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A C O N D I T I O N  F O R  T H E  E X I S T E N C E  O F  O V A L S  

I N  P G ( 2 ,  q), q E V E N  

ABSTRACT. A condition is found that determines whether a polynomial over GF(q) gives an oval 
in PG(2, q), q even. This shows that the set of all ovals of PG(2, q) corresponds to a certain variety 
of points of PG((q - 4)/2, q). The condition improves upon that of Segre and Bartocci, who 
proved that all the terms of an oval polynomial have even degree. It is suitable for efficient 
computer searches. 

An oval, sometimes called a hyperoval, is a set of q + 2 points of PG(2, q), q = 
2 h, such that no three are collinear. Since a k-arc is defined to be a set of 
k points, with no three being collinear, an oval is also a (q + 2)-arc. Such a set 
of points generalizes the properties of a non-degenerate conic plus its nucleus, 
through which all the tangents of the conic pass. It is an important problem of 
finite algebraic geometry to classify all the ovals of the plane up to the group of 
collineations of PG(2, q), which is generated by PGL(3, q) and the h field 
automorphisms. For the theory of ovals see [31, [51, or [101. 

Let the points of PG(2, q) be represented by homogeneous triples (i,j, k) over 
the finite field GF(q) in the usual way, and similarly let the lines be represented 
by dual coordinates [r, s, t]. Thus (i,j, k) is incident with [r, s, tl if and only if 
ir + j s  + k t  = 0. Consider the diagram in Figure 1. 

An oval 0 of PG(2, q) may be assumed to take the following form: 

0 = {(0, 1, 0), (0, 0, 1)} u {(1, t , f ( t ))  I t ~ GF(q)}, 

where f ( t )  is a polynomial of degree at most q - 2 over GF(q). 
The condition that we shall find will determine whether or not f ( t )  gives an 

oval in PG(2, q). The lines which do not pass through (0, 1, 0) and (0, 0, 1) 
intersect the oval in either 0 or 2 points . . ,  an even number of points. 

(0,1,0) ~ ' ~  ~ ( 0 , 0 , 1 )  

~ ~ ' ~ ( 0 '  l ' x ) / ~ ~ ( 1 , t , f ( t )  ) 

[la.,x,l] 

Fig. 1. 
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LEMMA 1.0 is an oval i f  and only i f  the q 2  __ q lines o f  PG(2, q) passing 
neither through (0, 1, O) nor through (0, 0, 1) always intersect 0 in an even 

number o f  points. 
Proof. If 0 is an oval, then all lines of PG(2, q) intersect in 0 or 2 points and 

thus in an even number of points. Assume the converse. Consider one of the 
q points P of 0 not equal to (0, 1, 0) or (0, 0, 1). Then the q - 1 lines which pass 
through P but not through (0, 1, 0) or (0, 0, 1) all contain at least one further 
point of 0. Since there are only q - 1 further points of 0, these q - 1 lines each 
contain exactly two points of 0. Thus 0\{(0, 1, 0)} is a (q + 1)-arc. It remains 
to show that (0, 1, 0) is the nucleus of this (q + 1)-arc; i.e. it is the point 
through which all the tangents of the arc pass. That this is the case follows 
from the fact that no chords of 0\{(0, 1, 0)) pass through (0, 1, 0), as we have 
seen above. 

Next we find an algebraic condition that determines whether or not 
a polynomial always has an even number of solutions. 

LEMMA 2. Let g(t) be a polynomial o f  GF(q). Then g(t) = # has an even 

number of  solutions t ~ GF(q) for all # ~ GF(q)/f  and only if  the following holds: 

g(2) r = 0 for all r = 1, 2 . . . . .  q - 1. (The sum is over all 2 ~ GF(q).) 

Proof. The non-trivial part is to show that the above algebraic condition 
implies that g(t) =/~ always has an even number of solutions. Let fl  = {gig(t) = 
/~ has an odd number of solutions). Then the sum of the above condition can be 
reduced to 2 e f~. Now Vandermonde's determinant implies that the vectors 
(1, #,/~2 . . . . .  /~q- 1 ) are linearly independent for different/~ ~ GF(q). However, 
the above condition implies that the sum of the vectors with/~ e f~ is zero. Thus 
f~=O. 

Now we convert the combinatorial condition on ovals to an algebraic one. 

LEMMA 3. The q2 _ q lines of  PG(2, q) passing neither through (0, 1, O) nor 

through (0, 0, 1) always intersect 0 in an even number of  points if and only if the 

following condition holds: 

~ ( f ( 2 )  + 2x)" = O for all r = 1,2 . . . . .  q - 1 and for all x ~ GF(q), 

except (x, r) = (0, q -- 1), where the sum is over all 2 e GF(q). 

Proof. A general line not passing through (0, 1, 0) or (0; 0, 1) has coordinates 
[#, x, 1], x # 0. See Figure 1. The condition that this line contains a point 
(1, t, f(t)) of 0 is f ( t )  + tx =/t .  Hence, for all x e GF(q)\{0}, the equation above 
follows from Lemma 2. When x is zero, the fact that f ( t )  is a permutation 
polynomial is equivalent to the above condition plus the fact that f( t)  = 0 if and 
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only if t  = 0. See I-2] or  I-3] for a s tatement of  Dickson 's  criterion. This is the case 

if 0 is an oval, because the lines passing through (0, 1, 0) each intersect 0 in one 
further point. 

We can now finally prove the main  result. 

T H E O R E M .  0 is an oval if and only if  the foUowing condition holds: the coeffi- 
cient of  t" in 1-f(t)] b (modulo t q - t) is zero, for all pairs of  integers (a, b) with 
1 <<. b <~ a <<. q - 1, b ~ q - 1, and with the binary expansion of a containing the 
binary expansion of b. Thus b ~ a below. 

This is just a generalization of the condition for oval functions t k given in [3]. 

Also, the condition for b = 1 is just the condit ion of Segre and Bartocci [10], 
that  all the powers  of  t are even. 

Proof. Consider the condit ion of L e m m a  3 with r < q - 1 as a polynomial  in 

x. The binomial  expansion, in the case of  characteristic 2, is obta ined via the 
binary partial order  [3], which we denote here by the symbol  4 .  Thus two 

integers u, v with 0 ~< u ~< q - 1 and 0 ~< v ~< q - 1 satisfy u ~ v, if and only if 

the binary expansion of u is 'dominated '  by the binary expansion of v if and only 

if t" occurs in the expansion of (1 + t) v. Thus the condit ion with r < q - 1 
becomes 

~ ( ~ f ( 2 ) r - S 2 S x S )  = 0  for all r =  1 , 2 , . . . , q - 2 ,  

where the outer  sum is over  all ), ~ GF(q) and the inner sum is over  the integers 
s with 0 ~< s ,~ r. Since this is true for all x the coefficient of  x i is zero for all 

0 ~< i ~< q -  2. Thus 

f(2)~-i2 i = 0 for all 0 ~< i ,~ r ~< q - 2, where the sum is over  

all 2 e GF(q). 

The condition with r = q - 1 is 

~ ( ~ f ( 2 ) ' - ~ 2 S x S ) = 0  when x ¢  0. 

When x = 0, E f(2) ~- 1 = 1, becausef(t)  is a permutat ion polynomial  and #q- 1 = 1 

if # ¢ 0. Thus  

~ ( f ( 2 )  + 2x) q-1 = x q-1 - 1 for all x s G F ( q ) .  

Considering the coefficient of  x ~ in this case gives 

f (2)q-  1 = ~ 2q- 1 = 1, which is true anyway,  and  

f(2)q-  1 - i ) i  = 0 for all 1 ~< i ~< q - 2, where the sums are over  

all 2 e GF(q).  
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Putting the above conditions together we obtain 

f(2) ' - i2 i = 0  for a l l 0 ~ < i , ~ r ~ < q - 1 ,  

and (r, i) ~ (0, q - 1) or (q - 1, q - 1), 

where the sum is over all 2 e GF(q). 

Thus the coefficient oft  - i  in f(t)  r-i is zero for these values o f t  and i. See, [2] or 
[3] for the evaluation of the coefficients of a polynomial. So the theorem has 
been proved. 

COROLLARY 1. I f  the coefficients of a polynomial are over a subfield of  GF(q), 
we are able to determine, by evaluating the powers of f(t) up to q - 2 and by 
calculations only in that subfield, whether it is an oval polynomial. Also, since the 

condition for fixed b = k implies the condition for fixed b = ak, for all the 
h automorphisms ct of  GF(q), it is only necessary to calculate one of  the 

powers of f(t)  in {~k I ~ ~ Aut(GF(q)}. 

COROLLARY 2. The condition with fixed b = 1 implies that all the terms of 
f(t)  have even degree. Since we may assume, without loss of generality, that 
f(O) = O, i.e. that the constant term o f f ( t )  is zero, there are (q - 2)/2 possible 
remaining non-zero coefficients. Thus the oval polynomials are mapped into the 

points of an algebraic variety of the coefficient space P G ( ( q -  4)/2, q). For 
example, in the case q = 8 it may be calculated that this variety is a non-degenerate 

conic plus nucleus in PG(2, 8). 

We now list all the known classes of ovals in PG(2, q), q even, by their 
representative polynomials, together with references. Of course each oval 
yields many oval polynomials by varying the base points. 

(a) x 2: the non-degenerate conic plus nucleus. Classical construction. See, 

e.g., [5]. 
(b) x~: where e = 2 n, and (n, h) = 1. Constructed by B. Segre. See [8]. 
(c) x6: where h is odd. Constructed by B. Segre. See [9]. 
(d) A 'sporadic' oval in PG(2,16) that is contained in the union of two cubic 

curves, that are in the same syzygetic pencil [3]. The set of nine points 
of inflection in common with the two curves is contained in a Baer 
subplane that is fixed by the group of collineations of the oval. It was 
constructed by Lunelli and Sce by computer. See [4] and [6]. The 
author conjectures that general classes of ovals may be constructed by 
glueing together two cubic curves in a similar way. It may be shown 
that half the points of any non-degenerate cubic curve form an arc, by 
considering the abelian group of the curve. 

(e) x3"+4: where h is odd, and ~r z = 2 (mod q - 1). Constructed by Glynn. 

See [3]. 
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(f) x*+r: where h is odd and ),* = 2 (mod q - 1). Constructed by Glynn. 
See I-3]. 

(g) x 1/6 + x 1/2 + x5/6: where h is odd. Constructed by Payne. See [7]. 
(h)? ch(x) = x * + x ~+2 + x3~+4: where h is odd. This has been conjectured 

by W. E. Cherowitzo. Using a connection with the Suzuki-Tits ovoid of 
PG(3, q), S. E. Payne has shown that ch(x) is a permutation polynomial, 
and in joint work Payne and the author have shown that ch (x ) / x  is 
a permutation polynomial. These are necessary conditions that ch(x) 
be an oval polynomial and so support the conjecture. The proofs are 
unpublished at present. 

Using the condition of the theorem, the author has written computer 
programs that have searched for oval polynomials in various planes. The 
programs were written in the 'C' language with Motorola 68020 assembly 
instructions to speed up the important operations, such as multiplying two 
polynomials. The following results have been obtained. The times taken give 
an indication of the complexity of the various problems. Let O(q, q') denote the 
class of all oval polynomials in PG(2, q) with coefficients over the subfield 
GF(q') of GF(q). 

• The classification of all oval polynomials t k for q = 2 h, h ~< 30. No ovals, 
except for those in classes (a), (b), (c), (e), and (f) above, were found. The 
time for h = 30 was about a day. 

• 0(32, 2): 30 seconds: the ovals all come from the known list above. This 
checks work by W. E. Cherowitzo [1]. 

• 0(64, 2): 4 hours: the only ovals are a conic plus nucleus. 
• 0(64, 4): only a partial search was possible and no new ovals were found. 

Note that it is possible to prove that an oval polynomial of O(q, q'), when 
reduced modulo x q ' -  x ,  is congruent to a polynomial of O(q' ,q') .  This 
knowledge can substantially reduce the size of a computer search. 
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