CHARLES F. DUNKL

HARMONIC POLYNOMIALS AND
PEAK SETS OF REFLECTION GROUPS*

A finite reflection group fixing the origin in Euclidean space acts on any point
on the unit sphere, and not in any of the reflecting hyperplanes, to generate
aregular orbit. The space of restrictions of the polynomial functions to such an
orbit is isomorphic to the group algebra. Delsarte [4] studied so-called
discrete harmonics on certain (Johnson) association schemes, which are also
finite homogeneous spaces. In these cases, however, the stabilizer group of
a point is nontrivial. '

The space of functions on a regular orbit can be given a ‘spherical harmonic’
structure (this implies the existence of a commutative set of operators
analogous to 0/0x; and A, and an associated orthogonality structure), when
the orbit is a ‘peak set’. By this we mean the set of points on the unit sphere
where the function

h(x) = [T [Kx, v; 5%
j=1
achieves its maximum (briefly, {v;}7=, is a set of positive roots of the group,
a; > 0, each j and «; = a; whenever the reflections corresponding to v; and v;
are conjugate). Further, the coinvariant algebra can be represented as an
algebra of operators on the harmonic functions.

This paper presents the theory and main results of the harmonic functions
on peak sets. Limiting cases of results on orthogonal polynomials with respect
to h(x)? dw(x), established in [5] and [6], will be used here, when possible (dw
is the rotation-invariant measure on the sphere). Further, the peak sets for the
groups of type Ay, By, Dy and F, will be discussed in detail. Beyond two-space,
only By and F, have one-parameter families of peak sets, rather than unique
ones, among the irreducible Coxeter groups.

Because the maximization of h can be considered as a maximum problem for
the discriminant of a polynomial when the groupis Ay, By or Dy, the peak sets
were determined long ago. Stieltjes [[12] and Schur {117 found the peak sets in
terms of the zero sets of Laguerre and Hermite polynomials.
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DMS-86-01670.
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1. BASIC FACTS AND DEFINITIONS

For a nonzero vector v € RY define the reflection ¢, € O(N) (the orthogonal

group) by
X0, =X — (<T |:>> v, XE€ RN,
where
N
(x,vy =Y x;v; and [v|? = {v,v).
i=1
Thus, ve, = —v and xo, = x if and only if {x,v) = 0. A Coxeter or finite

reflection group G is a finite subgroup of O(N) generated by reflections. Let P¢
denote the polynomials on R” invariant under G, then P is itself a polynomial
algebra, with homogeneous generators 8,,0,, ..., 0y of degrees d,, d,, ..., dy
respectively (see Hiller [9, Ch. IT]). These degrees are structural constants of G;
the number of reflectionsin Gism := . | (d; — 1)and the order of the group is

N
Gl = T1 d;.
i=1

Let {o;: 1 <i < m} be the set of reflections in G, and choose a set of vectors
{v1<i<g m} < RY such that o, =0, and |y, =|v;| whenever o, ~ o;
(conjugate in G). (This set could be a posmve root system, but the choice of
signs is immaterial.)

Fix positive parameters o;, 1 < i < m, such that «; = o; whenever o; ~ 7.
For the irreducible Coxeter groups, there is one conjugacy class of reﬂectlons
for Ay, Dy, Hy, H,, Eg, E,, Eg, I, (0dd) and two classes for By, F, and I,
(even). We use the standard designations for Coxeter groups (Hiller, [9, Ch.
I]).

Define h(x):=II" |<{x,v,>|%, a positively homogeneous G-invariant
function of degree y:= X" | ;. (When the ;s are all integers, the absolute
value function could be omitted; if, furthermore, each o; = 0 or 1, the resulting
polynomial is a generating relative invariant, corresponding to a linear
character of G.) In [5] and [6] the structure of orthogonal polynomials with
respect to h(x)? dw(x) on the unit sphere was developed.

Let E, the peak set, denote the subset of the unit sphere S := {x: |x| = 1} on
which h(x) achieves its maximum on S. We shall show E is a regular orbit of
G (this means |E| = |G|) and E is the solution set of

() &)

Ms
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Clearly E is invariant under G, so we must show |E| = |G|. The zero-set of
h on § is the boundary of the spherical simplex associated to G, the number of
whose connected components (‘chambers’) equals |G|. Each component
contains just one maximum of h: indeed, suppose x” and x” are on the same side
of the hyperplane <{x,v)> = 0 then

("' +x v>’ K, )] + K, )

2 s ” 1/2.
5 5 [Kx", v) <x", v,

if x" and x” are in the same chamber then

2
s x,, > Jlog h(x') + log h(x")) + 7 log( ———).
| | X'+ x"|

1.1. PROPOSITION. The peak set E is the solution set of

X
1 <X, ,> T

(This equation is valid for peak sets on spheres of any radius.)

Proof. Apply the Lagrange multiplier method to F(x, A):= log h(x) +
Mlog(]x|?>)—c), (to maximize h(x) on a sphere of radius ¢/?). The resulting
equations are

i o;(0;); + i’:;
j=1 {x,v j> |x|
Multiply equation #i by x; and sum over 1 <i < N, to obtain 24 = —%;
a; = —7. The second derivative test shows that each critical point of F(x, A) is
a local maximum of log A(x). O

(12) i

xeSs.

=0, 1<i<N.

To solve (1.2), take the inner product of both sides with V6, where 6 is one of
the basic invariants of G, and V denotes the gradient. Note that {v;, Vf(x)} is
divisible by (v;, x), because V(xc;) = VO(x)o; and so <v;,VO(xs,)> =
—<v;, VO(x)>. We obtain the equation

i v %<y, Vo(x)>

(1.3) (deg 0)8(x) = [x| j;l RSN
for x € E; by Euler’s identity {x, V8(x))> = (deg 6)0(x). The right-hand side of
(1.3)is a product of |x|2 with an invariant polynomial of degree lower than 6. In
this way the values of all the basic invariants on E can be inductively
determined. We shall actually do the calculation for Ay, By, Dy and F,. Note
that decomposable Coxeter groups have peak sets which are, roughly, the
Cartesian products of the peak sets of the irreducible factors, with the squared
norms adjusted to be proportional to the sums of «; for each factor.
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Note that E is invariant under the central inversion (x — — x) even though it
need not be an element of G; for example, Ay for N > 2and Dyforodd N > 5.

2. ORTHOGONALITY STRUCTURE

Let P, be the space of restrictions to E of the polynomial functions on RY,
denoted by P. We furnish P with the inner product
(f,9)~ Z;,Ef(x)g(X)-

The action of G on Pj is obviously an isomorphic image of the regular
representation. We recall some facts about ordinary spherical harmonics,
whose analogies for peak sets will be established here: let A := T, (8/0x,)*;
a polynomial f is harmonic if Af = 0; if f is harmonic then so is f/0x;,
1 <j < N;if f is harmonic and homogeneous then it is orthogonal to all
polynomials of lower degree, with respect to dw on the sphere S.

Some of the following are limiting cases of results for the measure
h(x)* dwx(x), as a;/y is held constant and y — oo, because the normalized
measure converges to the uniform discrete measure on the peak set.

2.1. DEFINITION. The operators T;, 1 <i < N, are given by

T = § o TS0

for any polynomial f;each T,f is polynomial and T; is of degree — 1 ((v;); is the
ith component of v;).

Indeed, each term (f(x) — f(xa;))/<x, v;> is polynomial; these operators are
used in the Schubert calculus (see Hiller [9, Ch. IV]); the actual limit taken is
lim, . ,,(T;/y) with T; as in [6].

2.2. THEOREM (limit of Theorem 1.9 [6]). The set of operators {T;: 1 <i < N}
is commutative, and -, T? = 0.

(vj)i,

Although one might have expected that the Laplacian for E would be a sum
of squares, the fact ; T? = 0 removes the obvious candidate.

2.3. DEFINITION (limit of Def. 1.1 [6]). For a polynomial f, let
N[d 0
LI = 3 (5 Tf) + T3 ()

i=1 axi
IR AL |zf(>¢)~f(>w,-)
B i=1 ! ! <UJ" x>2 .

vy, %) |
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The operator L is of degree —2.

2.4. THEOREM (limit of Th. 1.10, Prop. 2.2 [6]). T;L= LT;, L(x,f(x)) =
x; Lf(x) + 2T f(x), for each i; L commutes with the action of G (namely
w RW)f(x)=f(xw), w € G).
2.5. THEOREM (limit of Th. 1.11 [5]). If f is a homogeneous polynomial of
degree n, then there is a unique expansion

(/2]

) = % a2

j=0
with Lf,—,; =0 and f,_,; is homogeneous. Further,

n/2]-j

[
fao2i0) = @)™ X (=47 LT f(x).

i=0

Henceforth, we shall call f harmonic if Lf= 0; the projection fi—f, in
Theorem 2.5 will be denoted by n,. Note that the theorem implies the set of
restrictions of P to S agrees with the set of restrictions of harmonic
polynomials.

Here is the main orthogonality result for P,.

2.6. THEOREM. Let f and g be harmonic homogeneous polynomials, then

(deg f-deg g) Y f(x)g(x) = 0.

xeE

Proof. The form

Z oylo, P (f(x) — flxa,)g(x)
(fa g) g ; j;l <Uj’ x>2 '
is symmetric, because E is G-invariant and {v;, x)* > O on E. Further, Lf = 0
implies
- JJ) = flxey) 0 & <o, VXD
P e P W R PR
= 2y<{x, Vf(x)> = 2y(deg /)f (),

for x € E by Equation (1.2). Multiply the equation by g(x) and sum over x € E.
By the symmetry the sum equals

(2y deg f) or (2y deg g) times Y. f(x)g(x). O

xeE
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2.7. COROLLARY. Under the hypotheses of the theorem
Y f()p(x)=0
xeE

for all polynomials p with (deg p) < (deg f), (this also uses 2.5).

2.8. COROLLARY. Ify is a homogeneous G-invariant of positive degree, then

o) | E = 0.
Proof. The homogeneous harmonic polynomial 7, () is also G-invariant (by
2.4), hence is constant on E. But

2 mW)()1 =0

xeE

by 2.6, hence,
oY) (x) =0 for xeE. O

The adjoint T¥ of T; (on the inner product space Pg) is close to being
multiplication by 2yx;; it is actually multiplication by the image of 2yx, in the
coinvariant algebra. This will be shown in the following section.

29. LEMMA. L(|x|*f(x)) = |x|¥ Lf(x) + 4yj|x|>Y~ Y f(x),forj = 1,2,...,and
any polynomial f.
We shall define T¥ on all polynomials, even though it is technically only

defined on P, which is interpreted as the set of restrictions of harmonic
polynomials to E.

2.10. THEOREM. For each i, and harmonic polynomial f,

T¥f(x) = 2yx; f(x) — [x* T, f(x).
Also LT¥* = T¥L (considering T¥ as an operator on all polynomials).

Proof. For any polynomials f, g,
Y (f)Tigx) + T:f(x)g(x)) = 27 3, X, f(x)g(x),

xeE xeE

indeed, the left-hand side equals

“ (f(x) — f(xa;))g(x) + f(x)(g(x) — g(xa;))
x§5 jgl %) (U,-, x)
< (Uj)i
=23 3 47,55 M)

xeE j=1

< (x)g(xa;) + f(xa;)g(x)
_j;aj(vj)izfxgxa flxo gx'

xeE <vj, X>
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The second sum is zero: replace x by xa; then (v;, x> becomes —<v;, x>. In the
first sum, for each x € E,

m

2 o{v;); = yx

j=1 <Uj’ X> ‘
by (1.2).
Further, for any polynomial f,

L2yx; f(x) — IxI* T; f(x))
= 2yx;Lf(x) + 4T, f(x) — x> LT, f(x) — 49T, f(x)
= (2yx; — x| T, Lf(x),
by 2.4 and 2.9. Thus for any harmonic polynomials f and g, T}f, as given in
the statement of the theorem, satisfies

Y (TH(x)gkx) = Y. f)T,g(x). O

xeE xeE

3, THE COINVARIANT ALGEBRA

Chevalley [3] considered the quotient of P modulo the ideal .# generated by
the basicinvariants {,, ..., 8y} (that is, the invariants of positive degree). This
is a finite-dimensional graded algebra, called the coinvariant algebra of G. (It is
denoted by S, in Hiller [9, Ch. II]; also see this reference for applications of S
in the cohomology theory of Lie groups.)

The Poincaré series for S; was shown by Chevalley to be

N l_qd.'
f1(=%)
i=1 q

(where d; = deg 0,, and the coeflicient of g is the dimension of the component
of S; with degree n).

We shall show that the homomorphism P — End (P) (operators on Pp)
given by 7, p(x,,..., x5} = p(T¥/2y,..., T%/2y) has # as kernel. Then Py is
itself linearly isomorphic to S; under the map induced by p(x)—
p(T%/2y,...)L

This will be proven in two steps. First, let n,p = n,p|E (the restriction to
E of the harmonic projection, see 2.5). We show that n,(py) = 0 for any
G-invariant  of positive degree, and «,(p) = 7, (p)1 for any polynomial p.

Note that |x|? is G-invariant, hence is in .#. It suffices to consider =, (py/) for
harmonic p, since m,(p(x)|x|?) = O for any p; this follows from the uniqueness
of the expansion p(x) = Z; [x|?'p;(x), with Lp, = 0. Suppose now Lp = 0, then
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by the product rule L(py) = pL(y) and thus n,(py) = pry(¥) (formula of 2.5).
When ¥ is of positive degree 7,(yy) = 0 on E (Corollary 2.8), hence =, (py) = 0.

To show 7, (p) = =, (p)1 for any harmonic polynomial p, it suffices to show
7, (x;p(x)) = (T ¥/2y)n,(p(x)). From Theorem 2.10, Lp = 0 implies LT¥p = O;
further, k

_ TEp(x) + xI* Tip(x)

x;p(x) @)

and so
_ T¥px),
o (x;p(x)) = Th

restriction to E gives m,(x;p(x)).

We sketch the argument why the kernel of z, is contained in .#: as in [5, Th.
3.4] there is a basis of harmonic homogeneous polynomials {¢;: 1 <j <|Gl}
for P over P¢ (the invariants), thus any polynomial p has the expansion
p(x) = Z;¥;(x)e;(x) with §; G-invariant and n,p = Z (1% ;)e;. Restricted to
E, m,p(x) = X c;¢;(x), where c;is the constant term of 7,y ; (see 2.8). Since the
dimension of Py is |G|, n,p = 0 implies each c; = 0; that is, each y; € 5.

4. ASSOCIATION SCHEMES

There is an analogy between peak sets and association schemes (for a survey
see Bannai and Ito [2]): for an orbit Q of the reflection group say that x e Qs
adjacent to the points xa;, 1 < j < m. In addition, the weight ;s associated to
the edge {x, xo;}. Now E is the orbit Q for which

> Y alog(x — xa;))

xeQ) j=1

is maximized. Indeed, let

s(x):= Y, a;loglx — xa;|
i=1

i o 10g<—2|<x,|zj >I>

j lo;

m 2
=logh(x)+ Y «; log<———2).
j=1 |Uj|

Thus s(x) is G-invariant, and the given sum is maximized at Q = E with value
|E| (log h(x) + constant).
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The adjacency operator for E is a multiple of M:=Z (T, T¥ — T* T});
since

Mf(x) =2 2_: %; f(xa;).

The eigenvalues of M, which are obtainable from the values of irreducible
characters at the reflections, were discussed in [6, §2].

S. SPECIFIC COXETER GROUPS

The peak sets for the groups Ay, By and Dy, were determined by Stieltjes [12]
and Schur [11]. Proofs using the differential equations satisfied by Laguerre
and Hermite polynomials can be found in Szegé [14, pp. 140-142]. We shall
use Equation (1.3) to directly evaluate the invariant polynomials on the peak
set.

For 0 < I < N let ¢)(x) denote the elementary symmetric function of degree
lin x,,..., xy, with generating function

N N
2 el =TT +x0
=0 i=1

(note that x,,..., xy is the zero-set of p(t) = Z)., 1" 7/(—1)/e;(x)). We shall
use efx?) to denote ¢; with argument x3,..., x}. Also, we write &; for 9/0x;,
1<i<N.

5.1. The Group Ay-, (Symmetric Group Sy)

We consider this as the group generated by the reflections in {x;, — x; =
0:1 <i<j< N} on the (N — 1)-dimensional subspace {x: I, x; = 0} = R,
We use {¢,(x): 2 < I < N} as the basic invariants. There is one conjugacy class
of reflections. Let

h(x) = H 1x; — x;]

1g<i<jgN

and
NN -1
T 2 .

Equation (1.3) becomes
) 0;p(x) — 0;p(x) _ NN -1)

i< X; — X; 2

(deg p)p(x)
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for a homogeneous invariant p. Now
diel(x) — 5jez(x) =e_1(X%)—e_1(X;) = (x; — xi)er - 2(%;, X5);

where ¢,(X;,...) denotes the elementary symmetric function of degree k in
Xy,..., Xy with x;,... omitted. We substitute this in Equation (1.3) to obtain

N-I+2
N(N — Dley(x) = Z_et—z(fi,fj) = “< 2 * >e,_2(x)

for x € E. (The last coefficient can be found by counting the number of times
that x,, x,,..., X;—, appears in the sum.) Thus we obtain a recurrence for
e/(x), x € E, starting with ey = 1, ¢; = 0; indeed ¢,(x) = 0 for | odd and

_ (=N)u(=1)"
€2n(X) = Tl (NN — D"

The peak set E is the Ay_ ;-orbit (all permutations) of (x4, X5, ..., xy), where
{x1,%2,..., Xy} (say X; < X, --- < xy) is the zero-set of the polynomial

. N(N — 1)\'?
) = ¥ ¥ ey (x) = (NN — 1))-~/2HN(r(—(—2*’> );
j
and Hy is the Hermite polynomial of degree N. Schur [11] computed the
discriminant of Hy (see Szegd [14, p. 143]; one can also use the formula of
Stieltjes [13] for Jacobi polynomials or that of Hilbert [8] for the discriminant
of the general polynomial of hypergeometric type). The result is:

N
h(x)*> = (N(N — 1)) ™2 ] j7 for xeE.
j=2

5.2. The Group By (the Hyperoctahedral Group)
For a,f > 0 let

N

hx)e= [T 1xl* T x? —x}1P,
i=1 1<i<j<N
thus y = N(x + (N — 1)f). There are two conjugacy classes of reflections
(x5 x5,... ) (—xy,X%,,..) and (x4, x,,...)—(X,,x,,...) are examples in
the two classes). The basic invariants are {e,(x*): 1 <I<N}. To write out
Equation (1.3) we introduce the operator (which will also be used for F,):

Z (aip(x) — 6jp(x) + 0;p(x) + ajp(x))

X; = X; X+ X;

Onp(x):=

1gi<j<N
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Then Equation (1.3) for the group By is

Wdeg Pp(x) _ < 6p(X) AP | g5 o)

|x[2 i=1

(for a homogeneous invariant p, x € E). Thus

) T s 68) + 48 T 1 (5F,5)
=<2a(N —1+1)+ 4,3<N _2’ * 1)>e,_1(x2), xeE.

(using the caret notation as in 5.1). Thus

(=N)(1 = N —a/p),
(NN — 1+ a/p)"”’

e(x?) =
1 €I < N for x € E. The polynomial
pt) = Y (—1)ei(x?)" 7
j
=(—DNIN(N + ¢ — 1)) "¥LE P(UNN + ¢ — 1))

with ¢ = 2/, in terms of the Laguerre polynomials. The peak set E is the set of
all permutations of (+x,, +x,,..., £ xy), where x; = (t;/(N(N + ¢ — 1)))'/?,
0<t; <ty <tyand LY V(; ) =0,1<j<N. From the known discri-
minant of L~V (see Szegd [14, p. 143]) we find that

o\ Ne+t®¥N-1F) N N-1 o \* 178
h(x)? = <N(N -1+ —)) [1/* 11 (j + ~> .
B ji=2 j=0 B

Since the sup-norm of h? is the limit of p-norms, the given value is the limit of
(fsh*" dw)'’™ as n — oc; the integral is a form of Selberg’s integral (see Askey

[1D).

5.3. The Group Dy,

Let h(x) = IT;; |x? — x?|; this is the limiting case « — 0, 8 = 1 of the function
hin 5.2. The notable change is that ey(x?) = e, (x)? = Ofor x € E. The peak set
is the set of permutations of (£ x,, +x;, -+ +xy_4,0) where

v t V29 0<ty <ty <ty_y
7AN(N —-1)
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and:
LY i (t;)=0, 1<j<N-1.

For x e E,
N
h(x)2 = (N(N — 1))"N(N—l) H]"(] . l)j_l;
j=2

(Schur [11]).

5.4. The Group F,

The reflections correspond to the vectors (1, 1,0, 0),(1, —1,0,0),..., denoted
by vy,...,05, and /2(1,0,0,0),...,(1/s/2)(1, 1, £1, +1) denoted by
Vi3, .., Uyy; there are two conjugacy classes of reflections {¢,,...,0,,} and
{613,..,0,4}. Note that

12

[T<xuy=TI &F—xp).

i=1 1<i<jg4
Consider the orthogonal involution g, on R* given by xgo = u, where
Pl Sl SV S 3
NG
—X3+ X4 X3+ X,

TR YT

Then w— g,wyg, is an automorphism of F, because g, maps the set {v,,...,
vy;ponto{£v;,..., £0,,} (with some choice of signs). If pis an F ,-invariant
polynomial, then so is x — p(xg,). Further,

24
[T Kxjodl= [T Iu? —ujl.

i=13 igi<jga

Choose 2, § > 0 and let
hx)= [ (- ujl*Ix? — x}1P);

1gi<jg4
thus y = 12(a + f).

We proceed to find the peak set by using the method of Flatto and Wiener
[7] and Ignatenko [10] who produced F,-invariants by means of ‘power-
sums’ £12, (x,0;>*™,m = 3, 4, 6 (and also summed over 13 < j < 24). Since
By, is a subgroup of F, (of index 3), the F, invariants can be expressed in terms
of e,(x2), with | < I < 4. The operator &, from 5.3, together with the action of
do- will be used to expand Equation (1.3).
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Form=1,2,...,let
12
Yom(X) = Z (x, 002" = Z (O — %)™ + (x; + xj)zm)-
i=1

1<i<j<4

Then ¥5,,(x) & Wam(xgo) are respectively invariant, skew-invariant under the
do-action. The values m = 1, 3, 4, 6 produce basic invariants for F,.
Let the homogeneous polynomials 8, g, 8,, be defined (with e; short for

ej(x*)) by:
O¢(x):=48e;3 — 8ese; + €3,
O5(x):=48¢e, — Geze, + 4¢3 — ez,
61,(x) = 4608e e, — 1440e,e3 — 864e3 + 288ese,e, — 128e3
+ 48e2¢? — 12e,et + €.

5.4.1. THEOREM. |x|2, 06(x), 03(x), 8, (x) form a set of basic invariants of F,,

06(xgo) = —06(x), O5(xgo) = Os(x), and 0,5(xgo) = —042(x).
Proof. The following identities (established with some computer algebra
assistance) imply the theorem:

Ye(x) — Us(xgo) = —306(x);

Ya(x) + Ys(xgo) = 2005(x) + () IxI®;

Y12(x) — ¥12(xg0) = —(§)012(x) — (5*)06(x)|xI°. d
The peak-set Equation (1.3) becomes

_ 24 o; <Ui, VBZm(x)>
2ot fimoon() = ¥ =S

with a; = ffor 1 <i <12 and o; = a for 13 < i < 24. The coefficient of g is
04,0,,, (8, was defined in 5.2). Indeed,

0406(x) = _24|x16a 040g(x) = —304(x) —9Ix|°,
and
84012(x) = 36|x|>(—804(x) + |x|284(x) — |xI®).

To find the coefficient of « we use the g, -action (apply d, to x — 6,,.(xg,), then
replace x by xg,). Thus Equation (1.3) for F, becomes:

T2 + B)fs(x) = 24(o — B);
96(x + P)Fs(x) = 3((x — B)fs(x) — 3(x + B));
144(a + B)B,,(x) = 36(a + B)0(x) + (x — PX8Os(x) + 1),
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(note |x|? = 1 on E). Let c:= (x — B)/(a + B), then O4(x) = ¢/3, 85(x) = (c* — 9/
96, 0,,(x) = c(c® + 7)/48.
Solve for x € E as follows (with e; short for e;(x?)):

(i) e; = (8e, — 1 + ¢/3)/48 (from the value of 8;);
(i) ey = (—4€3 + 2e, + (c + 7)(c — 3)/96)/48 (from the values of 8, 05);
(iii) let gle,) = (4e, — 1) — (de, — D(c + D(c + 3)/32 + (c + 1)*(c + 3)/384
and solve g(e,) = 0 for e,; this equation is obtained by substituting
values for e, and e, in the expression for 8,,;
(iv) for each of the three roots of g(e,) = 0 use (i} and (ii) to produce the
polynomial p(t) = £; t*~4(— 1)/ e;(x*), whose zero set gives a B,-orbit
just as in 5.2; the peak set is the union of the three B,-orbits.

Note the degeneracy in g(e,) when ¢ = —1 (that is, a =0, > 0) and
E reduces to the D, case.

We compute the value of h(x)? on E as follows: express the degree 24
invariant

- xp?
1gi<j<4

in terms of e;(x?), 1 < j < 4(it is also possible to express it in terms of |x|2, 66,
85, 6, , but computationally more tedious); use (i) and (ii) to give the value in
terms of e, and ¢ (a sixth-degree polynomial); and find the remainder modulo
gle,) (with computer assistance).

The result is

1-cPB-cP@B+0

[](xF = x2)? = @157 for x e E.

i<j

Use the g,-action to get the other part of h(x); replacing ¢ by —c.
For xeE,

h(x)z — (3456)—2(a+ﬂ) a3¢ﬁ3ﬂ(a + 2ﬂ)a+2ﬂ
x 20 + B (a + p)~0C*P,
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