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l .  INTRODUCTION 

A generalized metric geometry is a structure that satisfies Hilbert's In- 
cidence Axioms and some simple orthogonality conditions, and admits 
reflections in all points and lines. This paper extends to arbitrary dimen- 
sionality the notions of two and three dimensional generalized metric 
geometries studied by Bachmann [1, §2] and Scherf [6, §1], respectively. 
Among the questions considered are the following. How should a reflection 
in an arbitrary flat be defined? For which flats do there exist reflections? 
When are these reflections unique? When do two reflections commute? 
What is the composition of two commuting reflections? 

The axioms for generalized metric geometry fall into three groups. The 
first group consists of Hilbert's Incidence Axioms [3, §2], modified to admit 
arbitrary dimensionality. Lenz's Orthogonality Axioms [5, § 1], modified 
to admit elliptic models, constitute the second group. The third group, the 
Symmetry Axioms, postulates the existence of reflections in all points and 
lines. 

Models of the Incidence and Orthogonality Axioms are called orthogonal 
geometries. These were studied in great detail in two earlier papers [7; 8]. 
For definitions and results concerning orthogonal geometries in general, 
the reader is referred to these works. 

A common method of proof in the present paper is the reduction of a 
question about flats of arbitrary dimension to one about coplanar families 
of points and lines. Since every plane in a generalized metric geometry is a 
generalized metric plane in the sense of Bachmann, his results can then be 
applied. This method yields directly, for instance, the uniqueness of the 
reflection in a point or line. It is used also in proving the most important 
result of the paper: there exists a reflection in a flat x if and only if x 
is orthocomplemented in the sense of [7]; in this case the reflection is 
unique. 

A later paper will study metric geometries of arbitrary dimension: gen- 
eralized metric geometries in which the familiar Three-Reflections Princi- 
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ples hold. That theory is equivalent, in the finite dimensional case, to 
Kinder's [4]; his representation theorem will be extended to the infinite 
dimensional case. 

2. ORTHOGONAL COLLINEATIONS 

Let (r, G, E, 1 )  be an orthogonal geometry. Thus, r is a set called the 
entire space, and its singleton subsets are called points. Further, G and E are 
families of subsets of r called lines and planes, respectively; and J. is a 
binary relation on G called orthogonality. Finally, (r, G, E, ±)  satisfies the 
Incidence and Orthogonality Axioms of [7, §2 and §3]. 

An orthogonal collineation of (r, G, E, .1_) is a permutation of the entire 
space r satisfying the following three conditions: (i) the image of a line is a 
line; (ii) the image of a plane is a plane; and (iii) the images of two orthogo- 
nal lines are themselves orthogonal. It is easy to show that the orthogonal 
collineations form a subgroup of the symmetric group of r. A monomorphism 
7r-~ ~* from this subgroup to the automorphism group of the lattice of all 
flats can be defined by setting ~*(x)= ~[x] for each orthogonal collineation 

and each flat x. Henceforth, ~ and ~* will not be distinguished. The 
Proposition below lists some relations preserved by an arbitrary orthogonal 
collineation 7r. Its proof is straightforward; consult [7] and [8] for the 
notions involved. 

PROPOSITION. I f  x is a flat, then x and n(x) have the same dimension 
and codimension. I f  o is a point in x, then n(lo, x])=[n(o),  7t(x)]; thus 
n(reach x)=reach n(x), and x is orthocomplemented if  and only i f  n(x) is. 
I f  y is any flat, then x l y  i f  and only i f  n(x).l.rc(y). When the geometry is 
elliptic, rc( xX ) = Tt( x ) x. 

3. SYMMETRY AXIOMS 

A reflection in a point o is a self inverse orthogonal collineation #o that 
leaves every line through o fixed, but not elementwise fixed. A reflection 
in a line 0 is a self inverse orthogonal collineation ~g that leaves 0 element- 
wise fixed, and every plane through g fixed, but not elemcntwise fixed. It 
follows that each flat x properly including o or g is fixed, but not clement- 
wise fixed, by fro or #a, respectively. 

A generalized metric geometry is an orthogonal geometry that satisfies 
the following Symmetry Axioms S1 and $2. 

AXIOM Sl. In each point there is a reflection. 
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AXIOM $2. In each line there is a reflection. 

Henceforth, (r, G, E, 2.) is assumed to be a generalized metric geometry. 

4. SUBGEOMETRIES 

For each flat x of dimension m ~> 2, let G~, and Ex denote the families of all 
lines and planes, respectively, in x. Moreover, let _1. x denote the restriction 
to Gx of the relation _1_. Clearly, (x, G~, Ex, -I-x) is then an m dimensional 
generalized metric geometry; its point and line reflections are also obtained 
by restriction. If  the geometry (r, G, E, _1.) is elliptic, then so is (x, G~, E~, 
_1_~,). The following Proposition follows from a result of Ahrens [2, App.]. 

PROPOSITION. Each line passes through three distinct points. 

Therefore, if e is a plane, then (e, Ge, "±e) is a generalized metric plane in the 
sense of Bachmann [I, §2]. 

5. POINT REFLECTIONS 

Proofs of theorems about point reflections generally differ from and are 
much simpler than those of the corresponding theorems about reflections 
in arbitrary flats. Therefore, these results are gathered here; the general 
theory is developed in later sections. 

PROPOSITION 5. I. In each point o there is a unique reflection cr o. 
Proof. Suppose a and z are reflections in o. Let p be an arbitrary point 

and e be a plane through o and p. The restrictions to e of  a and z are reflec- 
tions in o with respect to the generalized metric plane (e, Ge, -l-e), hence 
e(p)= z(p) by [1, §2]. 

COROLLARY 5.2. Let ~ be an orthogonal collineation and o be a point. 
Then r~or~- 1 = cry(o)" 

Proof. The left hand side of  the equation is easily seen to be a reflection 
in n(o). 

PROPOSITION 5.3. A point p is f ixed under the reflection in a point o if  and 
only if  o =p or (when the geometry is elliptic) p lies in o I. 

Proof. Supposep is fixed. Let e be any plane through o andp.  By [1, §2], 
o =p  or p lies in a line polar to o with respect to the generalized metric plane 
(e, Ge, Ze)- In the latter case, p lies in o I. 

Conversely, suppose p lies in 01. Let # be a line through o; then #_1_o J-, 
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hence g=tro(g)_Lao(O±). Thus ao(O ±) is a hyperplane polar to o, hence 
ao(oi)=o ±. Since o ± and op are fixed, so is their intersection p. 

COROLLARY 5.4. A fiat y is f ixed under the reflection in a point o if and 
only if y is incident with o or (when the geometry is elliptic) with o a" ; y is ele- 
mentwise f ixed if and only if y = o or (when the geometry is elliptic) y lies in o ±. 

Proof. By Proposition 5.3, if y =  o or y lies in o ±, then y is elementwise 
fixed, and conversely. Suppose y is fixed, but does pass through o. Then each 
point p in y is fixed because op and y are fixed. 

COROLLARY 5.5. For any points o and p, ao=trp if and only if o=p.  
Proof. By Proposition 5.3, if o ~ p, then go and ap have different sets of 

fixed points. 

COROLLARY 5.6. The reflections in points o and p commute if and only 
if o = p or (when the geometry is elliptic) p lies in o I. 

Proof. Suppose aotrp=aptro, so that ap=aoapao. By Corollary 5.2, trp is 
the reflection in go(p). By Corollary 5.5, p=ao(p) .  By Proposition 5.3, 
o =p  or p lies in o ±. The argument is reversible. 

6. R E F L E C T I O N S  IN A R B I T R A R Y  FLATS 

A reflection in a flat x is a self inverse orthogonal collineation a that satisfies 
the following two conditions: (i) i f y  is a flat incident with x, then a ( y ) = y ;  
and (ii) i f y  properly includes x, then u ( p ) ~ p  for some point p in y. (This 
definition is clearly consistent with those already given for reflections in 
points and lines.) The empty flat and the entire space have exactly one re- 
flection: the identity. I f  x is a flat of dimension 2 or more and cr is a reflec- 
tion in a flat w in x, then the restriction to x of a is clearly a reflection in w 
with respect to the generalized metric geometry (x, G~, Ex, Z~). 

PROPOSITION 6.1. A reflection in a flat x leaves every perpendicular to x 
fixed, but not elementwise fixed. 

Proof. Let g be a perpendicular to x, so that x is not empty, nor a point, 
nor the entire space; let o =g  c~x; and let ~ be a reflection in x. Then a(g)  
lies in tr(xv g ) = x v  g, hence tr(g) lies in k v  g for some line k through o 
in x, because the geometry over o is projective. Evidently, g and a(g)  are 
both perpendiculars to k through o in the plane k v  g, hence g= t r (g )  by 
[7, Axiom 03]. 

Suppose g were elementwise fixed. There exists a point p in x v g such 
that tr(p)v~p, so tha tp  lies neither in x nor in 0. (See Figure la.) There is a 
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line k through o in x such that op lies in k v g; and p lies in perpendiculars g' 
and k' to # and k, respectively. Let q = g n  g' and s = k n k ' .  Evidently, g' 
and a (# ' )  are both perpendiculars to g through q in the plane k v #, hence 
# ' = a ( # ' ) .  By [7, Proposition 3.4], k'_Lx, hence a ( k ' ) = k ' .  Thus # ' = k ' ,  
since both pass through p and a(p). (See Figure lb.) By the Proposition in 

( /g '  p 

i 
g ~  I~ ~ "-'k~ 

II 
II ~---k 

Fig. la. 

gt  
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C 

Z 
Fig. lb. 

§4, there exists a pointpl  in op distinct from o andp.  By the above argument, 
pl lies in a perpendicular #] to 9 and k. Thusp  andpl  lie in o ±, so that o lies 
in o t ,  contradiction. Therefore, O must not be elementwise fixed. 

C O R O L L A R Y  6.2. Le t  o be a point in a f lat  x and p be a point in a per- 

pendicular to x through o. I f  g is a reflection in x, then cr(p)=tro(p). 
Proof. Clearly, x is not a point, and it may be assumed that p does not lie 

in x. Let q be a point in x - o  and e=opq.  By Proposition 6.1, a leaves e 
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fixed, but  not elementwise fixed. Hence the restriction to e of a is the re- 
flection in oq with respect to the generalized metric plane (e, G e , / ) .  A 
similar statement holds of an. The result follows from [I, §2]. 

COROLLARY 6.3. In an orthocompIemented flat there is at most one 

reflection. 
Proof. Let a and • be reflections in an orthocomplemented flat x, and letp 

be any point. Thenp  lies in a perpendicular g to x; let o=g c~x. By Corol- 
lary 6.2. ~(p) =,~°(p) = ~(p). 

The most important result of this paper is Proposition 6.5: there exists a 
reflection in a flat x if and only if x is orthocomplemented. The proof given 
below requires a lemma showing the existence of reflections in two and three 
dimensional fiats. With little extra effort, the lemma can be stated in a much 
more general form, giving a formula for the reflection in an arbitrary finite 
dimensional flat. This is the content of the next Proposition. (Proposition 
7.10 is an analogous result for orthocomplemented finite codimensional 
flats.) 

PROPOSITION 6.4. Let x=01 v ... v On, where gl to gn constitute a finite 
family of n mutually orthogonal lines through a point o. Define 

= [ aoaa~ .., tra~ i f  n is even, 
t7 x 

I %,. . .  %~ i f  n is odd. 

Then tr• is the reflection in x. 
Proof. The result is true for n = 1. Assume that it holds for some value 

n = m~> 1. The result will then be demonstrated for the ease n = m + 1. Ar- 
guments like that of Corollary 6,2 show that an and %, to %, all commute. 
Thus tr~ is a self inverse orthogonal collineation: clearly, it leaves fixed each 
fiat through x. 

Case 1: m is odd. First, it will be shown that each point p in x = g l  v -.. v + 
+g~,+l is fixed. Since the geometry over o is projective, p lies in e=g v 0,,+1 
for some line g through o in w=g l  v ... v gin. (See Figure 2.) By [7, Axiom 
02  or O3],p lies in a perpendicular k to g in e; let q=g c~k. By Corollary 6.2, 

~,1 .." ~ , ,  (P) = ~ ,  (P) = ~, (P). 

It follows that ax(p)= %,,÷ ,aoa~(p). By restriction to the generalized metric 
plane (e, G,, .1.,), it is seen that %,,÷ lao%(p)=%aq(p)=p. 

Now suppose y is a fiat properly including x. By [7, Proposition 4.11], 
there exists a perpendicular g~,+z to x through o in y, and a point p in g•+z 
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such that ao(p)~p. By Corollary 6.2, 

~x(p) = ~ o ~ , ,  . . .  ~,,+, (p)  = ~o-+~ (p)  = ~o(p) ~ p. 
Thus y is not elementwise fixed. 

Case 2: m is even. The argument here is the same as that for Case 1 ; only 
the two displayed formulas differ. They take the following forms: 

~o%, .. .  ~0 ,  (p )  = ~w (p)  - ~q (p)  

~x (p)  = ~, i  . . .  ~ , , + ,  (p )  = ~ 7  +1 (p )  = ~o (p)  ~ p .  

~...gc_w 

q--1 
\ 
k 

"-'1 
O-  

Fig. 2. 

-13 

¢ /gm.~  

PROPOSITION 6.5. There exists a reflection in a flat x if and only if x is 
orthocomplemented. 

Proof. It may be assumed that x is not empty, nor a point, nor the entire 
space. Suppose ax is a reflection in x. It will be shown that an arbitrary point 
p not in x lies in the reach of x. There exists a point q in x v p such that 
a~(q)#q. It will be shown that qcr~(q).Lx, so that q lies in the reach of  x. 
Then the Exchange Law implies that x v p = x v q, hence p lies in the reach 

o f  X. 

It remains to show that qa~(q)lx. Let s be any point in x - o .  (See Figure 
3.) Since a(q) lies in ax(xvqs )=xvqs ,  there is a line k through s in x such 
that ~r~(q) lies in e = k v qs. Now, 

a~ (e) = o" x (k) v a~ (q) v a~ (s) = k v o'x (q) v s _c e, 

hence a:(e)=e. The restriction to e of  cr x is thus the reflection in k with 
respect to the generalized metric plane (e, G e , / , ) ,  hence qa~(q).Lk. Let 
o=qa~(q)c~k. To prove that qcrx(q)±x, it suffices to show that qcr~(q)_Ll for 
each line l through o in x. Let f = l v q; then 

a x ( f )=~r  x ( I v o q ) = a  x(1) v a  x(o) va~(q)  

= I v o v ax(q) = f .  
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The restriction t o f o f  ax is thus the reflection in I with respect to the general- 
ized metric plane (f ,  G$, ±s). Therefore, qtr,,(q)Zl. The proof that the exis- 
tence of a reflection in x implies that x is orthocomplemented is complete. 

Conversely, suppose x is orthocomplemented. A reflection tr~ in x can be 
constructed as follows: for each point o in x, define tr~,(o)= o; for each point 

f 

q 

S 
/ ° ~  l 

~x (q) 

Fig. 3. 

p not in x, let g be a perpendicular to x through p, let o = g c~ x, and define 
ax(p)=ao(p). First, it must be verified that this construction provides a 
unique value for try(p). Supposep lies in two distinct perpendiculars g and g' 
to x. Let o=gc~x and o'=g'r~x, so that o~o ' .  By [8, Proposition 3.5], o 
and o' lie in p±, hence p lies in o ± and o ' l .  By Proposition 5.3, ao(p)=p = 
=Cro,(p). Thus, to each point p there is assigned a unique value ~x(P). 
Clearly, cr~ is a self inverse permutation of the entire space that satisfies the 
following two conditions: (i) if y is a flat incident with x, then cr~(y)=y; 
and (ii) if y properly includes x, then cr~,(p)~p for some point p in y. 

It remains to show that trx is an orthogonal collination. Let Pl to P4 be 
any four points. For i=  1 to 4, pt lies in a perpendicular g~ to x; let o~= 
=g~nx. Define w=ol v- . .  v o4. By Corollary 6.4, there is a reflection ~w 
in w. By Corollary 6.2, a:,(p~)=tro,(p~)=trw(p,) for i=  1 to 4. Then p~ to P3 
are collinear if and only if their images under ~,~, hence under ax, are col- 
linear. Suppose pt to P3 are not collinear; similarly, p~ to P4 are coplanar if 
and only if tr~(pa ) to trx(p4 ) are, and papz±p~pa if and only if cr~(ptp2)± 
A-a~(plpa). Therefore tr x is an orthogonal collineation. 
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Henceforth, the unique reflection in an orthocomplemented flat x will be 
denoted by ax. 

The following trivial result is a generalization of Corollary 5.2. 

PROPOSITION 6.6. Let rc be an orthogonal collineation and x be an ortho- 
complemented flat. Then try(,,) = 7rtrxrc- 1. 

7. F I X E D  FLATS AND C O M M U T I N G  R E F L E C T I O N S  

The first results in this section characterize the flats fixed under a reflection. 
This information is used to determine when the reflections in two fiats 
coincide, and when they commute. These results generalize those in §5. 

LEMMA 7.1. Let x be an orthocomplemented flat, g be a line, trx(g)=g, and 
let g n x  be a point. Then # I x .  

Proof. Let o = # n x .  By [7, Proposition 4.11], there is a perpendicular l 
to x through o in x v g; and I lies in g v k for some line k in x. Let e = k v l. 
By Proposition 6.1. the restriction to e of tr x is the reflection in k with respect 
to the generalized metric plane (e, G,, _Le). Thus g.Lk and # is not element- 
wise fixed. It follows that for any line k' through o in x, the restriction to 
e '=  k' v # of tr~ is the reflection in k' with respect to the generalized metric 
plane (e', Ge,, Z~,), hence 9.Lk'. Therefore, Od-x. 

PROPOSITION 7.2. The f ixed points of the reflection in an orthocomple- 
mented flat x are those in x and (when the geometry is elliptic) in x ±. 

Proof. It may be assumed that x is not empty, nor a point (by Proposi- 
tion 5.3), nor the entire space. I f p  is a point in x -t, then p lies in two dis- 
tinct perpendiculars to x by [8, Proposition 3.5], hence in two distinct 
fixed lines; hence p is fixed. Conversely, suppose p is a fixed point not lying 
in x. Let o and o' be two distinct points in x, so that op and 0'0 are distinct 
fixed lines. By Lemma 7.1, they are perpendiculars to x, hence p lies in x z. 

PROPOSITION 7.3. Let x and y be orthocomplemented flats. Then trx(y ) =y  
if and only if x is incident with y, or x l y, or (when the geometry is elliptic) 
x ± is incident with y; moreover, y is elementwisefixed if and only i f y  lies in x 
or (when the geometry is elliptic) in x I. 

Proof. Suppose x.l_y, so that there exists a point o in x n y and fiats x'  
and y'  such that 

o__= _= [o, y ]  

o___ [o, x ]  

x = x '  v ( x n  y) 

y = y '  v (x ny). 
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Let p be a point in y. Since the geometry over o is projective, p lies in k v l 
for some lines k in x n  y and l in y'. By Proposition 6.1, o~(I)=/, hence 
o~(p) lies in ~ ( k  v l )=k v l, hence in y. Thus y is fixed. 

Suppose y properly includes x I. Let p be a point in y. There is a per- 
pendicular g to x through p. By [8, Corollary 3.10], g_Lx ±, hence g lies in y. 
By Proposition 6.1, ~x(P) lies in g, hence in y. Thus y is fixed. 

The only remaining nontrivial part of  this Proposition is the claim that if 
y is a fixed flat passing through a point p that is not fixed, and if y does not 
pass through x, then x±y. Under these hypotheses, there is a perpendicular 
g to x through p; then g lies in y because p and ~x(P) are distinct points in 
g n  y. Thus, the point o=gr~x lies in x n  y. Define y'=yr~ [o, x]. Clearly, 
(x n y) v y'  lies in y;  it will be shown next that (x n y) v y' =y. 

Let p'  be a point in y. It must be shown that p'  lies in (x n y) v y'. If  p' 
is fixed, then p' lies in x or x" by Proposition 7.2. In the first case, p' lies 
in x n  y; in the second, p' lies in [o, x], hence in y', by [8, Corollary 3.10]. 
Thus it may be assumed that p' is not fixed. There is a perpendicular g' to x 
through p'. By the argument of the last paragraph, g' lies in y, hence the 
point o '=g 'n x  lies in x n y .  If o=o', then p' lies in [o, x], hence in y'. 
Therefore, assume o#o ' .  (See Figure 4.) By [7, Axiom 03], there is a per- 
pendicular 1 to oo' through o in oo'p'. By [7, Proposition 3.4], l lies in [o, x], 
hence in y'. Thus, p' lies in o' v I, hence in (x n y) v y'. 

Now define x' = x n [o, y]. Clearly, (x n y) v x' lies in x. The proof that 
x±y will be complete once it is shown that an arbitrary point q in x - y  lies 
in (x n y) v x'. There is a perpendicular k to y through q. If try(k) ~ k, then q 
would lie in y±. Since this cannot be true for all points q in x - y ,  it may be 
assumed that k is fixed. Let s = k n  y, so that s is fixed. By Proposition 7.2, 
s lies in x or x ±. In the latter case, osloq by [8, Proposition 3.7], hence oq±y 
by [7, Proposition 3.4] hence q lies in x' = x n [o, y], and thus in (x c~ y) v x'. 
In the former case, the same argument holds if o=s. Suppose o~s. Then q 

I 
3 p 

I f g s  

5' 
× 

Fig. 4. 
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lies in os v l, where l is the perpendicular to os through o in oqs. By [7, 
Proposition 3.4], l l y ,  so that q lies in (x c~ y) v x'. 

C O R O L L A R Y  7.4. Let x and y be orthocomplemented flats. Then ax=~ry 
i f  and only i f  x = y  or (when the geometry is elliptic) x = y  I. 

Proof. If  ax=o'y, then x = y  or x = y  ± by Proposition 7.2. I f  the geometry 
is elliptic, then ax is a reflection in x J- by Proposition 7.3. 

C O R O L L A R Y  7.5. Let x and y be orthocomplemented flats. Then a~ay= 
= aya~ if and only if x is incident with y, xZy ,  or (when the geometry is el- 
liptic) y is incident with x ~ or a~,(y)=y.L. 

Proof. By Proposition 6.6, a~%=aycr~ if and only if aox(y)=a~aya~=ay, 
hence, by Corollary 7.4, if and only i f , rx(y)=y or a~(y)=yZ. The result then 
follows from Proposition 7.3. 

The next results give succinct descriptions of  the compositions of two 
commuting reflections cr~ and o'y when x ± y  or x is incident with y or y ' .  
Unfortunately, no such description is at hand for the case a~(y )=y  ±. 

L E M M A  7.6. Let x, y, and z be orthoeomplemented flats, x±y ,  x v  y = z ,  
and let o = x c~ y be a point. Then cr~ay = ~r~a o. 

Proof. By Corollary 7.5, ax, ay, and ~o commute, so that a=~r,,ayao is a 
self inverse orthogonal collineation. It will be shown next that o- leaves each 
point p in z fixed. Since the geometry over o is projective, p lies in k v I for 
some lines k and I through o in x and y, respectively. From the definition 
of  x±y ,  it follows that x lies in [o, y]; thus k l y  and l±x.  Therefore, k is 
elementwise fixed under cry, and fixed, but not elementwise fixed, under 
ay and o'°; moreover, l is elementwise fixed under gy, and fixed, but not 
elementwise fixed, under a x and Cro. Therefore, the plane e = k v l is fixed un- 
der crx, cry, and go; their restrictions to e are the reflections in k, l, and o, 
respectively, with respect to the generalized metric plane (e, Ge, Ze). Thus 

a(p)=axayao(p)=p. 
Clearly, an arbitrary flat w that properly includes z is fixed under ~. To 

conclude that a = o'~, it remains to show only that w is not elementwise fixed. 
By [7, Proposition 4.11 ], there exists a perpendicular g to z through o in w. 
Let k be any line through o in x. (See Figure 5.) Then k is elementwise fixed 
under o'~, and # is fixed, but not elementwise fixed. Thus the restriction to 
f = # v h  of  ~rx is the reflection in k with respect to the generalized metric 
plane ( f ,  Gy, ±s) .  Moreover, each line m through o in f is fixed, but not 
elementwise fixed, under ao and, since re&y, under gy. Thus the restrictions 
to f of  ~r, and ~ry are both equal to reflection in o with respect to the 
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,q 

o g~w / lc_y 

kg ;x ~Z 

Fig. 5. 

generalized metric plane (f,  G s, _Ls). It follows that the restriction to f of 
a=ax% % is equal to that of ax. Thus g, and hence w, is not elementwise 
fixed under cr. 

PROPOSITION 7.7. I f  x,  y, and x v y are orthocomplemented flats and 

x l  y, then x ca y is orthocomplemented and axa ~ = ax~axv ~. 

Proof. Define x ' = x n [ o , y ] .  By [7, Proposition 5.2], x = ( x n y ) v x ' .  

Short computations using this equation show that x ca y and x '  are ortho- 
complemented. From the relations 

x = x '  v (x n y)  x '  ca (x v y)  = o 

x ' . L x c a  y x '  n y = o  

x v y = x ' v y  x ' l y  

and Lemma 7.6 follow the equations 

From these equations and Corollary 7.5 follows the desired result: 

erx~r P = f f  oCrxnyCrx,ffy = ~ r o C r x ~ / r x v ~ f f  o = ~rx ,~ycrxvy  

COROLLARY 7.8. Let x and y orthocomplemented flats, and suppose x lies 
in y. Let o be a point in x, and w = [o, y]. Then w is orthocomplemented, 
w.Ly, w v  y = r ,  wca y = x ,  and crx~y=erw. 

Proof. The statement is itself a sketch of a proof. The details, which 
involve several applications of the Modular Law, are left to the reader. 
(Note that the last equation, with Corollary 7.4, implies that w is indepen- 
dent of the choice of o in x.) It is left to the reader to restate Corollary 7.8 to 
apply to the case where the geometry is elliptic and x lies in y±. The next 
Corollary is a special case of Proposition 7.7. 
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COROLLARY 7.9. Le t  o be a point  in an orthocomplemented f lat  x. Then 

¢ro<rx = ¢r[n,x]. 

The final result of  this paper is the analog of  Proposition 6.4 for finite 
codimensional fiats. The proof, an easy application of  Proposition 6.4, 
Corollary 7.9, and [7, Corollary 4.7J, is left to the reader. 

PROPOSITION 7,10. Let  x be an orthocomplemented f lat  o f  f inite codimen- 

sion n. Then there exist n + 1 mutually orthogonal orthocomplemented hyper- 

planes ht to hn such that 

x = ho n ... n hn trx = aho "" ah. . 
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