements of order 3 only. 

Thus we consider a, b ~ F  of order 3 such that a b -  ~ eF .  Then up to conjuga- 
tion we have one of the following cases: 

(i) a = (123), b = (132) with diagram a Oss--=O b (a 3-fold connection) 
(ii) a = (123), b = (124) with diagram a O==O  b (a 2-fold connection). 

(iii) a = (123), b = (145) with diagram a O- - -O  b (a single connection). 

Next consider the possible diagrams (triangles) for three compatible 
elements of order 3 in F. Clearly, in any such triangle there can be at most 

one 3-fold connection. Thus we get the following diagrams: 

( v ) ~  ( v i ) ~  ( v i i ) ~  

It now easily follows that there are no solutions for cases (i) and (ii). Similary, 
up to conjugation we obtain unique solutions for 

(iii) (a, b, c) = ((123), (132), (145)) 
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(iv) (a, b, c) = ((123), (124), (125)) 
(v) (a, b, c) = ((123), (124), (235)) 

and two solutions for 
(vi) (a, b, c)e { ((123), (124), (156)), ((123), (124), (345))} 

and three solutions for 
(vii) (a, b, c)e { ((123), (145), (167)), ((123), (145), (246)), 

((123), (145), (256))}. 
To demonstrate the procedure of establishing diagrams with four points we 
now handle case (iii) in full detail to obtain a complete list of solutions. 
(Recall that there were no solutions for cases (i) and (ii).) We start with the 
diagram a ~ b and add a fourth point d; in terms of the diagrams we have 

o "  
C 

a ~ b  As the triangle {a, b, c} contains a 3-fold connection we obtain 
cr O 

c d 

a ~ b  Thus, we finally get the following three cases: 

c d 

in case (a) the above arguments show (a, b, c) = ( (123), (132), (145) ) and 
d=c -1, thus yielding the unique solution {(123),(132),(145),(154)}. In 
case (b) the triangle diagram (b, c, d) has two solutions, as shown in (vi) above. 
Furthermore, we have a = b- 1 and so we have precisely the two solutions 
{(123), (124), (156), (165)} and {(123), (124), (345), (354)}. For lexicographical 
reasons these solutions are changed via conjugation into {(123),(132), 
(145), (146)} and {(123), (132), (145), (245)}, respectively. 

Similarly, in case (c) we obtain three solutions: { (123), (132), (145), (167)}, 
{(123), (132), (145), (246)} and {(123), (132), (145), (256). 

Next we add a point to the triangle of case (iv), and thus we get a ~ ; ~ b  

c d 
and considering the triangle {b,c,d} we have the following three cases: 

Case (~) yields the diagrams ~ . o r  [ ~  In case (~) we obtain ~ or 

~ where the first solution is obviously the same as the second one of 

case (c0. 
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The rest of the considerations are left to the reader. 

Table I gives a complete list of compatible sets SE6~ (where 1 is deleted) 
consisting of four elements of order 3. The third column gives the number of 
elementsf  e F  such that S ~ {f} is compatible. 

As pointed out before, a computer finds in a few seconds all M e J¢ with 
S _ M in each of these 32 cases. It turns out that, except for the Desarguesian 

plane, all known translation planes of order 16 have a coordinate set with 
at least five elements of order 3. Thus they all show up during the above 
computation. 

This gives rise to the following inductive procedure indicated in step I of 
Section 2. 

Assume all translation planes of order 16 with a coordinate set with at 
least n elements of order 3 have been determined. Then consider up to 

conjugacy sets SESP 0 such that IsI = n + 1 and S contains precisely n - 1 
elements of order 3. According to Section 2 the set S -  {1} describes n 
additional points on I with respect to (0%0, 1). Changing coordinates 
means that we now consider compatible sets S with S ~ S. As pointed out in 
Section 2, any plane ¢~(M) or ~*(M) with S ~ M can be described by a 
coordinate set S with S ~_/~, and vice versa. The effect of this 'changing of 
coordinates' is shown in the following example: 

Choose S={1,(123),(124),(13425)(678)}. Using 2.1 and 2.5 we get 
S+1={1,(132),(142),(14532)} which, by inversion, is equivalent to 
{1, (123), (124), (12354)}. Further, (S + 1)(132) -1 = {1, (123), (143), (145)}. 

This example shows two major tools by which to reduce the possibilities 
for any compatible set S with n + 1 elements where n - 1 of them have 
order 3. The following shows the effect in our example: 

There are 492 elements in F of order not equal to 3 which are compatible 

with { (123), (124) }. Up to conjugacy only 27 of these are different, and by the 
procedure just explained only two possibilities survive, namely (23)(45) (678) 

and (123) (45) (78). For both cases S ' =  {1, (123), (124), (23) (45) (678)} and 
S" = { 1, (123}, (124), (132) (45) (78) } there are 123 compatible elements of 
order 5, 6 or 15 in F. Although this number is greater than 100 we started the 
appropriate program, and after 1½ minutes of computing time we obtained 
four coordinate sets containing S', and none containing S". A further example 
where all M E ~ / a r e  determined with S _ M for a S~Se o, is given in full detail 
in the Appendix. 

As this example illustrates, the philosophy always is: If IsI is small, then 
using equivalence operations there are only a few possibilities for essentially 
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Diagram Solutions S No. of compatible elements 

(123), (132), (145), (154) 60 

( I '  I~ 

(123), (132), (145), (146) 48 
i / ~ i ~  (123), (132), (145), (245) 76 

(123), (132), (145), (167) 36 
(123), (132), (145), (246) 38 
(123), (132), (145), (256) 48 

(123), (124), (125), (126) 172 
(but Nss(S ) is large !) 

t Y  ~ 1  

No solution 

(123), (124), (125), (246) 84 
* y  r ,  

(123), (124), (125), (167) 82 
(123), (124), (125), (345) 64 

(123), (124), (235), (245) 60 

, L  ~ J 

(123), (124), (235), (246) 42 
,,  ~, (123), (124), (235), (154) 58 

(123), (124), (235), (163) 84 

(123), (124), (235), (156) 42 
(123), (124), (235), (165) 36 
(123), (124), (235), (267) 34 

(123), (124), (156), (157) 44 
(123), (124), (156), (176) 60 
(123), (124), (156), (256) 48 
(123), (124), (345), (346) 48 

(123), (124), (156), (178) 24 
(123), (124), (156), (257) 40 
(123), (124), (156), (267) 60 
(123), (124), (156), (275) 32 
(123), (124), (156), (354) 42 
(123), (124), (156), (364) 32 

(123), (145), (167), (246) 22 
(123), (145), (167), (247) 28 
(123), (145), (246), (256) 48 
(123), (145), (256), (346) 40 
(123), (145), (256), (364) 52 
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extending S by a further compatible element. If I S I is large enough, then the 
number of elements which are compatible with S is smal l -  in general, not 
greater than 1 0 0 - a n d  so all possible coordinate sets can be computed. 

All this is still valid even where there are no elements of order 3, i.e. only 
elements of order 516 or 15 show up. By Lemmas 2.1 and 2.5 we may assume 

that any such coordinate set either contains the element (12345) or consists 
of elements of order 6 only. Using Lemma 2.1 the elimination of the second 
case can easily be done by hand and is left to the reader. 

Since the problem of finding coordinate sets M with no coordinate set M' 
equivalent to M containing elements of order 3 turns out to be a crucial and 
delicate point, we give some further details. 

There are precisely 1536 elements in F which are compatible with (12345) 
and have order not equal to 3. Up to conjugacy only 72 of these are different 

and, using equivalence, we finally obtain that there are only 13 essentially 
different extensions of (12345), namely (46857),(34567),(36578),(36475), 

(23) (465)(78), (23564), (23546), (24657), (24)(35)(678), (247)(36)(58), (26534), 
(265) (34) (78) or (13524). In any of these 13 case we applied the same procedure 
again: 

(i) Determine all permutations in F which are compatible now with 
two elements. 

(ii) Use conjugacy arguments and 2.1 to get all essentially different 

compatible sets of three elements. 
(iii) Select the permutations which are compatible with these three 

elements (in all cases there are almost 100 of them!) and determine 

all possible coordinate sets. 

5. I D E N T I F I C A T I O N  

When all steps indicated in the previous section are done we have almost 

200 different coordinate sets. Thus the problem is to find out which transla- 
tion planes of order 16 are described by these sets. The following procedure 

is found to be effective: 
Take a distinct coordinate set for any of the known translation planes of 

order 16, e.g. see Section 3 and apply 2.1. After less than 7 seconds of computa- 
tion the machine presents a list of many coordinate sets for each of the known 
planes. Clearly, this is done only for six of the eight known translation 
planes of order 16: the Desarguesian plane has, up to conjugacy, a unique 
coordinate set and conjugating a coordinate set of the Lorimer-Rahil ly 
plane with an element of S 8 - A 8 will give us a coordinate set of the Johnson-  

Walker plane. 
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Next we install three lists for any of these six known planes. In the first 

we have listed the number of elements of order 3, 5, 6 or 15 that occur in any 
of these coordinate sets; in the second list we collect short descriptions of 
some peculiarities of any of the coordinate sets; while in the third list we have 
coordinate sets themselves. We now proceed with the final identification. 

Given any coordinate set, look at the number of elements of order 3, 5, 6 or 
15 and compare this distribution with the first list. If one finds such a distribu- 
tion, then compare the coordinate set with the short description given in the 

second list. If this coincides with the given coordinate set then look at the 
appropriate set in the third list and find a permutation in S~ conjugating the 
two sets. Note that we have not tried to make the three lists complete! 
In all cases it turns out that by doing the procedure with another equivalent 

coordinate set we finally find a conjugate set in the third list. 
We illustrate the described identification procedure by an example: 

Let us assume that we have to identify the following plane: (246), (264), 
(578)(13)(46), (375)(18)(46), (358)(17)(24), (387)(15)(46), (358)(17)(46), 
(578)(13)(24), (578)(13)(26), (358)(17)(26), (375)(18)(26), (387)(15)(24), 
(375)(18)(24), (387)(15)(26). 

We first look at the distribution of elements and see 0 -12-0 -2 ,  i.e. 0 
elements of order 15, 12 elements of order 6, 0 elements of order 5, and 2 

elements of order 3. Next we compare 0 - 1 2 - 0 - 2  with the£irst list and see that 
at least the Lorimer-Rahil ly plane, the Dempwolff plane, and the derived 
semifield plane have coordinate sets with this pattern. Thus we next compare 
the given coordinate set with the corresponding descriptions in the second 
list. 

In the case of the Lorimer-Rahil ly plane we find that the elements of order 
3 are inverse (which we have !). The 12 elements of order 6 are pairwise inverse 
(which we do not have !). Here we stop with the Lorimer-Rahil ly plane and 
consider the Dempwolff plane. The elements of order 3 are inverse (which we 
have !). There are four different 3-cycles in the elements of order 6, and each 
occurs three times (which we have !). There are 11 distinct transpositions in 
the elements of order 6 (which we do not have !). Thus, finally we consider 
the derived semi-field plane to find the same description, but for the last point 
we have instead: elements with a common 3-cycle also have a common 
2-cycle (which we have !). Therefore, we take the precise coordinate set for 
this plane from the third list, namely (123), (132), (578)(46)(13), (578)(46)(12), 
(578)(46)(23), (487)(56)(12), (487)(56)(13), (487)(56)(23), (458)(67)(12) 
(458)(67)(13), (458)(67)(23) and finally try to identify via conjugation. In 
fact (16342) fits our requirement. 
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In the pattern of this example we get the proof of the following result: 

T H E O R E M .  Let ~ be a translation plane of order 16, then ~ is isomorphic 
to one of the planes described in Section 3. 

6. APPENDIX 

Here we present a characteristic example in which a compatible subset 
SE5 e was completed to the coordinate sets MeJ/g with S c M. This example 
was the only case, however, where the Desarguesian plane could and did show 
up! 

There are 181 elements in F compatible with S = { 1, (123), (132), (45678) }. 
Acting with Ns~(S ) we see that only 17 of these lead to essentially different 
extensions. Obviously the number of compatible elements for S together 
with any one of these elements comes down to a quantity that can be managed 
by the machine. These 17 cases were computed together, and after less than 
1½ minutes of computing time the following list of planes was obtained. 
(Note that, in the following table, we always delete the subset S from each 
coordinate set. We also use the following abbreviations: ds f=  derived 
semi-field plane of order 16, Hall = Hall plane of order 16, Des = Desargue- 
sian plane of order 16.) 

Coordinates Type of 
plane 

(45687), (45768), (46785), (46578), (46857), (47586), (48567), Hall 
(123)(47586), (123)(48765), (132)(47586), (132)(48765) 

(45687), (45768), (46857), (46587), (48576), (123)(47865), (123)(47586), dsf 
(123)(48675), (475)(12836), (475)(16238), (475)(18263) 

(45687), (45768), (46857), (46587), (48576), (132)(47865), (132)(47586), dsf 
(132)(48675), (475)(13826), (475)(16328), (475)(18362) 

(45687), (45867), (46875), (46587), (46758), (47568), (48576), Hal1 
(123)(47865), (123)(48576), (132)(47865), (132)(48576) 

(45687), (45867), (46578), (46758), (47586), (123)(47685), (123)(48765), dsf 
(123)(48576), (485)(12736), (485)(16237), (485)(17263) 

(45687), (45867), (46578), (46758), (47586), (132)(47685), (132)(48765), dsf 
(132) (48576), (485) ( 13726), (485) (16327), (485) (17362) 

(45687), (46785), (46758), (47568), (47586), (123)(48765), (123)(48576), dsf 
(123)(48657), (576)(12438), (576)(14283), (576)(18234) 

(45687), (46785), (46758), (47568), (47586), (132)(48765), (132)(48576), dsf 
(132) (48657), (576) (13428), (576) ( 14382), (576) ( 18324) 



CLASSIFICATION OF TRANSLATION PLANES, I 151 

Coordinates Type of 
plane 

(45687), (46875), (46857), (48567), (48576), (123) (47865), (123)(47586), dsf 
(123)(47658), (586)(12437), (586)(14273), (586)(17234) 

(45687), (46875), (46857), (48567), (48576), (132)(47865), (132)(47586), dsf 
(132)(47658), (586)(13427), (586)(14372), (586)(17324) 

(45786), (45768), (46587), (47685), (47856), (47568), (48576), Hall 
(123) (46587), (123)(48675), (132) (46587), (132) (48675) 

(45786), (45768), (47856), (47586), (48567), (123)(46875), (123)(46587), dsf 
(123)(48765), (465)(12837), (465)(17238), (465)(18273) 

(45786), (45768), (47856), (47586), (48567), (132)(46875), (132)(46587), dsf 
(132)(48765), (465)(13827), (465)(17328), (465)(18372) 

(45786), (45867), (46875), (46587), (46758), (47685), (47856), Hall 
(47568), (48765), (48576), (48657) 

(45786), (45867), (46875), (47856), (48567}, (48576), (48657), Hall 
(123) (46875), (123)(47658), (132)(46875), (132)(47658) 

(45786), (45867), (46578), (46587), (46758), (47685), (48657), Hall 
(i23)(47685), (123)(48756), (132)(47685), (132)(48756) 

(45786), (45867), (46578), (47586), (48567), (123)(46875), (123)(47685), dsf 
(123) (48765), (687) ( 12534), (687) ( 14235), (687) (15243) 

(45786), (45867), (46578), (47586), (48567), (132)(46875), (t32)(47685), dsf 
(132)(48765), (687)(13524), (687)(14325), (687)(15342) 

(45786), (45867), (46758), (47856), (47568), (47586), (48765), Hall 
(123)(46857), (123)(48765), (132)(46857), (132)(48765) 

(45786), (45867), (678) (24)(35), (132)(46875), (132)(46857), dsf 
(132)(47685), (132)(47658), (132)(48765), (132)(48756), (678)(14) (25), 
(678)(15)(34) 

(45786), (45867), (678)(25)(34), (123)(46875), (123)(46857), dsf 
(i23) (47685), (123) (47658), (I 23) (48765), (123)(48756), (678)(14) (35), 
(678)(15)(24) 

(45786), (47856), (456)(27)(38), (132)(46857), (132)(46875), dsf 
(132) (46587), (132) (47658), (132) (48765), (132) (48675), (456) (17) (28), 
(456)(18)(37) 

(45786), (47856), (456)(28)(37), (123)(46875), (123)(46857), dsf 
(123) (46587 ), (123) (47658), (123) (48765), ( 123) (48675), (456) (17) (38), 
(456)(18)(27) 

(46857), (46875), (46587), (47685), (48765), (48576), (48657), Hall 
(123)(45678), (123)(47586), (132)(45678), (132)(47586) 

(46875), (48576), (586) (23) (47), (586) (12) (47), (123) (45678), dsf 
(123)(46875), (123)(48576), (132)(45678), (132)(46875), (132)(48576), 
(586)(13)(47) 
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Coordinates Type of 
plane 

(46875), (48576), (123)(45678), (123)(46875), (123)(48576), dsf 
(132) (47865), (132) (47586), (132) (47658), (13472), (13247), (14732) 

(46875), (48576), (123)(47865), (123)(47586), (123)(47658), (12347), dsf 
(12473), (132)(45678), (132)(46875), (132)(48576), (14723) 

(46875), (48657), (476)(23)(58), (476)(12)(58), (123)(45678), dsf 
(123)(46875), (123)(48657), (132)(45678), (132)(46875), (132)(48657), 
(476)(13)(58) 

(46875), (48657), (123)(45678), (123)(46875), (123)(48657), dsf 
(132)(45876), (132)(47586), (132)(47658), (13582), (13258), (15832) 

(46875), (48657), (123)(45876), (123)(47586), (123)(47658), (12358), dsf 
(12583), (132)(45678), (132)(46875), (132)(48657), (15823) 

(46857), (47586), (48765), (123)(45678), (123)(46857), (123)(47586), Des 
(123)(48765), (132)(45678), (132)(46857), (132)(47586), (132)(48765) 

(46857), (123)(45678), (123)(46857), (132)(45876), (132)(46857) Hall 
(132)(47865), (132)(47586), (132)(47658), (132)(48765), (132)(48675), 
(132)(48756) 

(46857), (123) (45876), (123) (46857), (123) (47865), (123) (47586), Hall 
(123)(47658), (123)(48765), (123)(48675), (123)(48756), (132)(45678), 
(132)(46857) 

(47586), (123)(45678), (123)(46875), (123)(46857), (123)(46587), Hall 
(123)(47687), (123)(48765), (123)(48576), (123)(48657), (132)(45678), 
(132)(47586) 

(47586), (123)(45678), (123)(47586), (132)(45678), (132)(46875), Hall 
(132) (46857), (132) (46587), (132) (47685), (132) (48765), (132) (48576), 
(132)(48657) 

(45786), (47856)° (456)(27)(38), (132)(46875), (132)(46857), dsf 
(132)(46587), (132)(47658), (132)(48765), (132)(48675), 
(456)(17)(28), (456)(18)(37) 
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