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1. INTRODUCTION 

A convex body is a compact convex set with non-empty interior. A collection 
of convex bodies in the plane with mutually disjoint interiors, and such that 
each of these bodies in congruent to a given body K, is called a packing of 
the plane with (copies of) K. If a packing of the plane with K entirely covers 
the plane, then the packing is called a tessellation and we say that K tessellates 
the plane. Let us say that a packing is uniform if there exists a tessellation 
whose every member contains exactly one member of the packing. The 
density of a packing is a real number between 0 and 1 which, intuitively 
speaking, is supposed to represent the ratio between the sum of the areas 
of the bodies used for the packing and the area being packed. In the general 
case, a formal definition of the density of packing of the plane would be some- 
what cumbersome, but in the case of uniform packings, it is quite natural to 
assume it to be the ratio between the area of the body used for the packing 
and the area of a body which contains it and which tessellates the plane in the 
proper manner, associated with the packing. The question of the uniqueness 
of the area of the tessellating body is settled without much trouble. Since in 
this paper we will deal with uniform packings only, the general definition of 
density will be left aside. G. D. Chakerian and L. H. Lange [1] proved that 
every convex body K is contained in a quadrilateral of area at most x/2 times 
that of K. Since every quadrilateral tessellates the plane, they concluded that 
every convex body admits a (uniform) packing of the plane with density 
at least x/2/2. 

In this paper, as indicated by its title, we will prove the following claim: 

THEOREM. Every convex plane body admits a uniform packing of the plane 
with density greater than 3/4. 

a result of I. F~ry ( [3], or see L. Fejes T6th's monograph [4], pp. 100-102) 
should be mentioned here, which states that each convex body can be lattice 
packed in the plane with density at least 2/3. For lattice packings, which only 
allow translations of the given body, F~ry's result is the best possible. See 
also R. Courant's paper [2] for an elegant, elementary proof of F~try's 
theorem. 

The idea of the proof of our theorem is as follows. We will be concerned 
with a special kind of hexagon, which we will call a p-hexagon. A p-hexagon 
is a hexagon with a pair of parallel and equal length opposite sides. 'Opposite' 
here means separated by exactly two other sides. Given a convex body K, 
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Figure 1. 

we will construct a certain p-hexagon H containing K and such that I HI ~< 
~IKI (I S I denotes the area of a set S), where the equality only occurs in case 
K itself is a p-hexagon. Thus, we always can enclose K in a p-hexagon whose 
area is less than 4/3 times that of K. This is all we need to prove our theorem, 
since every p-hexagon tessellates the plane. Figure 1 illustrates the tessella- 
tion: the hexagons are arranged in rows, each row consisting of the translates 
of the hexagon, and the adjacent rows being turned upside down with respect 
to each other. 

Remark. Every pentagon with a pair of parallel sides, every quadrilateral 
and every triangle can be considered a (degenerate) p-hexagon. Each of these 
figures tessellates the plane in the same manner as a non-degenerate p-hexa- 
gon does. 

2. THE CONSTRUCTION OF THE p-HEXAGON 

Let K be the given convex body and let 0 be an arbitrary direction (i.e., a 
unit vector) in the plane. Denote by m 1 and m2 the two lines parallel to 0 
and supporting K, making sure that when 0 varies, both ml and m2 depend 
on 0 in a continuous manner. One way to do it is to consider 0 to be north 



P A C K I N G  CONVEX BODIES IN THE P L A N E  151 
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Figure 2. 

and let rnl always be w e s t  o f m  2 . Let Ti (for i = 1, 2) be a triangle containing 
K, with one side on mi and of minimum area. Let H be the intersection 
T1 n 7"2, which is a polygon with at most six sides. 

We will now be concerned with the area of H, and, at the same time, fixing 
0 so that H is a p-hexagon. 

Let si be the length of the side of Ti which lies on rni(i = 1, 2), and let hi 
be the altitude of Ti perpendicular to 0. Let Ai be a point at which mi touches 
K and let Bi and Ci be the midpoints of the sides of Ti which are not parallel 
to 0 (See Figure 2). It is quite easy to show (just as in [5]) that the points 
Bi and Ci belong to K. Notice now that BiCi is the unique chord of K which 
is parallel to mi and which has the property that the (or some) pair of lines 
supporting K at the end points of that chord bound a segment on ml twice 
the length of that chord. This implies that si is uniquely determined by 0, 
and since the chord BiCi and the area of Ti depend on 0 in a continuous 
manner, so do st and hr That in turn yields that the lengths of the sides of 
H which lie on ml and me depend continuously on 0. Therefore there exists 
a 0 such that those two sides of H are of equal length. From now on we will 
assume 0 to be fixed in that specific direction, which makes H a p-hexagon. 
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Let us notice that the polygon G = A 1 B2B~A2C 1C 2 (see Figure 2) is con- 
tained in K. This yields that IG[ ~< ]K [. 

Since the area of G equals to the sum of the areas of the quadrilaterals 
AIB2CIC 2 and B1AeCIC2, we get 

(1) IGl = ~(s,h2 + s2hl). 

In the following section we will prove that (i) I HI "~3 "< -~1G [, and the equality 
occurs only if G is a p-hexagon. This is sufficient to prove our theorem, 
since ]G[ ~< ]K[ and the equality occurs only if G =  K. 

3. A R E D U C T I O N  OF TH E G E O M E T R I C  P R O B L E M  TO AN 

A L G E B R A I C  ONE A N D  ITS S O L U T I O N  

Let m be a line perpendicular to 0, denote by Pi (for i = 1, 2) the intersection 
point m ~ mi, denote by Qi the perpendicular projection on m of the vertex 
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of Ti which does not lie on m~ and let Ri be a point on mi whose distance from 
P~ equals si and such that R1 and R2 lie on the same side of m (see Figure 3). 
Let Ti be the triangle whose vertices are P~, Qi and R~, and let f l  = T I n  7~2 . 
It is easy to notice that IHI-< 1/71 and that the sides o f f l  that lie on m~ and 
m 2 are of the same length as those of H. Now, instead of (i), we will prove the 
following: 

(ii) 1171 ~< ~l G I, and the equality occurs only if G is a p-hexagon 

from which (i) follows immediately. 
Eet D denote the intersection point of the hypotenuses of iP~ and 7~2 

and let Do be the perpendicular projection of D on m (see Figure 4). Denote 
the length of the resulting segments on m as follows" a = Q2P1, b = PIDo, 
c = DoP2, and d = P2Q1. All of these four numbers are, of course, non-nega- 
tive, and a + b > 0 and c + d > 0 or else the triangles T1 and 7~2 would not 
exist. Also, b + c > 0 and DDo > 0, since K has an interior point. Without 
loss of generality we can assume that b + c = 2 and DDo = 2, since this can 
be obtained by an application of a suitable affine transformation preserving 
the right angle between m and 0. Let x = b - 1 and get 

(2) b = l + x , c = l - x , - l < x < l .  

The fact that the sides of /7  parallel to 0 are of equal length yields that 

a d 
(3) 

a + b  c+d '  

from which it follows that b > 0 and c > 0 and 
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Then let y = a/b = d/c(y ~> 0), and, by (2), get 

(5) a = (1 + x)y, d = (1 - x)y. 

A further analysis of the configuration of the triangles T1 and 7~2 yields 
the following: 

(6) h I = b + c + d = 2 + (1 - x)y, 

(7) h2 = a + b + c =  2 +(1  +x)y,  

= 2 b + c + d  l + x  
(8) sl - 2 + 2(1 c +d - x)(y + 1) 

= 2 a + b + c  1 - x  
s2 - 2 + 2  

a +  b (1 +x ) (y  + 1) 
(9) 

and 

1( 2a ) 1 /  2d _ ) 4 y + 2  
(10) I/-?]=~\a-T~+2 b + ~ c - ~ + 2  c =  y + l '  

Also, (1) and (6)-(9) produce 

(2 + y)2 _ (xy)2 

(11) IGI =  (i7  y7 i). 

From (10) and (11)we get directly E:I' (12) 416 [ BIN] 2 (y;12 4x 2 7 
_ = + ~ J ,  

where y~>0 and x 2 <  1. Hence 41G I - 3IH] >-0 and the equality occurs 
only if y = 1 and x = 0. Under these conditions we get a = b = c = d, and by 
(2) and (3), sl = s2. In that case B1C1 = B2C2, since BiCi = ½si (see Figure 2), 
and G is a p-hexagon. This proves (ii) and the Theorem from Section 1. 

4. CONCLUSION 

By an argument of a topological nature, the Theorem whose proof has just 
been completed can be somewhat strengthened. Since the collection of affine 
equivalence classes of all convex plane bodies of area 1 is a compact set, 
and since the function assigning to each such equivalence class the minimum 
area of a p-hexagon containing a representative of that class is continuou s, 
there exists a minimum value for that function, taken on a specific element 
of that compact set. Let us denote that minimum value by A. We have proved 
in this paper that A < ~-, thus we can conclude that there exists a number 
d > ¼ (namely d = A- 1) such that every convex body can be packed .in the 
plane with density at least d. The value of A remains unknown. 
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