
U L R I C H  B R E H M  A N D  W O L F G A N G  K U H N E L  

S M O O T H  A P P R O X I M A T I O N  O F  P O L Y H E D R A L  

S U R F A C E S  R E G A R D I N G  C U R V A T U R E S *  

ABSTRACT. In this paper we prove that  every closed polyhedral surface in Euclidean three- 
space can be approximated (uniformly with respect to the Hausdorff  metric) by smooth  surfaces 
of the same topological type such that not  only the (Gaussian) curvature but also the absolute 
curvature and the absolute mean curvature converge in the measure sense. This gives a direct 
connection between the concepts of total absolute curvature for both smooth  and polyhedral 
surfaces which have been worked out by several authors, particularly N. H. Kuiper and T. F. 
Banchoff. 

1. C U R V A T U R E  OF P O L Y H E D R A L  S U R F A C E S  

We consider a polyhedral surface M in Euclidean three-space which is 
defined to be a compact subset M _c E 3 which is both 

(1) a polyhedron in the usual sense (cf [11] for instance), 
(2) homeomorphic to a connected two-dimensional manifold with or 

without boundary. 

This means that there exists a finite triangulation of M such that each edge 
is contained in a certain (affine) line and each face is contained in a certain 
(affine) plane. In general, we assume that the faces of M are 3-gons but 
sometimes we will allow convex n-gons which, of course, can be subtriangulat- 
ed into 3-gons in a suitable manner. Note that all considerations in this 
article also hold for immersed surfaces, where immersion means local 
embedding. 

For  a vertex peM we define the star st(p) to be the union of all (closed) 
3-gons containing p, and the link lk(p) to be the boundary of st(p) in the 
relative topology of M. Topologically, st(p) is a closed disk, lk(p) is a circle 
in case p ~ M\OM and an interval in case p ~ t?M. Of course, st(p) consists of a 
certain number - say m; - of 3-gons which have certain (positive) angles at 
p, say ei(P), i = 1 . . . . .  me. Then the curvature K(p) of M at p is defined by 

(1) K(p): = ~27z -  ~ . / ~ i ( p ) i f p ~ M \ O M  

( T C - - 2 ~ i ( p )  ifp~OM. 
i 

Roughly speaking, the curvature measures the deviation of M from a 
flat (i.e., Euclidean) surface. Of course, K is intrinsically defined in the sense 

* The present paper is a detailed version of the short announcement  [3]. 
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that it depends only on the inner metric of M (PL-Riemannian metric, for 
details see [14]). 

Now let Vo, e 0 , f  be the number  of vertices, edges and 3-gons in M\OM, 
v I and e 1 the number  of vertices and edges in 0M, then by the obvious equa- 
tions 2e 0 + e I = 3f  and vl = e~ we can derive directly the Gauss-Bonnet 
equation for the total curvature: 

(2) E K(p) = 2~z'v o + rt.v, - E ~ i ( p )  
p e M  p i 

= rr(2v o + v I - f )  

= ~z(2v 0 + v 1 - 2% - e 1 + 2f) 

= 21r ;g (M). 

The following gives some motivation for the fact that the curvature K 
defined above can be considered as a suitable analogue of the Gaussian 
curvature of a smooth surface: 

Let U(p) be a small neighborhood of a vertex p e M \ O M  which topologi- 
cally is a disk. Obviously there is a smooth approximation of st(p)\U(p) 
by suitable cylinders with zero curvature; inside of U(p) let us choose an 
arbitrary smooth approximation (with respect to the Hausdorff  metric). 
In this manner st(/)) can be approximated by a smooth surface F(p) where 
0F(p) is a geodesic mv-gon with sum of the interior angles romp- ~ie~(p). 

Hence, the classical Gauss -Bonne t  formula for F(p) says that the total 
curvature of F(p) is just 

fp  K do = 7cm v - ~ ai(P) - (rnp - 2)~ = K(p). 
(p) i 

So we see that K(p) is nothing but the total Gaussian curvature (concentrated 
in one point) of an approximating smooth surface. Clearly this approxi- 
mation can be done globally, which leads to the following. 

P R O P O S I T I O N  1. Let M be a compact polyhedral surface without bound- 
ary. Then there exists a sequence (M ) .~  of smooth surfaces in E 3 (each 
M homeomorphic to M) such that 

(i) 
(ii) 

M n = M outside of the 1~n-neighborhood of the 1-skeleton of M, 
M ---* M with respect to the Hausdorffmetric, 

n--+ ~ 

and such that in addition the following curvature convergence property (CCP) 
is satisfied for the Gaussian curvature K: 
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CCP(K) for every open set U ~_ E 3 where ~,U contains no vertex of M the 
following sequence converges 

f K(p) K do.---~ 
U t ~ M n  n ~  ~ p E U c a M  

where K and d o  denote the Gaussian curvature and the area 
element of M respectively. 

Note that CCP(K) can be interpreted as a weak convergence with respect 
to the curvature measure where we mean by curvature measure in the poly- 
hedral case the discrete Dirac measure in the vertices weighted with the 
curvature and in the smooth case the area measure weighted with the 
Gaussian curvature regarded as a function. 

Of course, CCP makes sense not only for the Gaussian curvature K but 
also for other curvatures, e.g., the absolute Gaussian curvature or the mean 
curvature. Nevertheless, it is much more difficult to get a sequence satisfying 
CCP for the absolute Gaussian curvature because there is no theorem of the 
Gauss -Bonne t  type in this case. 

The main theorem of the present paper proves the analogue of Proposit ion 
1 for the absolute Gaussian curvature, the mean curvature and the absolute 
mean curvature. 

For a smooth oriented surface without boundary, the mean curvature 
measure is defined to be the area measure weighted with the mean curvature 
regarded as a function. For  an edge e of a polyhedral-oriented surface 
without a boundary, let H(e) denote the signed angle between the outer 
normals of the two adjacent faces ( - 7r < H(e) < g) which has to be taken as 
negative if there are outer normals which meet (we call the edge 'concave'  
in this case). Then the mean curvature measure ~H for an oriented polyhedral 
surface can be defined by 

f t  H: = ~ H(e).length(e c~ U) 
l e 

for a Borel set U in M, where the sum ranges over all edges e in M. If the 
orientation is changed, then ~ H changes its sign. The absolute mean curvature 
measure ~]H], defined by 

f i l l  l: = Z[H(e)  I'length(e c~ U) 
U e 

does not depend on the orientation and, therefore, it can also be defined for 
nonorientable immersed surfaces. 
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2. ABSOLUTE CURVATURE OF POLYHEDRAL SURFACES 

By analogy with the case of Gaussian curvature considered above, in this 
section we want to define a suitable polyhedral analogue of the absolute 
Gaussian curvature [K[. There exists 1, for instance, an everywhere flat 
(i.e., K-= 0) polyhedral torus in E 3, so the absolute polyhedral curvature 
[K(p)[ would not satisfy the fundamental inequality that the total absolute 
curvature of a closed surface M is greater or equal to 2~(4 - z(M)). 

The most familiar proof of that inequality in the smooth case uses the 
measure of unit normals perpendicular to supporting planes. This motivates 
the following definitions for a vertex p of a polyhedral surface without a 
boundary: 

Let A(p) m S 2 be the set of all exterior unit vectors perpendicular to local 
supporting planes of M in p and let 7(P): = area(A(p)) be the exterior angle 
at p. Of course, 0 ~< 7(P) -G<2~. 

Now we decompose the curvature K(P) into its 'positive' and its 'negative' 
part. Let us define 

K + (p) : = y(p) K _  (p) : = K + (p) - K(p) ,  

then clearly K(p)=  K + ( p ) - K ( p )  and we define the absolute  curvature  
K,(p) at p by 

(3) K , ( P ) : = K + ( p ) + K  (p). 

Another interpretation of K+ (p) and K (p) is the following: 

1st case: Let p be a vertex having some local supporting plane of M in p. 
Then p lies on the boundary of the convex hull of st (p). Let sth (p) denote 
the star of p in the boundary of the convex hull of st (p). A(p) for M is the 
same as for sth (p), hence 7(P) for M equals 7(P) for sth (p) and this is equal to 
the curvature K(p) of sth (p) in p because in general ~;(q) = K(q) for vertices 
q of a convex polytope. Hence K+(p) in M is equal to K(p) in sth (p). Hence 
K _ ( p )  = K+(p)  - K(p)  (in M) equals the sum of the interior angles of st(p) 
at p minus the corresponding sum of sth(p). We can now see easily that 
K_ (p) = 0 if and only if M is locally convex in p. 

2nd case: There is no local supporting plane of M in p. Then K+(p)=  
7(P) = 0, hence K_ (p) = - K(p) > O. 

In any case we have K _  (p) >>- 0, K + (p) >>- 0, K ,(p)  >~ O. The equality K ,(p)  = 0 
holds if and only if M is locally convex at p with K(p)  = 0 which means that p 

This was shown by the first named author in a talk at the Oberwolfach Conference on convex 
bodies, 1977. 
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A B C 

Fig. 1. 

is not a proper vertex, i.e., p lies in the relative interior of a natural face or 
edge of M. 

Summarizing, we have the following four cases of vertices (see Figure 1): 

(A) K = K + = K , > O  and K = 0  

(purely positive curvatures: locally convex case) 

(B) - K = K  = K , > O  and K + = 0  

(purely negative curvature: saddle-like case, no open set of local 
supportin 9 planes) 

(C) K > 0  and K+ >0 

(mixed case with an open set of local supportin 9 planes) 

(D) K,  = 0. 

(not a proper vertex) 

Let us define the total absolute curvature TA (M) of M by 

(4) TA(M): = ~ K,(p) = ~ (K+(p)+ K (p)). 
peM peM 

By analogy with the smooth case we have : 

P R O P O S I T I O N  2. Let M be a polyhedral surface 
Then the followin 9 inequality is valid: 

TA(M) >/2~z(4 - )~(M)). 

without a boundary. 

Proof. Clearly M cannot be contained in some plane. Hence, for each 
unit vector zeS  2 there is at least one global supporting plane of M with z 
as the outer normal. This implies 

Z K+(p)/> 4m 
peM 
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On the other hand, by the Gauss-Bonnet  Equation (2) we have 

K + (p) - ~ K_ (p) = 2~x(M) 
p p 

which then implies 

Z K , ( p ) / >  - 2 z(M). 
p 

Remark. Equality holds if and only if for all vertices p with K+(p)> 0, 
the local convex hull coincides locally with the global convex hull. Usually M 
is called tight in this case (cf. [6], for some recent combinatorial results 
see also [-4]). 

For  later use let us state here the following 

LEMMA 1. K(p) and K,(p) depend continuously on the vertices of M, more 
precisely: let all vertices in M be.fixed except one vertex Po which will be 
moved, then the curvatures K and K ,  at the points of M\st (Po) remain unchanged 
while at the points of st (p0) they depend continuously on Po" 

In particular, one can change M a little bit so that no two edges are collinear 
and no three edges are coplanar, such that the change of K and K ,  is arbitrarily 
small. 

The proof of Lemma 1 follows directly from the definitions of K and K ,  
because, obviously, the angles c~i(p) and 7(P) depend continuously on the 
vertices. 

To see that, in fact, K ,  is a suitable analogue for the absolute curvature 
of a smooth surface, the same argument as in Proposition 1 will not work. 
Of course, an arbitrary local smoothing will, in general, produce a very high 
total absolute curvature. So in order to prove a similar approximation 
theorem for the total absolute curvature, we have to use the more specific 
arguments which are given in Section 4. In Section 3 we will compare our 
definition with some others which can be found in the literature (see [1], 
[2], [6], [7], [12]). 

3. M O R S E  R E L A T I O N S  FO R C U R V A T U R E  A N D  C R I T I C A L  P O I N T S  

There are several approaches to the notion of curvature by the use of the 
average of the number of critical poin ts -weighted  with some index-  of 
the so-called height functions. This has been done in a purely combinatorial 
way by T. F. Banchoff for polyhedra (cf. El], [2]), by R. Schneider for the 
convex ring (cf. [12]), and in a more topological way by N. H. Kuiper for a 
larger class of subspaces in E". For our case of surfaces, we will describe these 
approaches shortly and show that all are equivalent. 

For z~S 2 let z* :M ~ ~ denote the height function z*(p) : = ( z , p )  where 



S M O O T H  A P P R O X I M A T I O N  O F  P O L Y H E D R A L  S U R F A C E S  441 

( , ) denotes the Euclidean inner product. By compactness of M, al- 
most all z* are regular in the sense that z*(p)~ z*(q) for vertices p =p q. 
For some regular z* and some vertex peM, let c : =  z*(p) be the p-level, 
then (z*)- 1(c) c~ lk(p) consists of a finite number of points, say N(p, z). 

In case p~M\c?M, N(p, z) is even, and T. F. Banchoff defined in [2] an 
index by i(p, z)" = 1 - ~N(p, z). 

In case pec~M, let L(p, z) be the number of points in Ik(p) c~ aM whose z*- 
level is less than c. So N(p, z)+ L(p, z) will be even and, similarly, we can 
define the index i(p, z) : = 1 - ~(N(p, z) + L(p, z) ) . Set L(p, z) = 0 for p ~ M\ O M. 

Now let us consider local supporting planes, and we see that peM\~?M is 
an extremum for some z* if and only if N(p, z) = 0. This leads to the equation 

(5) K+(p) = ¼£ (i(p,z)÷li(p,z)l)do. 
6S 2 

On the other hand T, F. Banchoffhas shown (see [-2], Thm. 3) 

(6) K(p) = ½ fz~s2 i(p, z) do, 

so it follows 

(7) K_(p) = ¼ f (1 i(p, z)[ - i(p, z)) do 
,,} ~'GS2 

and, of course 

(8) g,(p) = ½ fz [i(p,z) ldo. 
ES 2 

(6) can be considered as an analogue of the Theorema egregium in the smooth 
case, if one uses the right-hand side as an (extrinsic) definition of curvature 
(cf. [2] ). 

It can be seen easily that ½(N(p, z) + L(p, z)) is just the number of com- 
ponents of the space {x~st(P) lz*(x ) < z*(p)}. In that way our definition 
turns out to be a special case of the corresponding definitions of curvature 
used by R. Schneider (see [12]) and N. H. Kuiper (see [7]). Adapting 
Kuiper's notation from [7], we have the equations 

~ K + = 4 r c " c  o ~ K  = 2 ~ " q  

~ g  = 2rc"cai t ~ g ,  = 2rc"c. 

For more details see [5], for instance. The topological critical point theory 
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developed by Morse in [9] and N. H. Kuiper in [7] states that for each z s S  2 

i(p, z) = z(M), 
pEM 

I I - l i ( P , Z )  I > ~ f 4 - z ( M )  if 0 M = ~  2 pEM ( 2  - z(M) if cgM :~ ~ .  

This leads to alternative proofs of the Gauss-Bonnet formula and Pro- 
position 2. The latter can be easily extended to the case 3M ~ ~ by 

TA(M)/> 2n(2 - z(M)). 

Note that i ( - ,  - )  and l i ( - ,  - ) [  can be regarded as curvature measures 
with two arguments: a set of points in M and a set of directions in S 2. This 
point of view has been extensively studied by R. Schneider in [12] for the 
convex ring. in E" which turns out to be a suitable class of subspaces for 
considerations of that kind. From a similar point of view, R. Langevin has 
studied in [9] the case of complex algebraic hypersurfaces with isolated 
singularities. 

4. T H E  MAIN THEOREM 

Our main theorem states that Proposition 1 remains valid if we replace 
the Gaussian curvature of the smooth surfaces M by the absolute curvature 
or mean curvature and the curvature of the given polyhedral surface M by 
the absolute curvature K,  or the mean curvature. 

THEOREM. Let M be a compact polyhedral surface without boundary. 
Then there exists a sequence (M )nE ~ of smooth surfaces in E a (each M hom- 
eomorphic to M) such that 

(i) M = M outside of the 1~n-neighborhood of the 1-skeleton 
of M, 

(ii) M , M with respect to the Hausdorff metric 
n~ oo 

and such that in addition theJollowino curvature convergence properties (CCP) 
are satisfied: 

For every open set U ~_ E 3 such that in ~U there is no vertex of M and, at 
most, countably many points lying on edges of M we have for n -~ ~ : 

CCP(K) f K do - - ~  ~ K(p), 
Uc~Mn peUnM 
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CCP(K,)f I K I do. , ~ K.(p), 
Uc~Mn p ~ U n M  

CCP(H) f H do, , - - - ,~  H, 
Uc~Mn ,J U n M  

CCP(IUl) f IH. IF/I, 
U n M n  d U n M  

CCP(A) f d o  ,area(U c~ M), 
JUc~M,~ 

where K ,  H and do n denote the Gaussian, the mean curvature and the area 
element of M respectively. The same remains valid if M is an orientable 
immersed surface (the M being only immersed) and it remains valid (except 
the CCP(H) which is not defined) if M is a nonorientable surface. In this case 
U c~ M and U n M can be replaced by 'local' intersections of U with M and 
M regarding the self intersections of M. 

Note that CPP may be regarded as a weak convergence with respect to 
the corresponding curvature measure. 

The proof will be given in three steps: 
In a first step (see Section 4.1), for a given polyhedral surface M we con- 

struct another one which coincides with M outside an arbitrarily small 
neighborhood of the vertices of M and whose vertices are only of the follow- 
ing three standard types: 

(1) K (p) = 0 (locally convex) 
(2) Only 4 edges meet at p and M has at p no local supporting plane (hence 

K +(p) = O) and all interior angles at p are smaller than ~. 
(3) Only 4 edges meet at p and one interior angle at p is equal to n (hence 

K + (p) = O) and the other interior angles at p are smaller than n. 

in a second step (see Section 4.2), for a given polyhedral surface M with 
vertices only of the three standard types, we construct a C 1 surface which 
coincides with ~r outside of an arbitrarily small neighborhood of the 
1-skeleton of M and which is built up by finitely many pieces of planes, 
cylinders, cones, spheres and elliptic tori fitting together along pieces of 
straight lines and ellipses. More specifically, in the second step some neigh- 
borhood of each edge of M (outside of an arbitrarily small neighborhood 
of the vertices) is replaced by an orthogonal cylinder over a piece of a circle 
which is perpendicular to this edge and which fits tangentially to the adjacent 
faces. 



444 U L R I C H  BREHM AND W O L F G A N G  KI~HNEL 

In a third step (see Section 4.3), for a given C 1 surface ~ of that kind we 
construct a smooth surface which coincides with M outside an arbitrarily 
small neighborhood of the union of curves where M is not smooth. More 
specifically, in the third step each cylinder arising from the second step is 
replaced by an orthogonal cylinder over a piece of an embedded smooth 
plane curve joining two straight lines. 

Each of the three steps will be done with a view to the assertions of the 
theorem, i.e., each of the three approximations will satisfy the curvature 
convergence properties in itself. So, in some sense, the assertion of the 
theorem will be decomposed into Propositions 3, 4, 5 in Sections 4.1, 4.2, 
and 4.3. 

To simplify our proof the following technical remark is useful: 

Remark. In each of the three steps described above we can make a certain 
kind of homothetic deformation: Let M be a polyhedral surface and M be 
an arbitrary approximating surface which coincides with M outside some 
e-neighborhood of the 1-skeleton of M(e > 0 being sufficiently small) and 
which replaces each edge of M (outside the e-neighborhood of the vertices of 
M) by an orthogonal cylinder over a certain piece of an embedded plane 
curve perpendicular to this edge, where this cylinder tangentially fits to the 
adjacent faces. 

Note that this includes the first step described above, where we have to 
choose cylinders over an angle (in this case the edges outsides of the e- 
neighborhood of the vertices of M remain unchanged). It also includes the 
second step and a combination of the second and third step. 

Now for an arbitrary number 0 < c ~< 1 define the homothetic deformation 
Mc o f / ~  as follows" Let /~c coincide with M outside the e-neighborhood 
of the 1-skeleton of M. For each vertex p 6 M  fi71c~ Uc.~(p) is defined to be 
the homothetic contraction of M ~ U~(p) to the centre p with factor c. 

Outside the Uc.~(p), each edge of M is replaced by the same orthogonal 
cylinder as in M, but with a homothetic contraction of factor c to this edge. 
This, of course, will be an orthogonal cylinder again. Obviously this con- 
traction fits together to a surface 3~ of the same types a s /~  (polyhedral, C 1, 
smooth) which coincides with M outside of the c'e-neighborhood of the 
1-skeleton of M. 

Passing to the limit c --, 0 we can state the following: 

LEMMA 2. Let M, ~7I and ~i be as described above. Assume that ffl has 
finite area and finite S~t IH] • Then for every open set U ~ E 3 such that OU 
contains no vertex of M and, at most, countably many points lying on edges 
of M, we have the following convergences: 

(1) l im~ o d(M,)~c) = 0 where d( ) denotes the Hausdorff metric, 
(2) limc~ o area (U ~ ATI ) = area (U c~ m), 
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(3) lira ~ o y w ~  K = ~v~MK 
(4) l i m  o ~c,~ H = ~wMH. 
(5) limc~ o ~ v ~ l  H = YWM I HI provided that each cylinder in M replacin 9 

some edge of M is a cylinder over a piece of an embedded convex curve. 
Proof. (1) is clear by construction. 

For each vertex p~M we have 

area (Uc~(p) n Me) = c2 area (U~(p) n M) 

Ucdp) • ,~tc dp )  n ~t 

For each edge e of M let V~(e) denote the e-neighborhood of e minus the z- 
neighborhood of its two endpoints. Then we have 

lira area (V(e) c~ M )  = lim (c" area (V~(e) n M)) = O, 
c~O c~O 

l i m f v  H = l i m f v  H=H(e).length(e), 
c--*O ~ d e ) n ~  c~O de)n.M 

limf till =limf ]H I 
c ~ O  Vcde)n,~lc c ~ O  V~(e)nM 

I H(e)I.length(e), where the last equality 
holds provided that the cylinder in 

replacing e is convex. 

Now (2), (4), and (5) follow directly from the equations above, and (3) holds 
by the Gauss Bonnet equation 

f K = f K = K(p) 
U~dp) n f i e  Udp) n ~@ 

(cf. Prop. 1). 
The problem of finding a sequence M satisfying the CCP(K), CCP(H), 

CCP(] H I ), CCP(A) in our theorem is reduced by Lemma 2 to the construction 
of only one suitable _g/. On the other hand, the total absolute curvature of 
Mc considered above is equal to the total absolute curvature of M inde- 
pendently of c. So in order to get a sequence which also satisfies the CCP(K.)  
we have to change 2f/in another way which will be described below. 

We can use the argument of the homothetic deformation described above 
in the following way. All that has to be done is to give a suitable approxi- 
mation of the e~neighborhood of the vertices which fits together with the 
cylinders replacing the edges outside. For this reason we will describe this 
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approximat ion  for the tangent cone Cp of a vertex p which is defined to be 
the infinite cone over lk(p) with centre p (cf. [13] ). Clearly, for every number  
ce(0, oo) there is a homothet ic  deformat ion with factor c f rom Cp to Cp. 

4.1. Reduction of Polyhedral Vertices to those of Standard Type 

P R O P O S I T I O N  3 (Reduction process). Let M be a compact polyhedral 
surface without a boundary. Then, for every sufficiently small e > 0 there 
exists a polyhedral surface ill = f/l(e) (homeomorphic to M) with the following 
properties: 

(1) all vertices of f/l are of the three standard types (see above), 
(2) M = iV/outside of the e-neighborhood U~. of the vertices of M, 
(3) d(M, M) = O(~) where d( , ) denotes the Hausdorffmetric, 
(4) for each vertex p6 M we have 

(i) K(p) = 2qeUdp)K(q),  

(ii) 0 ~< ~q~v~(,)K ,(q) - K ,(p) = O(e), 

(iii) I v ~ , , ) ~ l H I  = O(~), 
(iv) area(U ~(p) c~ ~7I) = O(e) 

where K, Fi, K , , ~; , , H, ffl denote the curvature, absolute curvature and 
mean curvature of M and f/I respectively. M can be chosen so that the number 
of its vertices is bounded independently of e. In particular, passing to the limit 
e--+ 0 we get the following: For every open set U ~_ g 3 where OU contains no 
vertex of M we have 

lim Z / £ , ( q ) =  Z K;(q). 
e'--*OqE~J~4 q~Uc~M 

Proof. For  the p roof  of the reduct ion process we can assume that all 
faces are strictly convex, in part icular  that  all interior angles of the faces are 
smaller than ~, and that no three edges are coplanar  (cf. L e m m a  1). 

N o w  let us consider a fixed vertex p. 

We consider two faces f l  with edges el ,  e 2 and f2 with edges e2, e 3 of 
our  polyhedral  surface M such that  e I , e 2 , e 3 meet in p. e 2 is called reducible 
in p if e~, e 2, e 3 are the only edges meeting in p which are contained in the 
convex cone with the vertex p generated by ex, e 2 and e 3 . 

Let us now assume that  e 2 is reducible. Then we can choose three points 
Pl on e 1 , P2 on e 2, P3 on e 3 in some given ne ighborhood  of p such that  the 
angles c~ 1 , c~ 2 at P2 and the angle fil at p~ are smaller than a given positive 
number  e (as indicated in Figure 2) such that the intersection of  the closed 
te t rahedron p pl P2 P3 with M consists only of  the union of the triangles 

P Px P2 and p P2 P3' 
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Fig. 2. 

If we replace the triangles PPlP2 and PP2P3 by the triangles PPlP3 and 
Pl P2 P3 we get a new polyhedral surface ~/ homeomorphic to M. Let us 
denote the curvatures of vertices in aT,/by/£ etc. The new vertex P2 is locally 
convex (R (p2) = 0) with curvature /7(P2) =/~+(P2) =/( , (P2)  = el + e2 - 
:~ < 2e. Pt and P3 are of standard type 3. Thus/7+(Pl) =/(+(P3) = 0 and 
/(,(Pl) = /7 - (P l )  = - / ( ( P l )  =/31 + fi2 - fi ~ 2fi~ < 2e because fi2 <~ fl + ill" 

By the Gauss-Bonnet Equation (2) the total curvature remains invariant 
under this process, hence K(p) =/7(p) +/~(Pl) +/((P2) +/£(P3)' 

An edge e, which meets the vertex p, is called non-essential (in p) if e lies 
in the convex cone with vertex p generated by all edges meeting in p except e. 
Note that K + (p) = / 7  + (p) if e 2 is non-essential. This implies: 

K,(p) = 2K+(p) - K(p) 

= 2/7+ (p) - /£(p)  - K(p~) -/£(P3) - / ((P2) 

= R,(p) + R, (p  1) + R,(p3) - ~ , (p=);  

thus 

I K , ( p )  - R , ( p )  - R,(p3) I = JR , (p l ) -  R,(p2)t < 2~ 
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and 

0 < /~ , (p )  -~- / ( * ( P l )  -]- / (*(P2)  -]- / (*(P3)  -- K,(p) = 2K,(P2 ) < 4e. 

L E M M A  3. Let p be a vertex of  the polyhedral surface M such that no three 
edges meeting in p are coplanar and all interior angles of  the faces at p are 
smaller than ~z. Then either there is an edge which is reducible and non-essential 
in p as well or p is of  one of  the two standard types 1 or 2. 

Proof. In the following, by a spherical polygon we mean a simple closed 
curve on the unit sphere S 2 which consists of  finitely many  pieces of great 
circles. The intersection of  the tangent  cone Cp with the unit sphere with 
centre p is a spherical polygon which we will call P. The edges of P are arcs 
of great circles with lengths smaller than re. Given two non-ant ipodal  points 
Pl ,  P2 on the sphere, we denote by arc Pl P2 the open arc with a length less 
than rc of the great circle connect ing p:  and P2 '  

Note  that an edge is reducible if and only if the arc connect ing the two 
neighbors of  the corresponding vertex in P does not  meet P. Now we need 
the following 

L E M M A  4. Let P' be a spherical polygon with at least three vertices such 
that all edges of  P' have a length smaller than ~ and no three vertices lie on 
the same great circle. At  least one of the two simple connected regions with 
P' as the boundary, say S, contains no great circle. Then we can triangulate S 
into spherical triangles with interior angles strictly smaller than 7r without 
addin 9 any new vertex. 

Proof. We use induction over the number  n of vertices of P'. For  n = 3, 
Lemma 4 is trivial. Assume that it has been proved for polygons with less 
than n vertices (n >/4). Given S with P '  having n vertices, we choose any 
vertex v with an interior angle less than ~. Such a vertex exists because no 
great circle is contained in S. Denote  the other endpoints  of the edges meeting 
in v by v 1 and v z. 

1st case. arc v 1 v 2 lies in S. Hence we can split off the spherical triangle 
v I v 2 v and the remaining polygon has n - 1  vertices. 

2nd case. arc v 1 v 2 is not  contained in S. Then there is at least one further 
vertex of P '  inside the closed spherical triangle v I v 2 v. At least one of these, 
say w, has the proper ty  that  no vertex of P '  lies in the interior of the inter- 
section of  the spherical triangle v 1 v z v with the hemisphere which contains v 
and has v 1 and w on its boundary .  Hence, arc vw is contained in S and defines 
a decomposi t ion  of  S into two parts, each of  which has less than n vertices. 

We now cont inue the p roof  of  L e m m a  3. A subset of the sphere is called 
spherically convex if the cone generated by that  subset over the centre of 
the sphere is convex. We consider two cases: 
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1st case. There is a great circle which does not meet P. Then the spherical 
convex hull S of P is not the sphere. If  P is the boundary of S the vertex p 
of M is locally convex, thus of standard type 1. Otherwise S \ P  has at least 
one connected component  for which P is not its boundary. Choose one of 
them. It has then exactly one edge which is not an edge of P. If it has n vertices 
it has n - 1 edges in common with P. We triangulate the chosen component  
as in Lemma 4 into n - 2 spherical triangles. At least one of these has two 
edges in common with P. 

The edge in M corresponding to the vertex at which these two edges in P 
meet is reducible and non-essential by construction. 

2nd case. Every great circle meets P. Then the spherical convex hull of P 
is the sphere and K+ (p) = 0 (by assumption no three vertices lie on a great 
circle) and M has no local supporting plane at p. We can triangulate each 
of the two open subsets of the sphere with P as the boundary, as in Lemma 4. 
In each of the two triangulations there are at least two triangles, each of which 
have two edges in common with P. A vertex where such a pair of edges meet 
corresponds to a reducible edge in M. The two triangulations cannot have 
such a vertex in common because the interior angles of the triangles are less 
than re. Thus, there are at least four reducible edges meeting in p. 

If there are only four edges meeting at p, then p is of standard type 2. So 
let us assume that there are more than four edges meeting at p. Thus P has at 
least five vertices. 

The two triangulations given above yield a triangulation of S 2. 
Choose some vertex v 1 of P. The antipodal point v'~ is contained in the 

interior of some convex spherical triangle v 2 v 3 v 4 of the given triangulation 
of S 2. Thus, the spherical convex hull of v 1 v 2 v 3 v 4 is equal to S 2. Choose a 
fifth vertex v~ of P. Then there are three vertices wl w z w 3 of P such that the 
spherical convex hull of w~ w 2 w 3 v 5 is equal to S 2. There are, at most, three 
vertices in {v~, v 2, v 3, v4} c~ {wl, w2, w3}. All other vertices correspond to 
non-essential edges. Because there are at least four reducible edges meeting 
at p, there is at least one edge which is reducible and non-essential in p. This 
completes the proof  of Lemma 3. 

For each vertex p which is not one of the three standard types we can apply 
the reduction process with K+ (p) = / ~ +  (p), because there is a reducible non- 
essential edge at p, as shown in Lemma 3. Now we iterate the reduction 
process until all vertices of the polyhedral surface are of standard types. We 
can do the reduction process for a vertex p so that the new vertices lie in a 
given e-neighborhood U~ of p and so that the curvatures satisfy K(p)=  

~q~vR(q) and 0 ~< ~q~vK,(q) - K,(p) <~ 4e'(m - 3), where m is the number  of 
edges meeting in p. 

This proves assertion (4) (ii) of Proposit ion 3. The other assertions follow 
by additional homothetic deformation with some factor G (depending on e) 
using Lemma 2. 
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4.2. C 1 Approximation of Polyhedral Vertices of Standard Type 

P R O P O S I T I O N  4. Let M be a compact polyhedral surface without a 
boundary which has only vertices of the three standard types. Then, for every 
sufficiently small e > 0 there exists a C a surface M = M(e) homeomorphic to 
M with thefollowin 9 properties: 

(1) M is built up by a finite number of pieces of planes, cylinders, cones, 
spheres and elliptic tori fitting together alon 9 pieces of straight lines and 
ellipses, 

(2) M = _AT/outside the e-neighborhood of the 1-skeleton of M. Inside the 
e-neighborhood of each edge (minus the e-neighborhood of its endpoints) 
~/I consists of an orthogonal cylinder over an arc of a circle such that the 
cylinder fits tangentially to the adjacent faces, 

(3) d(M, M) = O(e) where d( , ) denotes the Hausdorff metric, 
(4) for each vertex p~ M we have 

(i) ~finv~(p)~; do = K(p), 

(ii) 0 ~< ~nv~,p,I / ( ]  do - K,(p) = O(e) 

(iii) Y~V~(p)[/4[ d~ = O(e) 

(iv) ~ ; ~  d~ = o~) 

where K, K, H, ffI denote the curvature and mean curvature of M and ~I 
respectively, K ,  the absolute curvature of M and c~o the area element of  ~/I. 

In particular, passing to the limit e ~ 0 we get the following: For every 
open set U ~_ E 3 such that OU contains no vertex of M we have 

l i ra |  I£1 o: Z K,(p). 
~ 0  JU nffl p~UnM 

Proof We will use the not ion of the parallel surface M r of M at a distance 
r, which is defined to be the set M r of  the points  p~E 3 with the distance 
d(p, M) = r. Locally there are two disjoint sheets of M r and for or iented M 
we globally can speak of the outer  parallel  surface M + (( + )-parallel surface) 
and the inner parallel  surface Mr- (( - )-parallel surface). 

Let  us choose some ne ighborhood  U of the vertices and let r be a positive 
n u m b e r  which is sufficiently small  (for the approx ima t ion  it will tend to 
zero). Outs ide  U we get a C a app rox ima t ion  by replacing some ne ighborhood  
of each edge by an o r thogona l  cylinder over  an arc of a circle of radius r 
which is perpendicular  to this edge and which fits tangential ly to the adjacent  
faces. This is the same as taking any of the two triple parallel surfaces 

- + M -  * - .  ((M+)2r)r or (( r )2r)r 
N o w  our  task is to extend this app rox ima t ion  to the ne ighborhood  U(p) 

of each vertex p, but in general these triple parallel  surfaces are not  differen- 
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tiable near the vertices. In order to describe a suitable approximation we 
first approximate the tangent cones Cp : 

First case. If Cp is convex we take the double parallel surface (Cp~-)~ 
taking the natural orientation of Cp. Obviously the parallel cone Cp[ is 
convex and polyhedral. The ( + )-parallel surface of it is also convex and it 
consists of finitely many pieces of planes, spheres and cylinders with radius r 
which fit differentiably together along pieces of straight lines and circles. 
Furthermore, outside of some neighborhood of p (Cp~)~ + coincides with 
((CPr)2r)r " Thus, the approximation of M near the vertex p and the approxi- 
mation outside fit together. 

Second case. Let Cp be a cone which has only four edges and which has 
no supporting l~lane at p and all of whose interior face angles are, at most, 

(this corresponds to standard type 2 or standard type 3 without a supporting 
plane). It is easy to see that in this case the four edges are necessarily creased 

C + in an alternating manner. Now let us consider the parallel surface Pr 
for an arbitrary orientation of Cp. This parallel surface consists of two 
differentiable pieces, each of which consists of two pieces of planes differenti- 
ably connected by a piece of a cylinder. The curve where the surface is not 
differentiable is the intersection of those two pieces. Now the intersection 
of such two cylinders (with same radii) is an ellipse and the intersection of a 
cylinder with a plane (not parallel to the cylinder) is also an ellipse. Hence, 
that curve consists of at most five straight lines and ellipses. There is no 
supporting plane of Cp at p. Hence, the two differentiable pieces of the 
parallel surface have no common tangent at any point of their intersection. 
Hence, the curve is differentiable. 

Let )L be some number (not depending on r) with 0 < ). < 1 such that the 
smallest radius of curvature of the curve is greater than 2r. The double 

C + -  parallel set ( pr )~r is differentiable everywhere and it consists of pieces of 
cylinders, planes and pieces of elliptic tori arising from the intersection 
ellipses (an elliptic torus we define to be the parallel surface of an ellipse in E3). 

Note that the plane spanned by such an intersection ellipse separates the 
two half-cylindrical pieces (or half-cylinder and half-plane, respectively) 
of which it is the intersection. Moreover, let X denote the inner normal 
vector of the ellipse in that plane and let Y be the inner tangent vector on the 
half cylinder (or half-plane respectively) which in addition is perpendicular 
to the ellipse. Then we have {x, y)  < 0. This means that the corresponding 
pieces of elliptic tori are 'inner' pieces of the tori, i.e., they have nonpositive 
curvature. 

Third case. Let Cp be a cone which has only four edges such that one 
interior face angle is equal to ~ and the other angles are smaller than 7r, 
and which has some supporting plane at p (this corresponds to standard 
type 3 with supporting plane). The two edges of Cp which are collinear are 
creased in the same direction because there is a supporting plane. One of 
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the other edges is creased in the same direction and the last one is creased in 
the opposite direction. Choose the orientation of Cp such that three edges 
are ~convex' and one edge is ~concave'. This results in the (+)-paral lel  

C + surface p,. being differentiable near the convex edges. It consists of pieces of 
planes and cylinders and it is differentiable, except along the curve coming 
from the concave edge. As in the second case, this curve consists of a piece of a 
straight line and finitely many pieces of ellipses. It ends in a point of differenti- 
ability (where the two cylinders have a common tangent plane). Let 2 be 
some number (not depending on r) with 0 < 2 < 1 such that the smallest 
radius of curvature of the curve is greater than 2r. The double parallel 
surface (Cp~ +)St is differentiable everywhere and it consists of pieces of cylind- 
ers, planes and 'inner' pieces of elliptic tori all of which have nonpositive 
curvatures, just as in the second case. So we can take in the second and third 
cases (Cp~+)Sr as the approximation near p (which coincides with (MT)~- r 
near p). 

Note that in each of the three cases, the parallel surface near the vertex 
p which we have chosen has exactly the same positive and negative curvature 
(hence, the same absolute curvature) as the vertex p before. But, unfortunately, 
in case 2 and 3 there remains the problem of fitting together the different 
parallel surfaces inside and outside U. The problem is that, necessarily, 
the two parallel surfaces of the faces will be different parallel faces which do 
not coincide; similarly from the edges we get cylinders with different radii. 

To overcome this problem let us consider a vertex p of the surface M 
(before taking parallel surfaces) and the neighborhood U(p) considered 
above which we may also regard as lying in the tangent cone Cp. Let us choose 
a number ~ > 0 such that 

Cp n {q/H P - q l] <~ 2~} c Utp). 

For each edge e meeting p, let ea denote the point on e satisfying II ea - p II = ~. 
Now join all these points e~ by a closed curve 7 lying inside U(p) in the follow- 
ing way: each edge e yields two vectors X(e), Y(e), each lying in one of the 
two faces meeting in e, such that X(e) and Y(e) are perpendicular to E. 
X(e) and Y(e) span a plane orthogonal to e provided that the faces are not 
coplanar, which we can assume without loss of generality. Now let us con- 
struct the curve 7 as follows: near the points ea 7 follows the straight lines 
spanned by X(e), Y(e) respectively, and both pieces of straight lines lying 
in the same face are joined differentiably by a single arc of a circle. See Figure 3 
which shows this construction inside one face for two different cases. 

Because we are working in the cone Cp we get a second curve ~ by homothe- 
tic reduction of the size by a fixed ratio, say ½. Let Vand 17denote the interiors 
of V and ~ respectively. 

Now let us apply the different processes of taking the parallel surfaces 
described above. Inside 17 we take the double parallel surface (after choosing 
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some local orientation) and outside V the triple parallel surface such that 
the middle parts of the faces outside V remain unchanged. Note that we have 
chosen r sufficiently small and that our choice of &, 7 and ~7 has been made 
independently of r. 

Now we have to fit together both different parallel surfaces. Note that its 
boundaries are parallel curves c and g of 7 and ~ respectively which are of 
class C 1 and consist of finitely many pieces of straight lines and circles. Of 
course, c and ~ are not homothetic to each other but, in any case, there is 
a natural bijection between those points of c and ~ where c and g are not of 
class C 2. Let us join the corresponding points by straight lines. Furthermore, 
let us join the corresponding pieces of straight lines in c and ~ (which are 
parallel) by plane 4-gons, and the corresponding pieces of circles (which 
lie in parallel planes) by pieces of oblique cones. 

The union W of those pieces of planes and cones is homeomorphic to 
V\I7 and obviously it forms a C 1 surface. Now take the union J{  of Wwith 
the both parallel surfaces inside of V and outside of V. This will be a continu- 
ous surface homeomorphic to the old one but, of course, it will not be 
differentiable along c and g. But the angle between the right and left limit 
tangent planes will be of order O(r) in this case, so it is more easy to give a 
differentiable approximation than in the case of the old surface. Let us choose 
a sufficiently small number p > 0 which is smaller than min(2r, (1 - 2)r) and 
take the triple parallel surface ((-W+)2-~) + of the surface .2/ constructed 
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above. Independently of the orientation in the region where J~ is already of 
class C 1, nothing will be changed. In a neighborhood of the curves c and ~, 
the surface J/~ will be changed in a similar way as in the construction of the 
double parallel surface described above. After the process it consists of pieces 
of planes, cylinders, cones and elliptic tori. Note that this is true only if we 
choose p as sufficiently small. Now if we look at the additional total absolute 
Gaussian curvature arising from this process, it is easy to see that this is of 
the order O(r) independently of p. This proves assertion (4) (ii) of Proposition 
4. The other assertions follow by additional homothetic deformation with 
some factor c r (depending on r) using Lemma 2. 

4.3. Smooth Approximation 

The construction explained in Section 4.2 gives C 1 surfaces which are built 
up by finitely many pieces of planes, cylinders, elliptic cones, elliptic tori or 
spheres which are joined together along pieces of straight lines and ellipses. 
There remains the question of whether such surfaces can be approximated 
smoothly, i.e., of class C°L That the answer is yes will follow from Proposition 
5 which, in fact, deals with a somewhat more general situation: 

PROPOSITION 5. Assume that F : M  ~ E 3 is a C 1 immersion of  a closed 
surface M such that there is a decomposition M = U~= 1Mi into pieces M i 
which are compact surfaces with a boundary. Assume that F]M ~ is of class C k 
(2 <-G k <<. o0) and that the boundary of  M i consists of finitely many C g curves, 
i = 1, . . . ,  n. Then for every sufficiently small e > 0 there exists a C k immersion 
/7 = F(e): M--* E 3 (which is an embeddin 9 provided that F is also an embedding) 
such that 

(1) F = ff outside the e-neighborhood of the union of  curves where F is not 
of class C k, 

(2) I IF  - = 

(3) g ,  I K I d o - I R t d ;  = 

(4) YM I HI do - [/?Jd~ = O(e), 

(5) YM [do - d~ I = O(0, 

where K, K, H, ~I, do, do denote the Gaussian and mean curvature and the 
area element o f F  and F respectively. In particular for every open set U c_ M 
we have 

l i m l  I / £ l d ~ = f v [ K ] d o ,  
a 0 ,)U 
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e~O U U 

~ o l i m f v d ° = f v d °  

C O R O L L A R Y  5'. For every C ~ immersion F: M ~ E 3 satisfying the assump- 
tions of  proposition 5 the following relations (which are well known for C 2 
immersions) remain valid: 

f ~tK do = 2rc.z(M) (Gauss-Bonnet formula), 

fM K [ do >i 2~c(4 - z(M)). 

As usual, we define a compact  surface with a boundary to be of class C k 
if it can be extended to an open surface of class C k. Note that Proposit ion 
5 becomes false if we replace the word 'compact '  by 'open'  and assume 
M =  U~=IMi because the total absolute curvature of such a C 1 surface 
may be infinite. 

Proof. By assumption, the set of points where M is not of class C k is 
contained in the boundaries of the M i, whose union is just the set 

i j ~ i  

By assumption, this set consists of finitely many C k curves. Without loss 
of generality, we can assume that each Vii = Mi c~ M) is such a curve, otherwise 
choose a subdivision of the M~'s. What  we have to do is to change a neigh- 
borhood of A such that the surface will be of class C k. This will be done in 
two steps: at first for the relative interior of the 7~j. and then for the endpoints. 
Of  course, there are only finitely many different endpoints p~ . . . . .  Pm of the 
7q, i,j = 1 . . . . .  n. 

Now for a fixed sufficiently small number  p > 0 let Uo(p~ ) denote the open 
p-neighborhood of Pi, i =  1, . . . ,m and set Up: = U~'=I Uo(Pi) where we can 
assume that the Up(pi) are disjoint. (It does not matter  whether we take the 
distance p with respect to the inner metric or with respect to the ambient 
space, because the difference is of higher order.) 

At first we will change the surface outside Up/, and afterwards inside 
U o. Now, for fixed i S  j the intersection curve 7~j is a common boundary 
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piece of M i ~nd M r (in case Mi c~ M r ~ ~) .  Define -,Jv!P ) to be the restriction 
of 7u to M\Up/4. Because different 7u do not meet each other in their relative 
interiors the 711 ) are disjoint and, hence, there exists a number h depending 
on p such that p/4 > h > 0 and all h-neighborhoods of all v!P. ) are separated, 

* z J  

meaning that their closures are disjoint (see Figure 4). 
So we can consider each v!°. ) separately; we will omit the index p if there 

~ J  

is no danger of confusion. Because M~ is compact and of class C k 
it can be extended to an open surface of class C k (which we also denote by 
M~) containing 7u. Hence, there exist coordinates (x, y) in the h-neighborhood 
of Yu which are defined for Ix[ ~<h such that 7u appears as {x=0}  and 
O/?x, ~/Oy form an orthonormal frame along 7ij. 

Because M i and M r are joined along 7u of class C 1, their tangent planes 
coincide along 7u and we have the following parametrization of M~ w Mj 
in the h-neighborhood of 7u: 

(MiW Mj)(x, y) = Mi(x, y) + f(x, y)" JV" 

where X denotes the unit normal of the extended Mi, and f is a C 1 function 
which is indentically zero in {x ~< O} and which is of class C k with bounded 
second derivatives in {x > O} : 

f =  O(x23, f ,f, = O(x ) ,  Lx,fx,,f. = o ( 1 ) .  

Now let ~,: R ~ R be a C~° function satisfying 

¢ ( x ) = 0  forx--~2, 

~ ( x ) = l  forx>/1 ,  
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and define 

0'  >~0 everywhere 

(x) M(h)(xu " ' ~"v~" = Mi(x , y) + ~ ~ "f(x, y)" ~A/'. 

Of course, nothing has been changed for x¢(h/2,  h), and M! h} is of class C k tj 
everywhere and still remains an immersion. It is easily checked that the first 
and second partial derivatives of the function O(x/h) ' f (x ,  y) are bounded 
(independently of h), hence the Gaussian and mean curvature K (h) and H (h) 
of MI~) are bounded and, hence, 

(, f, 

~O<~x<~h [K[ do - ] K  (h)] do (h) = jIKI do + J[K(h)[ do (h) 

= O(h) ~< O(p); 

similarly for H, H %  
This procedure of changing an h-neighborhood of 711 ) can be made globally 

(i.e., for each ~i.i) where we use the assumption that all these h-neighborhoods 
are disjoint. This leads to a Ck-immersion 

G(P): M \ U  p/4 --~ E 3. 

NOW it remains to act in a similar way inside Up. The Up(pi ) are disjoint, 
hence we can work independently for each point. Let p be one of those points. 
After applying a translation and a rotation of E 3, we can assume that the 
tangent plane of the given surface F at p is just the (x, y, 0)-plane as a linear 
subspace of E 3. Using polar coordinates (r, 4)) in that plane, we can describe 
G (p) in the following way: 

(*) G(P)(r, ~) = (r cos qS, r sin O,f(r, 0)), 

where f is a C k function satisfying 

f'f*,f4~4~ = O(r2)' L,L, = O(r), 

Now recall the function ~ used above and define 

(**) 

r~> p_ 
4 

Lr = o(1).  

f 
(rcosq~,rsin~b,O) f o r 0 ~ < r ~  < p ,  

(r cos q~, r sin ~b, ~p .f( , 4))) for p ~< r. 

By definition, F (p) is planar inside of {r ~ p/2} and hence it is of class C k 
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everywhere. Clearly F (p) is an immersion and it coincides with G (p) in the 
region {r i> p}. 

It remains to to estimate the additional absolute Gaussian and mean 
curvatures in the region {p/2 <% r <<. p}. 
From (*) it follows by straightforward calculation 

K = r2f '0f '  +fee) - ( r f ,  e - f e  )2 
(r 2 + r~f~ +f~)~ 

and 

H = rf'r(r2 +f~) - 2frf~(rf'e - f~)  + (r2f" + G*)(1 + f / )  
2(r 2 + r2 f /+f~)3 /2  

Doing the same for (**) we only have to replace f by f :  = O(r/p)'f. It is 
easily checked that 

f, fe,f~4 = O(r2), J4~,yr4 = O(r), 2,  = 0(1). 

This implies by straightforward calculation that the curvatures /~ a n d / 4  
of F (p) both are bounded (independently of p), hence 

flKIdo+ 
similarly for H , / I .  

Of course, this process just described can be made simultaneously for all 
points P 1,---, Pm leading to an immersion P :M ) E 3 (depending on p) 
which is of class C k everywhere and which is an embedding, provided that 
F was an embedding. 

By construction, the assertions (1) and (2) of Proposition 5 are satisfied 
for e = p; similarly we have 

f u  I K [ d ° - l R [ f °  = fv,~{~=h} I K I d ° - [ K l d °  = O(p), 

f,~ I H l d o - l / ~ l f o - - O ( p )  and fMIdo-¢ol-=O(p). 
Proof of the main theorem" Now to complete the proof of our main 

theorem we combine the three approximations given in Propositions 3, 4 
and 5. Using the well-known argument of taking a diagonal sequence we 
finally get a sequence M = M(e)  of smooth surfaces M satisfying 

lim t IK.ldo.=l~ I I~lJo= Yg,(p) 
n~m JUaM. ~ O,)un~ peg 



S M O O T H  A P P R O X I M A T I O N  OF P O L Y H E D R A L  S U R F A C E S  459 

for every open set U such that c?U contains no vertex of M. This is the as- 
sertion of the CCP(K,) .  The other CCP's are satisfied similarly, in fact 
they already hold for weaker approximations (cf. Lemma 2). 

Because all the essential steps in the proofs have been done locally (i.e., in 
some e-neighborhood of the vertices), all assertions also remain valid for 
immersed surfaces. Similarly, in our constructions we never used global 
orientations but only local ones. So all assertions remain valid for non- 
orientable surfaces, expect for the CCP(H) which is not defined because 
H depends on the orientation. 

5. OTHER RELATED QUESTIONS 

In the context of the problems discussed in Section 4 there remain some 
natural questions: 

(1) Does the main theorem also hold for compact surfaces with a 
boundary? 

(2) Does the similar result hold in the opposite direction, i.e., approximat- 
ing a given smooth surface by polyhedral ones? 

(3) Can the main theorem be sharpened so that the total absolute curvature 
of the approximating smooth surface exactly equals the total absolute 
curvature of the given polyhedral one ? This seems to be very interesting 
for tightness problems. 

We first want to answer question 1 negatively (in some sense): 

PROPOSITION 6. There exists a compact polyhedral surface M with a 
boundary such that there is no sequence (Mn),~ ~ of smooth surfaces homeo- 
morphic to M which simultaneously fulfills the assertion of the main theorem 
for M, •M and M\~?M. 

This follows from the equation 

TA(M) = TA(M\~M) + ½ TA(OM) 

in the smooth case on the one hand and the fact that this equation does not 
hold for polyhedral surfaces, in general. See [5] for a detailed discussion 
of that topic including the necessary conditions for that equality in the 
polyhedral case. 

Concerning question 2, we would like to conjecture that such a theorem 
is true. In fact this direction of approximating smooth surfaces by polyhedral 
ones should be the more easy part and it might also include the case of com- 
pact surfaces with a boundary. (see Added in Proof) 

Question 3 (Banchoffs question) seems to be open. It could be answered 
negatively if there existed a tight polyhedral surface of some topological 
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type for which it is known that there is no smooth tight realization. But so 
far as we know, the only candidate for such a counterexample without a 
boundary could be the surface with X = - 1 (unknown case). Among the 
surfaces with a boundary, the Moebius band is such a counterexample (see 
[8] ), as is the torus with a disc removed (see [5], [15] ). 
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A D D E D  IN PROOF 

Question 2 has been positively answered in a recent paper by J. Cheeger, 
W. Mfiller and R. Schrader: 'Lattice Gravity or Riemannian Structure on 
Piecewise Linear Spaces', I.H.E.S. Preprint 1981. There are also given higher 
dimensional analogues for various curvatures including the scalar curvature 
and the Gauss-Bonnet  integrand. 
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