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ABSTRACT. Jung's theorem establishes a relation between circurnradius and diameter of  a convex 
body. Half of the diameter can be interpreted as the max imum of circumradii of all 1-dimensional 
sections or 1-dimensional orthogonal  projections of a convex body. This point of  view leads to 
two series of j-dimensional circumradii, defined via sections or projections. In this paper we study 
some relations between these circumradii and by this we find a natural  generalization of Jung's  
theorem. 

I N T R O D U C T I O N  

Throughout this paper E d denotes the d-dimensional Euclidian space and the 
set of all convex bodies K c Ed -compac t  convex se ts - i s  denoted by yfd. 
The affine (convex) hull of a subset P c E 4 is denoted by aft(P) (cony(P)) and 
dim(P) denotes the dimension of the affine hull of P. The interior of P is 
denoted by int(P) and relint(P) denotes the interior with respect to the atone 
hull of P. II" [I denotes the Euclidean norm and the set of all/-dimensional 
linear subspaces of E d is denoted by .cpd. L" denotes for L •.~/d the total 
orthogonal complement and for K • ~d ,  L • ~ d  the orthogonal projection of 
K onto L is denoted by K IL. 

The diameter, circumradius and inradius of a convex body K • ~ d  are 
denoted by D(K), R(K) and r(K), respectively. For  a detailed description of 

these functions we refer to the book [BF]. With this notation we can define 
the following/-dimensional circumradii: 

DEFINITION.  For  K • 3f "a and 1 ~< i ~< d let 

(i) RI(K):= maxmax R(K c~ (x + L)), 
L~.~ xeL ± 

(ii) R~(K) := max R(KIL). 

We obviously have R~ + I(K) >1 R~(K), R~ + I(K) >1 R~(K), R~(K) >1 R~(K) and 
Rd(K) = Rd(K) = R(K), R~(K) = R~ (K) = D(K)/2. 

Jung's theorem [J] states a relation between the circumradius and the 
diameter of a convex body. On account of the definition of d t R~(K), R,(K) we 
can describe his result as follows: 
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JUNG'S THEOREM. Let K ~ ~,~rd. Then 

(1A) R~(K) <~ 2~d-- ~ R~(K), 

and equality holds if and only if K contains a regular d-simplex with edge length 
D(K). 

In the same way the theorem may be formulated with the circumradii R~(K) 
and R~ (K). Here we study in general the relations between the i-dimensionai 
and j-dimensional circumradius of both these series and obtain the following 
results. 

1. RESULTS 

THEOREM 1. Let K ~ :;fig and 1 <<. j <~ i <<. d. Then 

/i(j  + 1) 
(1.2) .< R~(K), 

and equality holds for i < j if and only if K contains a regular i-simplex with 

edge length R~(K)x/[2(j + 1)]/j. 

THEOREM 2. Let K e X "a and 1 <~ j <<. i <~ d. Then 

(1.3) R~(K) <<. ~ R{(K), 

and equality holds for i > j if and only if an orthogonal projection of K onto an 
i-dimensional linear subspace contains a regular i-simplex with edge length 

R{(K)x/[2(j + 1)]/j. 

Let us remark that both theorems are a generalization of the classical 
theorem of Jung since for i = d, j = 1 the inequalities (1.2) and (1.3) become 
(1.1). 

2. PROOFS 

To prove these theorems it is necessary to examine in more detail the 
circumradii of simplices since the circumradius of a convex body K is 
determined by the circumradius of a certain simplex. T c K. This well-known 
fact is described in the following lemma. 

LEMMA 1. Let K c j~ra and let 0 be the center of the circuraball of K. Then 
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there exists a k-simplex T ~ K, 7' = conv({x ° . . . .  , xk}) with 

0~relint(T), R(~r) = R(K) and IIx~ll = R(g) ,  0 ~ i ~< k. 

Proof. Cf. [BF, pp. 9 and 54]. []  

With this lemma it is easy to find (d - 1)-dimensional planes for a simplex 
which produce the maximal (d - 1)-circumradius with respect to projections 
or sections. 

LEMMA 2. Let T ~  d be a d-simplex, ff a facet of T with maximal 
circumradius and f. ~ .L#~_ i, Y¢ ~ L± with :~ + L = aft(F). Then 

(i) Rg-I(T)  = R(Tn( :c  + L)) = g(ff), 

(ii) R~-I (T)  = R(TI f~) = R(ff). 

Proof. Let L a - l e ~ - i  with R ~ - t ( T ) =  R (T IL a - t )  and let T I L a - t  be 
the convex hull of the points x ° , . . . ,  x a, where x ° . . . . .  x d denote the images 
of the vertices of T under the projection onto La- r Further, let 0 be the center 
of the circumball of T I Ld- 1 and T c T I La_ 1, T =conv({ x° . . . . .  xk}), 
1 ~< k ~< d - 1, a k-simplex with the properties of Lemma 1. 

Now let F be a facet of T containing such k + 1 vertices which are mapped 
onto x ° . . . .  , x k with respect to the orthogonal projection onto L a_ 1. We have 

R(F) >~ R(F) >1 R(FILa- i )  ~ R(7") = Rd-I (T) ;  

on the other hand R(ff) ~ R~-I(T)  ~ Rd- I (T)  and the assertion follows. []  

On account of the lemma above we have R(S)/R~-I(S)=R(S)/R~-I(S)= 
d/(d 2 - 1) 1/2 for a regular d-simplex S. This is even an upper bound for every 

simplex as shown in the next lemma. 

LEMMA 3. Let T E ~  a be a simplex. Then 

d (i) R(T)  <~ - -  R~-I(T) ,  

d 
(ii) R(T) <<. - -  R~-~(T), 

and equality holds if and only if  T is a regular d-simplex. 
Proof. If T is a regular d-simplex we have equality by Lemma 2. Hence on 

account of R~-I(T) <~ R~-I(T) is suffices to prove the lemma for the (d - 1)- 
circumradius R~- I(T). 

Let 0 be the center of the circumball of T and let {x ° . . . .  , x k} be a suitable 
subset of the vertices of T, such that T = conv({x ° . . . . .  xk}) has the properties 
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of L e m m a  1. I f  k < d then 

d 
(2.1) R(T) - R(SV) = R~-*(T)  < - -  R~-I(T). 

Hence we m a y  assume tha t  T = conv({x ° . . . .  ,xa}) is a d-simplex with 

0 a i n t ( T )  and  I[xql = R(T), 0 <. i ~ d. 
Let 5. be the max imal  radius of  a d-dimensional  ball with center  0, which is 

conta ined in T. This  ball touches a facet F of  T in a point  2a, Ilal[ = 1. Let  F be 
given by  conv({x 1 . . . .  , xe}). Since a is a normal  vector  of  aft(F) we have 

Hx i -- ).all 2 = R(T) 2 - 22, 1 ~< i ~< d. 

Hence  2a is the center of  the circumball  of  F [BF,  p. 54] and  it follows tha t  

(2.2) R(T) 2 -- R~-*(T) 2 <~ )3. 

F o r  the inradius r(T) of a simplex T we have r(T) ~< R(T)/d I F ]  and so by the 
choice of  it 

R(T) 2 
(2.3) it2 ~< d - - - -T -  

Along with (2.2) this shows inequali ty (i). I f  we have equali ty in relat ion (i) 
then, f rom (2.1), (2.2) and (2.3), it follows tha t  T is a d-simplex with 

r(T) = R(T)/d. This is only possible if T is regular  IF] .  [ ]  

N o w  we are able to prove  the theorems.  

P R O O F  O F  T H E O R E M  1. I t  obviously sutfices to show the inequalities 

i 
R ~-I~K~ l < i ~ < d .  (2.4) R~(K) <~ x / - f 7  T , , ,, 

Since the circumradii  are invar iant  with respect  to t ranslat ions we m a y  
assume tha t  there is an /-dimensional  linear subspace L,~.E#~ with 
R~(K) = R(K c~ L,) and 0 is the center of  the ¢ircumball  of  K c~ L~. Moreover ,  

let T c (K c~ L~) be a k-simplex with the propert ies  of  L e m m a  I. Denot ing  by 
R~- ~(T; L~) the (i -- 1) -drcumradius  of  T with respect to the Euclidean space 

L~, we  get f rom L e m m a  3 

i 
(2.5) R(T) <. ~ R~-I(T;L,). 

By the choice of T we have R(T) = R~(K) and since R~-I(K) >f R~-I(T;  L~) 
the inequalities (1.1) are shown. 
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If an inequality of (1.1) is satisfied with equality for i > j  we must have 
equality in (2.4) and (2.5). By Lemma 3 this means that T is a regular/-simplex 
which satisfies the relation 

(2.6) R(T) = R~(K) = ~ R{(K). 
~/j(i + 1) 

Since T is regular we have R(T) = (i/(2i + 2))l/2D(T) and by (2.6) we see that 
T has diameter (edge length) R~(KX(2j + 2)/j) 1/2. 

Now let T be a regular/-simplex contained in K with the given edge length. 
On account of (1.2) we get 

(2.7) R(T) = 2 ~ / t ~ +  2 D(T) = ~/ j(i/i(J ++ 1)1) R~(K) >t R~(K). 

Clearly R(T) <% Ri(K) and so we can replace '~<' by ' = '  in (2.7). [] 

PROOF OF THEOREM 2. On account of Lemma 3 the proof can be done 
in the same way as the proof of Theorem 1. [] 

3. REMARKS 

(1) If we replace the first maximum condition by a minimum condition in the 
definition of the circumradii we get two other series of i-circumradii which 
now start with the half of the width of a convex body. If we further replace the 
circumradius by the inradius we totally get four series of circumradii and four 
series of inradii. Some of these functionals are studied in Computational 
Geometry [GK]. For a survey of these generalized circumradii and inradii we 
refer to I-HI. 

(2) Theorems involving inradius, circumradius, diameter and width have a 
long tradition in the geometry of convex bodies. In this context we refer to 
EBL], [BF], l-El, [DGK]. 
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