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ABSTRACT. Our main concern is to investigate geometrically all sets of three concurrent 
chords of regular polygons or, equivalently, all adventitious quadrangles (that is, all 
quadrangles such that the angle between every pair of the six sides is an integral multiple 
of ~r/n radians). Most of our results are stated without proof. The proofs are elementary, 
often consisting of straightforward verification; to include them would make the paper 
much longer and less readable. 

1. INTRODUCTION 

1.1. This article is the result of  investigations by the author, in collaboration 
with Dr  P.A.B. Pleasants and Dr N.M.  Stephens of  University College 
Cardiff, into a problem posed by Colin Tripp [13]; Dr  G. R. H. Greaves, also 
of  University College Cardiff, has contributed some useful ideas. 

The starting-point of  the problem is a well-known geometrical puzzle: 
find the angle 0 in Figure 1 using elementary ' pu r e '  geometry. It is shown in 
[13] that 0 = 30 °, so the figure has an interesting property: the angle between 
each pair of  the six sides of  the quadrangle B C D E  is a multiple of  10 ° = 7r/18 
radians. Tripp therefore says that the quadrangle B C D E  is adventitious, 
because it occurs by chance: if we start with the same triangle A B C  and choose 
other multiples of  10 ° for the angles BCE and CBD, the angle 0 will not in 
general be a rational number of  degrees. This idea can be generalized [13]: 

D E F I N I T I O N .  A quadrangle is n-adventitious, where n is a positive integer, 
if the angle between each pair of  the six sides of  the quadrangle is an integral 
multiple of  ~r/n radians. 1 A quadrangle is adventitious if it is n-adventitious 
for some integer n. 

Tripp's  problem is essentially this: enumerate all adventitious quadrangles, 
and prove their existence using only elementary pure geometry. A partial 
solution to the problem of enumeration has been given by Meek and Tripp 
[11], but an independent method of investigation is given in the present 
paper. 

1.2. I f  in Figure 1 we draw the circumcircle of  BCD, we obtain Figure 2. 
Since all angles of the quadrangle B C D E  are multiples of  10 °, it is easily seen 

1 Tripp uses the term adventitious quadrilateral, but since our figure has four vertices and 
six sides, quadrangle is more appropriate. 
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that B C D X Y Z  are six vertices of a regular 18-gon inscribed in the circle. 
Thus we have three intersecting diagonals BX, C Y, DZ of  a regular 18-gon. 

In general, if BCDE were a non-cyclic n-adventitious quadrangle, BX, C Y, 
DZ would be intersecting chords of a regular n-gon. (This idea is due to 
Greaves and Lunnon.) Clearly then our original problem is equivalent to the 
following: 

Find all triple intersections of diagonals of regular polygons, and 
prove their existence using elementary pure geometry. 

(The existence of  cyclie n-adventitious quadrangles BCDE is trivial: we 
simply take B, C, D, E to be any four vertices of  a regular n-gon.) 

We approached the problem in three main stages: (i) initial geometrical 
ideas, (ii) the algebraic determination of all triple intersections, (iii) the geo- 
metrical proof  of the existence of  all these triple intersections. We later dis- 
covered that (ii) was solved forty years ago by Bol [2] (see Section 4), but we 
do introduce some new algebraic ideas here. 

It is gratifying to have geometrical proofs of  existence, but an algebraic 
approach seems necessary to make sure that we have exhausted all possibilities. 

Unlike Bol and Harborth [6, 7] we shall be concerned with triple inter- 
sections both inside and outside the circle; 2 thus one or more of  the intersecting 
diagonals may be a tangent (see Figures 7 and 8). Three intersecting diagonals 
will be called a triplet. Since the number of multiple intersections rapidly 
becomes large as n increases (frontispiece) we shall regard triplets that can be 
obtained from each other by rotation or reflection as being identical. 

2 Although we use the term 'polygon', it is more convenient to think of n points equally 
spaced round a circle. 
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2. INITIAL GEOMETRICAL IDEAS 

2.1. Triplets of the types illustrated in Figures 3 and 4 are trivial; they can be 
called central triplets and symmetric trivial triplets respectively. 

2.2. I f  n is even, let A, B, C be vertices of a regular n-gon such that the arcs 
BC, CA, AB all have even length (Figure 5). Let J be the incentre of triangle 
ABC. Since AJ bisects ZBAC,  P bisects the arc BC and so P is a vertex of the 
n-gon; similarly, so are Q and R. We can also obtain a triplet by taking J to be 
an excentre of ABC. In all cases (incentre or excentre) J is the orthocentre of 
triangle PQR (Figures 6 and 7), so the triplet AP, BQ, CR will be called an 
orthic triplet. 

If  triangle PQR is obtuse, its orthocentre will lie outside the circle (Figure 7) 
and for suitable positions of P, Q, R one chord will be a tangent (Figure 8). 

A Q R Q 

B 

Fig. 5. Fig, 6. 
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There are many non-trivial triplets that are not orthic triplets (the triplet 
in Figure 2 for example). In 2.3 and 2.4 we describe two methods of generating 
one triplet from another; these two methods can be combined to produce 
non-orthic triplets. 

2.3. Let AX, BY, CZ be a triplet, with P as the point of intersection 
(Figure 9). Let AX'  be the line such t h a t / B A X '  = /_XAC (it is important 
that these two angles have the same sign) and define BY',  CZ' similarly, as 
shown in the figure. Then X', Y', Z '  are vertices of the polygon, since equal 
angles on a circle are subtended by equal arcs; moreover AX', BY',  CZ' are 

P'~.~ 
I \  \ x..  

I \  \ 
Z' I \ \ \  

\ c 
X 

y 

C 

Fig. 9. Fig. 10. 
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concurrent in a point P '  called the isogonal conjugate of P with respect to 
triangle ABC. The existence of this isogonal conjugate can be proved using 
similar triangles, trilinear coordinates [3b, p. 93], trigonometry [3a, p. 49] or 
the geometry of reflections [1, p. 16]. 

This process of obtaining one triplet from another is called isogonal 
conjugation, and the second triplet is an isogonal conjugate of the first. Since 
each diagonal has two ends, we can choose the triangle ABC in 23 = 8 ways 
when a triplet is given. Hence a triplet will in general have eight isogonal 
conjugates. (In Figure 10, for instance, we start with the same triplet as in 
Figure 9, but we obtain a different isogonal conjugate by using a different 
triangle.) Each of these in turn has eight conjugates, so it would seem that by 
repeating the process of isogonal conjugation we can generate a large number 
of triplets. However, if we start with a given triplet, the process of successive 
isogonal conjugation yields a total of only fifteen triplets (or fewer in special 
cases), all related to each other in a symmetric manner that we shall discuss 
in detail in Section 3, and forming a conjugaey class of triplets. Six of these 
triplets have intersection points inside the circle (internal triplets) and nine 
outside (external triplets). 

The isogonal conjugate of the incentre of a triangle, or of an excentre, is 
itself, and the isogonal conjugate of the orthocentre is the circumcentre; it is 
easily verified that the conjugacy class of an orthic triplet consists of a central 
triplet, six symmetric trivial triplets, and four orthic triplets each counted 
twice. Hence we can speak of an orthic class or a trivial class of triplets. We 
can therefore generate no new types of triplet by isogonal conjugation alone 
from trivial and orthic triplets: we need also to use the process described in 
2.4. 

2.4. Suppose we have a triplet with two equal diagonals, as in Figure 11. 
The line of symmetry of these diagonals is also a line of symmetry of the n-gon: 

( 
Substm,~oa~ 

\ \  \ \  

Fig, 11. Fig. 12. 
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If  we reflect the third diagonal in this line of symmetry, we obtain four inter- 
secting diagonals, or five if the line of symmetry is itself a (diametral) diagonal. 
From these four or five diagonals we can select (in one or more ways) three 
diagonals forming a triplet that will in general belong to a different conjugacy 
class. This process is called substitution. 

We may also apply the process of substitution if one diagonal of the initial 
triplet is a diameter, in which we reflect (Figure 12). 

If  the line of symmetry in Figure 11 is not a diagonal of the n-gon, it will be 
a diagonal of a 2n-gon, so substitution can be used to pass from an n-triplet 
to a 2n-triplet, and vice-versa. 

2.5. Using the notation of 2.2, suppose that n is a multiple of 6, and that the 
arc QR of the triangle PQR is one-third of the circumference (Figure 13); we 
then easily prove that the altitudes through Q, R give equal chords QB, RC 
of  the n-gon. Thus we can perform a substitution to obtain a new triplet. 
The conjugacy class of  this new triplet (which will not in general be an orthic 
class) may contain other triplets on which we can perform a substitution; the 
process can be continued, and thus we obtain many triplets. 

2.6. After failing as yet to find any other methods of  generating triplets, 
we now ask three questions: (i) are there any triplets if n is odd ? (ii) are there 
any triplets other than trivial and orthic triplets if n is not a multiple of  6 ? 
(iii) can we generate all triplets from orthic triplets by substitution and iso- 
gonal conjugation ? The answer to each question is 'no ' ,  but the answer to 
(iii) only just fails to be 'yes' .  We obtain the answers by determining all 
triplets algebraically in Section 4. 

2.7. The process of obtaining one conjugacy class from another by substi- 
tution implies and requires that each of the two classes contains a triplet with 
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either two equal chords or a diameter. A class containing no such triplet is 
said to be inaccessible, as it cannot be obtained in one or more steps from an 
orthic class using substitutions. (This argument does not guarantee that every 
class containing a triplet with either two equal chords or a diameter is acces- 
sible from an orthic class, although this is in fact the case.) In Section 4 we 
obtain various inaccessible classes, but not many, which is why the answer to 
(iii) i s '  no'. 

3. CONJUGACY CLASSES 

3.1. We remarked at the end of 1.2 that triplets that can be obtained from each 
other by rotation or reflection of the n-gon are regarded as being identical. 
Let A denote a given triplet (or rather, a set of identical triplets). The fact that 
only fifteen triplets (including A) can be obtained from A by successive 
isogonal conjugations may be verified by tedious but straightforward calcu- 
lation; the work is most easily done if we label the vertices of the n-gon either 
by roots of unity (taking the circle as unit circle in the Argand diagram) or by 
integers modulo n. How are these triplets related to each other ? 

Suppose A consists of the chords XY, ZT, UV. Let B denote the isogonal 
conjugate of A obtained by using the triangle XZU, and let C denote the 
isogonal conjugate obtained from the 'opposite' triangle YTV. We call B 
and C opposite conjugates of A; it is easily verified that A and C are opposite 
conjugates of B, and similarly A and B are opposite conjugates of C. Let us 
denote this situation by (ABC) (or (CBA), or (BAC), etc.). We may denote the 
remaining six conjugates of A by D, E, F, G, H, K, where (ADE), (AFG), 
(AHK). 

There are six more triplets that can be obtained from A by two successive 
isogonal conjugations; it is easily verified that if we label them L, M, N, P, 
Q, R in a suitable order, we have 

(BEL) (BGM) (BKN) (COL) (CFM) (CHN) (DFQ) 

(DHP) (EGQ) (EKP) (FHR) (GKR) (LMQ) (LNP) 

(MNR) (PQR). 

3.2. If we now refer to A, B , . . . ,  R as 'points' and (ABC) etc. as 'lines', 
we have a configuration of fifteen points and twenty lines. This is a familiar 
configuration, and is most easily visualised by taking six general 3-spaces in 
4-space, which meet by fours in fifteen points, by threes in twenty lines, and 
by twos in fifteen planes; the points and lines in each 3-space form a Desargues 
configuration. 

3.3. Let XY, ZT, UV be the triplet A of intersecting chords (Figure 14). 
Draw lines through Y and T parallel to UV meeting the circle again at T' 
and Y' respectively. Then the hexagon XYT'ZTY '  is inscribed in the circle; 
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X Y  n Z T  lies on UV, and YT '  n T Y '  lies on U V  (at infinity), and hence 
T ' Z  n Y ' X  lies on U V  by Pascal's theorem. Hence X Y ' ,  Z T ' ,  U V i s  another 
triplet, obtained from the original one by a Greaves transformation. If  we 
transform A by drawing lines through X and Z parallel to UV, we obtain a 
reflection of  the original transform, so the two transforms are identical. 
However, we obtain a distinct transform by drawing lines through Y and Z 
(or X and T) instead of through Y and T. 

Also, instead of  drawing lines parallel to UV, we can use X Y  or ZT.  Thus 
from A we can obtain six triplets using Greaves transformations. In the nota- 
tion of  3.1, these are the six triplets L, M, N, P, Q, R. Each pair of the fifteen 
triplets in 3.1 are either isogonal conjugates or Greaves transforms of each 
other, but not both. A Greaves transformation is the product of  two isogonal 
conjugations, and an isogonal conjugation is the product of  two Greaves 
transformations. 

4. T H E  A L G E B R A I C  D E T E R M I N A T I O N  OF T R I P L E T S  

4.1. Let X Y ,  ZT,  U V  be intersecting diagonals of  an n-gon. Take the circle 
as unit circle in the Argand diagram and one vertex of  the n-gon as unit point. 
Then each vertex is represented by an n-th root of unity. Suppose X, Y , . . .  
are represented by x, y . . . . .  The condition for X Y ,  ZT,  U V  to be concurrent 
is 

(1) f xyz  + xy t  + ztu + ztv + uvx + uvy 

- u v t  - uvz - xyv - xyu - z ty  - z tx  = 0, 
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which may be written as 

i ~  x + y  1 

zt  z + t  1 

u + v  1 

o r  

= O, 

( x  - t ) ( u  - y ) ( z  - v)  + ( y  - z ) @  - x ) ( t  - u )  = o ,  

from which we deduce Bol's result 

X T . U Y . Z V  = Y Z . V X . T U  [2, p. 15]. 

Thus a triplet produces twelve roots of unity in two sets of  six (xyz  . . . . .  
-uvt,. . .) whose sum is zero. Since the choice of  a different vertex as unit 
point has the effect of  multiplying all these roots of unity by the same number, 
it is their ratios only that are important. 

If  we label the six ends of the diagonals in a different order (which may be 
done in 48 ways), or if we reflect the triplet in a line of symmetry of the poly- 
gon, we simply permute the twelve roots of unity within the two sets of six 
(the same permutation in each set), or else we interchange the two sets. What 
is more interesting is that the f i f teen triplets in a conjugaey class all produce 
the same two sets o f  six roots o f  unity. 

The number of ways of permuting the roots of unity within their two sets 
and perhaps interchanging the two sets is 6! x 2. The number of  permutations 
caused by relabelling the vertices of a triplet and perhaps reflecting it is 48 x 2. 
We see that (6! x 2)/(48 x 2) = 15, the number of triplets in a conjugacy 
class. 

Let us write x y z = a ,  x y t = b ,  z t u = c ,  z t v = d ,  u v x = e ,  u v y = f ,  
xyztuv = s. Then equation (1) becomes 

a + b + c + d + e + f  

(2) s s s s s s = 0 .  
a b e d e f 

Thus a conjugacy class determines, and is determined by, the roots of unity 

a, b, e, d, e , f a n d  s. 
The problem of  finding all triplets is therefore reduced to the problem of 

finding all roots of unity satisfying (2), where s 3 = abcdef  Since we only need 
the ratios of x, y, z , . . .  we can obtain them by the formulae 

s s s 2 s 2 

(3) x = e, y = f ,  z = -~, t = -,a U = -ab-d, V = abc. 

All solutions of (2), except for two omissions, were found by Dr Pleasants 
before we discovered that the calculations had already been done by Bol [2]. 
We give a list of solutions in 4.3. 
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4.2. I f  we map each n-th root of unity x onto x k, where (k, n),= 1, this 
mapping determines an automorphism of the field generated by the n-th 
roots of unity. Thus (1) implies 

x~ykz k + x~ykt ~ + . . .  

-- U~l)~t ~ -- U~V~Z k . . . .  = O. 

Hence x ~, yk; z ~, tk; u k, v~ are ends of three intersecting diagonals. This 
triplet is said to be isomorphic to the original triplet. It is obtained by multi-  

p ly ing the original triplet by k (thinking of the vertices of the n-gon as being 
represented by integers modulo n) (figure 15). The angles between chords of 
the triplet are also multiplied by k. We see that if we multiply two isogonally 
conjugate triplets by k, then the new triplets are isogonally conjugate. Thus 
we can define isomorphic conjugacy classes. 

The number of integers k less than n and prime to n is ~(n), but, since 
multiplication by - 1 (i.e. by n - 1) merely reflects a triplet, multiplication by 
k and - k  (i.e. n - k) have the same effect. Thus a conjugacy class is iso- 
morphic to at most ½~(n) classes, including itself. If  there are r values of k 
(0 < k < ½n, (k, n) = I) for which k~¢ = cg, then the conjugacy class c~ is 
isomorphic to ½(~(n)/r classes. 

It should be noted that 'multiplication by k '  is an operation whose validity 
has been proved only algebraically and not geometrically. However, the idea 
can be used to shorten geometrical investigations. For instance, if we are 
considering accessibility and have shown that the class ~ can be obtained 
from the orthic class (9 by substitutions, we immediately deduce that kC~ can 
be obtained from the orthic class kO by substitutions. 

When giving a list of conjugacy classes, we need therefore only give one 
conjugacy class from each set of isomorphic classes. By this means, Bol's 
list of 65 sporadic classes (see 4.3) is reduced to 16, a considerable saving. 

Fig. 15. 
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4.3. Apart  f rom orthic classes, there are two kinds of  conjugacy class: 

(a) General classes. These classes, of  which there are three types, occur 
whenever n is a multiple of  6. 

(b) Sporadic classes. These classes occur only for particular values of  n. 
Table I gives, for each class or type of  class, (i) a symbol to denote the class, 

(ii) the value of n, (iii) the values of  a, b, c, d, e , f ;  s, (iv) the values of  x, y; 
z, t; u, v for one triplet in the class (not necessarily the triplet given by the 
formulae (3)) given as roots of  unity for the general classes and as integers 
modulo n for the sporadic classes, (v) the corresponding symbol in Bol's 
list. 8 

We emphasize again that, in the case of  the sporadic classes, only one 
class is listed from each set of  isomorphic classes. The reader who consults 
Bol's list may wish to know which of  Bol's classes are isomorphic and to 
which of  our types they belong. This information is given in table II. 

4.4. Conjugacy classes of  types I, II, I I I  (i.e. general classes) are all acces- 
sible. A complete description of all the ways in which orthic classes and general 
classes are linked by substitutions is too involved to give here. Suffice it to 
say that we can go f rom orthic to type I, and f rom type I to type II, using 
substitutions without a diameter, and f rom type I I  to type I I I  using a substi- 
tution with a diameter. 

a Bol lists a triplet by giving the 'distances' Pl, P2, Pa, ql, q2, q3 between consecutive 
vertices (figure 16). Bol's triplets are always interior. There are four misprints in his list; 
the corrected triplets are: 

D. (6k) k 2r k - 2 r  r k -  2r 3 k +  r 
21. (60) 18 3 11 16 7 5 
4. (90) 23 9 5 32 19 2 
1. (210) 121 45 1 18 14 11 
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TABLE II 

n = 30 
A: 3, 7, 8, 10; B: 13; C: 1, 6, 9, 12; D: 2, 4, 5, 11. 

n = 42 
All Bol's classes are isomorphic. 

n = 60 
F: 8, 10; G: 5, 6, 12, 20; H: 4, 9, 13, 22 ;J :  1, 11, 14, 21; 

K" 2, 16, 17, 19; L: 3, 7, 15, 18. 
n = 84 

M: 1, 3, 4, 5, 6, 8; N: 2, 7. 
n = 90, 120, 210 

All Bol's classes are isomorphic. 

The sporadic  classes A - F  are accessible: using the equal diagonals xy  and 
zt (as given in Table I) and performing a substi tut ion without  a diameter,  we 
obtain in each case a general or  an orthic triplet. (For  example,  if  we per fo rm 
a substi tution on A we obtain  the triplet with vertices 0 10, 13 14, 8 27; this 
does not  occur in Bol 's  list o f  sporadic classes, so it is general or orthic. ) 

The sporadic  classes J - N  and Q are accessible: replacing the d iameter  xy  
by the reflection of  the diagonal  zt in the diameter ,  we obtain in each case a 
general or  an orthic triplet in the ln-gon.  

The  sporadic classes G and H are accessible. F r o m  G we can only reach K 
by substi tution (using the equal chords xy  and zt for  instance) but  K is 
accessible. F r o m  H we can only reach J, K, L, A, B, C and D by substi tutions 
(with or without  a diameter)  but  all these are accessible. 

Since no triplets in classes P and R contain either equal diagonals or a 
diameter, these classes are not accessible. We shall discuss these classes fur ther  
in Section 6. 

The general classes and the accessible sporadic  classes are l inked by  substi- 
tutions in many  ways;  only the simplest ways are described above.  

5. INTERSECTIONS OF MORE THAN THREE DIAGONALS 

5.1. We have already seen (Figures 11 and 12) how a triplet containing two 
equal diagonals or  a d iameter  gives a symmetr ic  figure o f  four  or  five inter- 
secting diagonals.  We call these symmetric quadruplets and quintuplets; in a 
sense they are trivial since they arise natural ly once we have obta ined the 
triplets. 

The  asymmetr ic  quadruple t  and quintuplet  i n  Figures 17 and 18 were 
originally found by the au thor  by accurate  drawing, checked by algebra.  4 The  

4 Accurate drawing produces many apparent triplets and quadruplets, but non-genuine 
ones are easily exposed by multiplication (4.2), which turns apparently concurrent lines 
into lines that clearly do no concur. Triplets that survive this simple test can then be 
checked using condition (1) of 4.1. 
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asymmetric quintuplet turns out to be unique (5.2). Both these figures contain 
an orthic triplet, which suggests a method of obtaining further quadruplets. 

Suppose AP, BQ, CR is an orthic triplet, the intersection point J being 
the orthocentre of PQR, and suppose X Y  is another diagonal through J. 
By suitably choosing the unit point, we may represent Xand  Yby the roots of 
unity - x  and - ~  ( = - x - l ) .  If  P, Q, R are represented by p, q, r, then 
A, B, C are represented by -qr/p,  -rp/q ,  -pq/r .  Using condition (1) of 4.1 
we find that AP, BQ, X Y  are concurrent if and only if 

(4) (p + q + r + x) + (fi + ~l + f + ff) = O. 

Figure 17 comes from the solution 

(5) p = i ,  q = - ( ,  r = - ~ a ,  x =  o~, 

where Greek letters denote roots of unity as in Table I. Figure 18 comes from 
combining the quadruplets obtained from two solutions (after rotating one of 
the quadruplets): 

(6) p = - ~ ,  q = ~ ,  r = - q  ~, x = ~  2, 

(7) p = - i ~  4, q = - i ,  r = coi~ 3, x = - w i ~  4. 

Solution (6) depends on the fact that ~7 = 1. Solution (7) does not: it is a 
special case of the general solution 

(8) p = - i ~ ,  q = - i ,  r = wi~, x = - c o i ~ ,  

where ~ is any root of unity. 
Because of the symmetry of (4) in p, q, r, x, we see that the solution (8) 

gives rise to other solutions: 

(9) p = - i ~ ,  q = - i ,  r = - c ~ g ,  x =  coi~, 

(10) p = - i ~ ,  q = - w i ~ ,  r-=~oi~, x = - i .  
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Fig. 19. Fig. 20. 

(If we take the fourth possible solution, with x = - i~,  we get nothing essen- 
tially different from (8).) 

Solution (9) merely gives us a symmetric quadruplet (Bol's type IV), and 
solution (10) gives four diagonals, including the diameter of a symmetric 
quintuplet (Bol's type V). 

If  we have any solution of (4) and we permute the values of p, q, r and x, the 
various quadruplets that we obtain are connected in a geometrical manner 
that we shall not describe here. 

By permuting the solution (5) we obtain 

(11) p = _ ~ ,  q = _ ~ 3 ,  r=-w, x = i ,  

which gives Figure 19. If  we reflect this figure in the diameter we obtain a 
symmetric septuplet in the 60-gon (Figure 20). Removing the diameter we 
obtain a symmetric sextuplet in the 30-gon. There is another symmetric 
septuplet in the 60-gon, which cannot be obtained in this way (see 5.2). 

5.2. Bol gives a complete list of intersections of more than three diagonals, 
when the point of intersection lies inside the circle. We give this list below. The 
concept of isomorphism and multiplication (4.2) extends to intersections of 
more than three diagonals, so we only list one intersection from each set of 
isomorphic intersections. 

There exist triplets all of whose isomorphic triplets (or multiples) are exter- 
nal, but every external triplet is isogonally conjugate to an internal triplet, so 
we easily obtain all external triplets from Bol's list. However, the situation is 
different for quadruplets, quintuplets, etc. Isogonal conjugation no longer 
applies, and Figure 21 is an example of a quadruplet, all of whose multiples 
are external quadruplets. Such a quadruplet can be called an essentially 
external quadruplet. We have not yet tackled the problem of listing all essen- 
tially external quadruplets. 
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Fig. 21. 

We know that certain orthic classes, and all general classes, contain triplets 
with two equal diagonals or with a diameter, whenever n is a multiple of 6. 
These triplets give rise to symmetric quadruplets and quintuplets, for which gen- 
eral formulae can be given (we give the ends of the diagonals, as roots of unity): 

(a) ~, o~2~; ~, ~o~; ~3, -oJ~; ~3, _~o2~; with or without the diameter joining 
1 to - 1. This corresponds to the solutions (10) and (9) of equation (4), but 
we must replace ~ by - ( 2  in (9). 

(b) ~, - ~a ; ~, _ ~a; _ co2~, _ co~; - o~, - ~2~; with or without the diameter 
joining 1 to -~ 1. 

Solutions of type (a) correspond to Bol's IV and V; solutions of type (b) 
correspond to Bol's I, II, III, VI, VII and VIII. Bol always lists distances 
between the ends of consecutive diagonals, which must be positive, so he 
sometimes needs more than one formula for one algebraic type of intersection. 

There is one other type of quadruplet that occurs whenever n is a multiple 
of 6. This is Bol's type IX, an asymmetric quadruplet, and is given by our 
solution (8) of equation (4). 

Sporadic triplets containing two equal diagonals or a diameter give rise to 
sporadic symmetric quadruplets and quintuplets. Some of these can also be 
obtained from general triplets (from those general triplets that occur sporadi- 
cally and produce sporadic triplets when we perform a substitution). These 
symmetric quadruplets and quintuplets are easily obtained from the relevant 
sporadic triplets, so we need not list them here. 

There remain the sporadic asymmetric quadruplets and quintuplets, and the 
symmetric sextuplets and septuplets, which we reproduce from Bol's list, 
one from each isomorphic type. After each quadruplet we give the types of 
the four triplets contained in it; 'O '  stands for 'orthic' .  
n = 30 

Symmetric septuplet 
0 15, 1 19, 222 ,  324 ,  627,  828,  11 29. 
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Symmetric sextuplets 

011, 120, 225, 327, 428, 629. 
013, 1 18, 222, 426, 527, 929. 

Asymmetric quadruplets 

023, 1 26, 4 2 8 , 1 2 2 9 ( O I D D ) .  
011, 412, 613, 9 1 8 ( I I I I I I I ) .  

n = 42 

Asymmetric quintuplet 

018, 225, 533, 837, 15 41 (Figure 18). 

Asymmetric quadruplet 

08, 212, 427, 5 3 5 ( O I I E E ) .  

n = 60 

Symmetric septuplets: obtained by inserting diameters into the two symmetric 30- 
sextuplets. 

Asymmetric quadruplets 
015, 3 36, 444, 9 57 (O Il l  G G) (Figure17). 
013, 534, 642, 9 5 5 ( O G F K ) .  
022, 1 25, 643, 9 5 0 ( I I F G J ) .  
012, 5 18, 837, 9 4 7 ( I I F G L ) .  
021, 337, 442, 10 55 (G G J L). ~ 

The 30-quadruplet in Figure 21 contains triplets of types O A C D, so a 
complete list of essentially external sporadic quadruplets will yield types not 
in Bol's list; whether it will yield anything really interesting remains to be 
seen. 

Fig. 22. 

5 This quadruplet is not in Bol's list, though he gives an isomorphic quadruplet. This 
appears to be a genuine omission rather than a printer's error, since the triplets that it 
contains are listed by Bol as triplets not contained in any quadruplet. I have noticed a 
number of minor misprints in Bol's paper; these are not surprising, as the calculations 
and the proofreading must have been a formidable task. 
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Fig. 23. 
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Fig. 24. 

5.3. The quadruplet of Figure 17 is obtained by combining the orthic 
triplet indicated by unbroken lines and the general triplet 0 15, 3 36, 4 44. 
We can then extract two sporadic triplets of type G from the quadruplet. This 
is a new method of proving the existence of sporadic triplets, a generalization 
of the method of substitution. Unfortunately it does not help us with the 
inaccessible classes P and R, since no triplet in these classes belongs to a 
quadruplet. (No triplet in these classes is essentially external, so any such 
quadruplet would appear in Bol's list.) 

5.4. A few multiple intersections have visual interest. Figure 23, with each 
diagonal inclined at 36 ° to the next one, was found accidentally. Figure 24, 
with diagonals inclined at 45 °, was then obtained by adding a diameter to a 
symmetric triplet in the 12-gon (see frontispiece). These two figures are remi- 
niscent of lobed or palmate leaves (Figures 25 and 26). The only asymmetric 
triplet with each diagonal making angles of 60 ° with the others is shown in 
Figure 22, of type B. (Using the notation of 4.1 assume, without loss of 
generality, that x y  = 1. Then z t  = co and uv = co 2. Condition (1) of 4.1 then 
simplifies to x + ~ + oJz + ~-2 + co2u + oJ2u = 0. The only solutions of this 
for (x, coz, ~2u) are (i, i, i), (~ , -~,  i), (i~, i ~ ,  imp-l), (i, io), io~2), (if, i~ :2, i~o); 
only the last gives an asymmetric triplet.) 

5.5. What can we say about diagonals of a regular polygon in the hyper- 
bolic plane ? Let us use Beltrami's representation of points of the hyperbolic 
plane by points inside a circle in the Euclidean plane, and lines of the hyper- 
bolic plane by Euclidean line segments inside the circle. We can make this 
representation in such a way that a given regular polygon in the hyperbolic 
plane is represented by a regular polygon in the Euclidean plane with its 
centre at the centre of the bounding circle, Intersecting diagonals in the 
Euclidean plane will represent intersecting diagonals in the hyperbolic plane, 
though the point of intersection may be infinite or ultra-infinite; hence all 
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TREE LLIPIIV 

Lu, oinus arboret~ 

Fig. 25. 

! 
SYCANOI~E: 

Ace," pseudopiaz"an~ 

Fig. 26. 

multiple intersections in the Euclidean plane give multiple intersections in the 
hyperbolic plane, and conversely. Beltrami's representation does not preserve 
angles, so orthic triplets, equally inclined diagonals etc. in the Euclidean plane 
are no longer orthic triplets, equally inclined diagonals etc. in the hyperbolic 
plane. 

It can also easily be shown that multiple intersections in the Euclidean plane 
give multiple intersections in the elliptic plane. It should therefore be possible 
to prove the existence of all triplets using metric geometry only! 6 

6. CONJUGACY CLASSES AND QUADRANGLES 

6. I. The simple algebraic proofs of the existence of the sporadic classes P and 
R in the 90-gon and 210-gon can presumably be turned into geometrical proofs, 
but what we are still seeking is a simple geometrical proof (such as the one 
described in Section 2) not inspired by algebraic formulae, that will produce 
these two inaccessible classes as well as all the other classes. Admittedly this 
aim is a very subjective one. 

Two possible techniques are now described: 
(a) In Figure 27, BC, EF, XY is an orthic triplet and AB, DE, XY is a 

general triplet of type III. The Pascal line of the hexagon ABCDEF is XY, so 
CD and FA meet on XY. Hence we have a triplet AF, CD, XY. This triplet is 
sporadic, of type A. 

(b) In Figure 28, the angles are marked as multiples of ~/30 radians; T is 
the incentre of triangle PQS, and R is an excentre of PTS. A calculation of 
angles shows that Q is an excentre of RST, so all the angles in the figure can 

6 I.e., using only the axioms common to Euclidean, hyperbolic and elliptic geometry. 
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Pascal"s tfieonem Actventitious 5-poiru7 

Fig. 27. Fig. 28. 

now be found. It turns out that P is an excentre of QRS, but the quadrangle 
PQRTgives rise (in the manner described in 1.2) to a sporadic triplet of type B. 

What we have done here is fit together three 'known'  adventitious quad- 
rangles PQST, PTSR and RSTQ to form an adventitious 5-point PQRST, 
from which we then extract the adventitious quadrangle PQRT of type B. 

The methods (a) and (b) can both be used to obtain sporadic triplets and 
' sporadic quadrangles ', but neither method willproduce the inaccessible classes 
P and R. This is a negative result, but others will be saved the trouble of trying 
these methods if we show why they do not work for classes P and R. 

6.2. First we must consider the connection between triplets and quad- 
rangles; 'quadrangle'  will mean 'non-cyclic adventitious quadrangle' unless 
we state otherwise. 

A quadrangle yields in general four triplets (we take the circumcircle of any 
three vertices and use the fourth vertex as the intersection point of a triplet). 
Not surprisingly these triplets all lie in the same conjugacy class. A triplet 
yields eight quadrangles, and the fifteen triplets in a conjugacy class yield 
thirty distinct quadrangles. (We are concerned only with the shapes of figures, 
not with their relative sizes.) A quadrangle yields four triangles, and the 
thirty quadrangles of a conjugacy class yield only fifteen triangles. 

Although a triplet, quadrangle, triangle etc. is regarded as being the same 
as its reflection, it should be noted that the relative orientation of the various 
figures is always the same. For instance, certain pairs of triangles fit together 
in three ways to form quadrilaterals; the relative sizes of the triangles differ in 
the three quadrangles, and one triangle will need to be rotated, but we never 
reflect just one of the triangles. 

A neat notation can be devised for triplets, quadrangles etc., following on 
from Section 3. Triplets and 'lines of triplets' can be regarded as the points 
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and lines of a configuration obtained by taking six general 3-spaces in a 
4-space. Denote these 3-spaces by 1 2 3 4 5 6. If the point (or triplet) A is 
the intersection of the four 3-spaces 3 4 5 6, we denote it by the symbol 12, 
or 21. With suitable numbering of the 3-spaces, the fifteen triplets of Section 3 
a r e  

A B C D E F G H K L M N P Q R 
12 13 23 24 14 25 15 26 16 24 35 36 46 45 56. 

The 'line of triplets' A B C  can be denoted by 123; this line is the intersection 
of the 3-spaces 4 5 6. 

The five points A B E G K not in the 3-space 1 form a pentatope. The 
tetrahedron ABEG in this pentatope consisting of the four points 12 
13 14 15 can be denoted by { 16}. The order of the digits here is important: {61} 
denotes the tetrahedron 62 63 64 65. There are six pentatopes and thirty tetra- 
hedra. 

The four triplets yielded by a quadrangle are easily seen to form one of these 
tetrahedra, so we denote the thirty quadrangles by {16} etc. The eight quad- 
rangles yielded by the triplet 12 are {13} {14} {15} {16} {23} {24} {25} {26}. 

The eight quadrangles derived from a triplet together yield fourteen of the 
fifteen triangles associated with the conjugacy class. The remaining triangle 
has sides parallel to the diagonals of the triplet, and so may be denoted by 
the same two digits as the triplet. The quadrangle {16} yields the triangles 
26 36 46 56; the triangle 12 belongs to eight quadrangles, namely {31} {41} 
{51) {61} {32} {42} {52} {62}. 

Any particular triangle combines with eight others to form quadrangles. 
If a pair of triangles occurs together in one quadrangle, then this pair occurs 

Y 

V 

'~\ 5" T 

\\I 13 \ \ 
\ 1 3 ~  \ \  

\ 1" U 
Fig. 29. Fig. 30. 
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Fig. 31. 
k" 

Fig. 32. 

in three quadrangles (e.g. 12 and 13 occur in {41} {51} {61}) in the manner 
shown in Figure 29. 

The concept of cyclic complementation used by Tripp in [13], to obtain 
one quadrangle from another, is akin to isogonal conjugation, though the 
two ideas were developed independently: it can be used to obtain the thirty 
quadrangles in a conjugacy class. In Figure 30, the quadrangle SXZU has 
cyclic complements S YZU, SXTU, SXZV. Since we can use the circumcircle 
of any three vertices of SXZU, a quadrangle has twelve cyclic complements. 
The cyclic complements of {16} are {/j}, where i a n d j  are distinct and chosen 
from 2 3 4 5. 

If  the vertices of  the triplet in Figure 30 are represented by the roots of 
unity x, y, z, t, u, v, the triangle with sides parallel to the three diagonals has 
angles s/ab, s/cd, s/ef in the notation of  4.1. (Here s/ab is a convenient 
shorthand for ½ arg(s/ab)" we regard n-th roots of unity as integers modulo n, 
and we measure angles as multiples of  7tin radians. This formula may give us 
the angles shown in Figure 31.) Thus we see that the fifteen triangles of  a 
conjugacy class use only fifteen different angles, a useful check to bear in 
mind when we calculate the triangles of  a conjugacy class. 

6.3. Consider the technique described in (a) of  6.1. We are looking for 
triplets such that (Figure 32) BC, EF, X Y  and BA, ED, X Y  are accessible, 
and CD, FA, X Y  is inaccessible. Denote these triplets by U, V, W. 

For the inaccessible triplet W, n = 90 or 210, but n need not be the 
same for all the triplets. Since the highest common factor of the distances A Y 
and YD between vertices of the inaccessible triplet is coprime to n (this is a 
feature of the inaccessible triplets), the value of n for the triplet V must be 90 
(or 210) or a multiple of 90 (or 210). Hence this triplet must be orthic or 
general. 
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It is easily verified by geometry or algebra that, if V is orthic, then W must 
have two equal diagonals or a diameter, which is impossible since W is in- 
accessible. Hence V must be general. 

Now the triplets V and W share a common triangle AD  Y. However, if we 
list the triangles in the various inaccessible classes and the general classes for 
n = 90 (or 210) we find that V and W cannot have a common triangle. 7 

The only remaining possibility is that n may be a multiple of 90 (or 210) in 
the general triplet V. We deal with this situation by listing the fifteen triangles 
in each of  the general classes I, II and III, using Table I, for a general root of 
unity ~; ~ is to be a primitive n-th root of unity, where n is a multiple of 90 
(or 210), but we want a triangle whose angles are multiples of ~/90 (or 7r/210) 
radians. The only possible triangles have angles (~4, _ ~- 2, _ ~- 2) in class II, 
and (o~2~ ~, _ ~ 2 ,  _~-5),  (w~, _co2~2, _~-5),  (~,  _~2, _~-5)  in class III, 
where ~ -- 0, a primitive 180-th (or 420-th) root of unity. But then ( -  02) 45 
(or ( -  02) l°5) = 1, so all the angles of  the above triangles are even multiples 
of 7r/90 (or 7r/210); hence they do not coincide with any inaccessible triangle. 

Thus we cannot have V orthic or general and W inaccessible (of type P or 
R). It is interesting to note that we have not made use of the triplet U in this 
proof. 

Note that we have proved that no triangle in any inaccessible class coincides 
with any triangle in a general or accessible sporadic class. 

6.4. Consider now the technique described in (b) of 6.1. We wish to fit 
together three accessible quadrangles ABCD, ABCE and A B D E  (Figure 33) 
to form an adventitious 5-point, and then extract quadrangles ACD E and 
BCDE, hoping that one will be inaccessible in suitable circumstances. We 
must be prepared to allow cyclic quadrangles here. 

7 We need only compare the triangles in all four isomorphic classes of type P (or R) with 
the triangles in one representative from each set of isomorphic general classes. If 4~ is a 
primitive 90-th (or 210-th) root of unity, we need only take ~ = q~ and ~ = q~2 in type I 
(these values give non-isomorphic classes) and ~ = 4, in types II and III. 
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Suppose without loss of  generality that ACDE is inaccessible. It  has the 
triangle ACD in common with ABCD, so by the remark at the end of 6.3 
ABCD is not general or sporadic. It  must therefore be cyclic or orthic. I f  
ABCD is cyclic, then the diagonals EA, EB, EC, ED of  the circle form a quad- 
ruplet containing the inaccessible triplet EA, EC, ED. As we remarked in 5.3, 
there are no such quadruplets. Hence ABCD must be orthic, and the same 
applies to ABCE and ABDE. Hence our problem is to fit together three 
orthic quadrangles. 

The quadrangles in an orthic class are of  four types: (a) fans, 8 (b) kites, 8 
(c) incentric quadrangles, (d) orthocentric quadrangles (Figure 34). In (a), 
WX = WY = WZ; in (b) we have symmetry about WX; in (c) W is the in- 
centre or an excentre of  XYZ, but there is no algebraic distinction between 
incentres and excentres so we use the term ' incentric '  in both cases; in (d) 
each vertex is the orthocentre of  the other three. All four types o f  quadrangle 
are orthie. 

We return now to Figure 33, in which all angles are multiples ofrr/n radians, 
where n is a multiple of  90 (or 210). Suppose ABCD is a fan, with B at the 
centre. Then A, C, D are vertices of  a regular n-gon in the circle ACD with 
centre B, and BE is a diameter either of  this n-gon or of  a 2n-gon, depending 
on whether ~ is an even or an odd multiple of  ~r/n. Hence EA, EC, ED, EB 
is a quadruplet in the n-gon or the 2n-gon, containing the inaccessible triplet 
EA, EC, ED. We know that this is impossible. 

Suppose ABCD is a fan, with A or C or D at the centre. Then the inaccessible 

8 These names are used by Tripp in [13]. 
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quadrangle A C D E  contains an isosceles triangle A C D ,  which is im- 
possible. 

Hence A B C D  is not a fan. We can say more:  Figure 33 cannot contain a 

fan .  

LEMMA. I f  the orthic quadrangle A B C D  contains an isosceles triangle, it is 

a f an  or a kite.  
P r o o f  Suppose A B C D  contains an isosceles triangle. I f  it is orthocentric, 

it is a kite, I f  A is the incentre of  BCD,  then A B C D  is easily seen to be a kite. 
I f  A is an excentre as in Figure 35, and if B C  = BD,  then we have a kite by 
symmetry. I f  CB = C D  in Figure 35, we easily show that CB = CD = CA, 

and we have a fan. We have a kite if A C  = A D  and a fan if C D  = CA or if 
CB = CA. Since L B C A  > 90 °, we cannot have B C  = B A  or A C  = AB.  
This completes the proof. 

Suppose now that Figure 33 contains an isosceles triangle, say A B C  

without loss of  generality. We have seen that A B C D  cannot be a fan, so by the 
lemma it must be a kite. Similarly A B C E  must be a kite. I f A B  = A C ¢  BC, 
D and E (and also A) must lie on the perpendicular bisector o f  BC, so A C D E  

is degenerate. I f  A B C  is equilateral, we can also have a figure such as Figure 
36. The quadrangles A B D E  and B C D E  contain isosceles triangles, so only 
A C D E  can be inaccessible. But no 'inaccessible triangle'  such as A C D  

contains an angle L A C D  equal to 30 °. 
Hence Figure 33 cannot contain an isosceles triangle, so it cannot contain a 

kite. Moreover, it cannot contain two orthocentric quadrangles, say A B C D  

and ABCE,  since D and E cannot both be the orthocentre of  ABC.  Hence 
A B C D ,  A B C E  and A B D E  are incentric or orthocentric, and at most one can 
be orthocentric. 

Before enumerating the various cases, we can eliminate some of them. (a) 
I f  D and E (for instance) are both incentres or excentres of  ABC,  then D and 
E are collinear with A, B or C, and the 5-point is degenerate; so this situa- 
tion cannot occur. (b) I f  A is an incentre or excentre of  B C D ,  we easily prove 

B 

\ / / 

\ \ ; / /  

A A C 
Fig. 35. Fig. 36. 
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TABLE III 

A B C D  A B C E  A B D E  

1 A B orthocentric 
2 D E orthocentric 
3 C E orthocentric 
4 C B orthocentric 
5 A E orthocentric 
6 C E D 
7 C E A 
8 C B A 
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that A D  is a diameter of  the circle A B C  (this statement is not meant to imply 
that D lies on the circle). Hence, if A is an incentre or excentre of both B C D  

and B C E ,  then A, D and E all lie on the same diameter of A B C  through A; 
again the 5-point is degenerate. 

Bearing in mind that permuting C, D, E or permuting A, B simply corre- 
sponds to a re-labelling of  the figure, we find that the various possibilities for 
the three quadrangles are those given in Table III (an entry 'A '  in the column 
A B C D ,  for instance, means that A is an incentre or excentre of B C D ) .  

In Figure 37, the points on the circumference of  the circle are represented 
by roots of unity as shown. The algebraic conditions for the various types of 
orthic quadrangles are found to be: 

A incentre 9 of B C D :  p = - a,  q = a2/c ,  

C incentre of A B D :  p = c2/b ,  q = c2 /a ,  

D incentre o f  A B C :  a = - q r / p ,  b = - r p / q ,  

B incentre o f  A C E :  x = b2 /c ,  y = - b ,  

Eincentre  o f  A B C :  a = - y z / x ,  b = - z x / y ,  

A B D E  orthocentric: a x  = - bq ,  ap  = - b y ;  

A incentre of B D E :  a 2 = q y ,  a x  = - p y ;  

D incentre of  A B E :  p2  = b x ,  q2 = ay .  

r = a2 /b;  

r = - - c ;  

c = - - p q / r ;  

z = b2 /a ;  

C = - - x y / z ;  

For  each of the eight possibilities in Table III, we simply have therefore to 
solve a set of homogeneous equations. We omit the details, but no solution 
gives us an inaccessible quadrangle. What we do obtain, apart from degenerate 
5-points, are the 5-points illustrated in Figures 28, 38, 39, 40 and 41. Figure 39 
is trivial: O A  = O B  = O C  = O D ,  so we have a 'central quadruplet' .  

The possibility of  multiplying an n-triplet by k, where (n, k) = 1, to obtain 
an isomorphic triplet (4.2), extends to n-adventitious quadrangles and 5- 
points. Figures 28, 38 and 39 are isomorphic only to themselves, although 
multiplication has the effect of  permuting the vertices; Figures 40 and 41 are 

9 Or excentre. 
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Fig. 37. 

isomorphic. Of the eight possibilities in Table III, number 3 gives Figures 40 
and 41, numbers 4, 5 and 8 give Figure 38, number 7 gives Figure 28, and 
number 6 gives Figures 38 and 39. Numbers 1 and 2 have no non-trivial 
solutions (as may also be seen geometrically). 

Probably there are other interesting 5-points, apart from the 'trivial' ones 
obtained from quadruplets. We have merely found a few while looking for 
something that does not exist. 

7. SOME FURTHER REMARKS 

7.1. The line joining the points e 2~° and e -~°, on the unit circle, envelops a 
deltoid as 0 varies [10]. Hence if we label the vertices of a regular n-gon 
0, 1, 2 , . . .  going round anticlockwise and 0 , - 1 , - 2 , . . .  going round 

A 
- -  

/3 

Fig. 38. Fig. 39. 

D 
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Fig. 40. Fig. 41 
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clockwise, the lines ( 2 r , - r )  joining 2r to - r ,  as r varies, are tangents of a 
deltoid (Figure 42). I f  n is even, these lines intersect in threes, as in Figure 43 
where n = 24 and the original polygon or circle, inscribed in the deltoid, has 
been omitted. (We can obtain a pleasing symmetrical figure by taking n to be 
any multiple of 6.) This result is shown in a figure in [10], but without comment. 
The reason for the triple intersections is that the lines ( 2 r , - r ) ,  ( 2 s , - s ) ,  
(2t, - t) form an orthic triplet if and only if r + s + t - ½n (mod n). 

7.2. We mentioned in 6.2 that each triangle in a conjugacy class belongs to 

8 
6 

Fig. 42. Fig. 43. 
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C' 

B' Z C 
Fig. 44. 

eight quadrangles of the class. In Figure 44 we start with a quadrangle 
XYZA; the eight quadrangles in the same conjugacy class containing XYZ 
are shown in the figure. The points A, A' are isogonal conjugates with respect 
to XYZ; similarly for B, B' etc. Let us use the notation [XAB'] to mean that 
X, A, B' are coUinear, and [YZAB'] to mean that Y, Z, A, B' are concyclic. 
It can be shown that [XAB'], [XBA'], [XCD'], [XDC'], [YAC'] etc. (twelve 
lines as shown in the figure) and 

[ YZAB'], [ YZBA'], [ YZCD'], [ YZDC'], 

[ZXAC'], [ZXCA'], [ZXBD'], [ZXDB'], 

[XYAD'], [XYDA'], [XYBC'], [XYCB']. 

If we regard the figure as being in the inversive plane, and if we denote the 
point at infinity by W, we have 24 circles, twelve through each of X, Y, Z, W 

O 

A d v ~ , . . ,  garal[el~jram 
Fig. 45. 
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and six through each of A, B . . . . .  Inversion with respect to X, Y or Z merely 
gives us the original figure again, with the points permuted. 

7.3. It  has been conjectured that there is only one adventitious parallelo- 
gram that is not a rhombus; see for instance [5] and [11]. The conjugacy class 
determined by the roots of  unity a, b, c, d, e ,f; s (4.1) contains a parallelogram 
if two pairs f rom the set a, b, e, d, e, f a r e  equal (e.g. a = b and c = d). No 
sporadic class in Table I satisfies this condition, and the only such orthic or 
general class that does not produce a rhombus is the class of  type I I  with 
n = 12 and ~12 = 1. One triplet in this class has vertices 0 4, 1 5, 2 7, as 
shown in Figure 45(a). I f  we multiply this triplet by 5 we obtain Figure 45(b), 
in the same conjugacy class, which gives the same parallelogram. Thus the 
conjecture is verified. 

This same condition on a conjugacy class ensures that one triplet in the class 
contains two tangents. Thus the only asymmetric triplet with two tangents 
occurs when n = 12; it appears in the frontispiece. 

7.4. The work of  Bol has apparently remained virtually unknown. Partial 
solutions to the problem of finding intersecting diagonals were given by 
Harbor th  [6, 7] and Heineken [8, 9] in the 1960s. Bol's list in Table I was 
obtained by Meek and Tripp [11] using a computer, with the exception of the 
sporadic triplet with n = 210 since their program only investigated values of  
n up to 180. They point out that each solution can be verified trigonometri- 
cally. Bol's calculations appear to be mainly trigonometrical, whereas 
Pleasants worked with roots of  unity. The problem of  finding triplets in a reg- 
ular p-gon, where p is prime, was posed by Steinhaus in 1958 [12]. Croft and 
Fowler showed that no such triplets exist [4]. 
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