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H A R M O N I C  P O L Y N O M I A L S  A N D  

P E A K  S E T S  O F  R E F L E C T I O N  G R O U P S *  

A finite reflection group fixing the origin in Euclidean space acts on any point 
on the unit sphere, and not in any of the reflecting hyperplanes, to generate 
a regular orbit. The space of restrictions of the polynomial functions to such an 
orbit is isomorphic to the group algebra. Delsarte [4] studied so-called 
discrete harmonics on certain (Johnson) association schemes, which are also 
finite homogeneous spaces. In these cases, however, the stabilizer group of 
a point is nontrivial. 

The space of functions on a regular orbit can be given a 'spherical harmonic' 
structure (this implies the existence of a commutative set of operators 
analogous to O/~x~ and A, and an associated orthogonality structure), when 
the orbit is a 'peak set'. By this we mean the set of points on the unit sphere 
where the function 

h(x) = 1-~ [(x, vi)[ ~J 
j= l  

achieves its maximum (briefly, {vj}j % 1 is a set of positive roots of the group, 
~j > 0, each j and ~q = ~j whenever the reflections corresponding to v i and vj 
are conjugate). Further, the coinvariant algebra can be represented as an 
algebra of operators on the harmonic functions. 

This paper presents the theory and main results of the harmonic functions 
on peak sets. Limiting cases of results on orthogonal polynomials with respect 
to h(x) 2 dco(x), established in [5] and [6], will be used here, when possible (do 
is the rotation-invariant measure on the sphere), Further, the peak sets for the 
groups of type AN, BN, DN and F4 will be discussed in detail. Beyond two-space, 
only B N and F 4 have one-parameter families of peak sets, rather than unique 
ones, among the irreducible Coxeter groups. 

Because the maximization ofh can be considered as a maximum problem for 
the discriminant of a polynomial when the group is AN, B N or D N, the peak sets 
were determined long ago. Stieltjes [12] and Schur [11] found the peak sets in 
terms of the zero sets of Laguerre and Hermite polynomials. 

* During the preparation of this paper the author was partially supported by NSF Grant 
DMS-86-01670. 
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1. B A S I C  FACTS AND D E F I N I T I O N S  

For a nonzero vector v e g~N define the reflection crv ~ O(N) (the orthogonal 
group) by 

x a ~ = x - 2 ( ~ v ,  x ~  R N , 
\ IVi- / 

where 

N 

(x, v) .'= ~ xj vj and Ivl 2 .'= <v, v>. 
j = l  

Thus, wry = - v  and xa~ = x if and only if (x, v) = 0. A Coxeter or finite 
reflection group G is a finite subgroup of O(N) generated by reflections. Let pG 
denote the polynomials on R N invariant under G, then pG is itself a polynomial 

algebra, with homogeneous generators 01 , 0 2 . . . . .  O N of degrees dl, d 2 . . . . .  d N 
respectively (see Hiller I-9, Ch. II]). These degrees are structural constants of G; 
the number of reflections in G is m := E~v= 1 (d~ - 1) and the order of the group is 

N 

Ial = l--I d,. 
i=1 

Let {ai: 1 ~< i ~< m} be the set of reflections in G, and choose a set of vectors 
{vi: 1 <<.i<~rn} c ~N such that a i = av, and Ivil = Ivjl whenever ai,-~ aj 
(conjugate in G). (This set could be a positive root system, but the choice of 
signs is immaterial.) 

Fix positive parameters ~i, 1 ~< i ~< m, such that ~ = ~j whenever cr~ .,~ aj. 
For  the irreducible Coxeter groups, there is one conjugacy class of reflections 

for AN, DN, H 3, H 4, E6, E 7, E8, 12 (odd) and two classes for B N, F4 and 12 
(even). We use the standard designations for Coxeter groups (Hiller, [9, Ch. 
I]). 

Define h(x),=IIi"=xl<x, vi>l ~', a positively homogeneous G-invariant 
function of degree ? .-= Eim= 1 ~- (When the ~ 's  are all integers, the absolute 
value function could be omitted; if, furthermore, each ~ = 0 or 1, the resulting 
polynomial  is a generating relative invariant, corresponding to a linear 
character of G.) In I-5] and 1-6] the structure of orthogonal polynomials with 
respect to h(x) 2 do(x) on the unit sphere was developed. 

Let E, the peak set, denote the subset of the unit sphere S .-= {x: Ix[ = 1} on 
which h(x) achieves its maximum on S. We shall show E is a regular orbit of 
G (this means [El = IGI) and E is the solution set of 

X ~ U i .  

i=1  
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Clearly E is invariant under G, so we must show [El = IGI. The zero-set of 
h on S is the boundary of the spherical simplex associated to G, the number of 
whose connected components ('chambers') equals IG[. Each component 
contains just one maximum of h: indeed, suppose x' and x" are on the same side 
of the hyperplane (x, v> = 0 then 

x ' + x "  > I<x',v>l+l<x",v>l >~l<x, ,v><x,,,v>lm; 
- - 2  - ' v  = 2 

if x' and x" are in the same chamber then 

log h ~,, + x'--(] >~ ½(log h(x') + log h(x")) + ? log Ix' + x"l " 

1.1. PROPOSITION. The peak set E is the solution set of 

O~ i X 
(1.2) - - v  i = ? x e S. 

i=1 (X, Vi> F ~ '  

(This equation is valid for peak sets on spheres of  any radius.) 
Proof Apply the Lagrange multiplier method to F(x, 2).'= log h(x)+ 

2(log([xl2)-c), (to maximize h(x) on a sphere of radius eC/2). The resulting 
equations are 

~j(vj)i 22xi 
<x, + -~-~- = 0, l<~i<~N. 

j=  1 Vj> 

Multiply equation # i by x~ and sum over 1 ~< i ~< N, to obtain 22 = - E j  
~j = - ?. The second derivative test shows that each critical point of F(x, 2) is 
a local maximum of log h(x). [] 

To solve (1.2), take the inner product of both sides with VO, where 0 is one of 
the basic invariants of G, and V denotes the gradient. Note that (v j, VO(x)> is 
divisible by (vj, x>, because VO(xaj)= VO(x)aj and so (vj, VO(xaj)> = 

- <v j, VO(x)>. We obtain the equation 

(1.3) y(deg O)O(x)  = Ixl z 
O~j<Vj~ V0(x)> 

j= 1 <Vj, X> 

for x ~ E; by Euler's identity (x, V0(x)) = (deg O)O(x). The right-hand side of 
(1.3) is a product of Ix[ 2 with an invariant polynomial of degree lower than 0. In 
this way the values of all the basic invariants on E can be inductively 
determined. We shall actually do the calculation for AN, B u, D N and F 4. Note 
that decomposable Coxeter groups have peak sets which are, roughly, the 
Cartesian products of the peak sets of the irreducible factors, with the squared 
norms adjusted to be proportional to the sums of ~; for each factor. 
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Note that E is invariant under the central inversion (x ~ - x) even though it 
need not be an element of G; for example, A s for N/> 2 and D N for odd N i> 5. 

2. ORTHOGONALITY STRUCTURE 

Let PE be the space of restrictions to E of the polynomial functions on R N, 
denoted by P. We furnish PE with the inner product 

( f  , g ) ~  y~ f(x)g(x). 
x ~ E  

The action of G on Pe is obviously an isomorphic image of the regular 
representation. We recall some facts about ordinary spherical harmonics, 
whose analogies for peak sets will be established here: let A := Y~= 1 (~/axi)2; 
a polynomial f is harmonic if A f  = 0; if f i s  harmonic then so is ~f/Ox~, 
1 ~<j ~< N; if f is harmonic and homogeneous then it is orthogonal to all 
polynomials of lower degree, with respect to de) on the sphere S. 

Some of the following are limiting cases of results for the measure 
h(x) 2 doXx), as oq/? is held constant and y ~ o% because the normalized 
measure converges to the uniform discrete measure on the peak set. 

2.1. DEFINITION. The operators Ti, 1 ~< i ~< N, are given by 

Ti f (x  ) := ~. aj f(x)- --f(x~J)(1).)i ' 
j=l <x, vj> J 

for any polynomial f ;  each Ti f  is polynomial and T~ is of degree - 1 ((v j) i is the 
ith component of v j). 

Indeed, each term (f(x) - f (xa j ) ) / (x ,  vj > is polynomial; these operators are 
used in the Schubert calculus (see Hiller [9, Ch. IV]); the actual limit taken is 
lim~o~(TJ?) with T~ as in 1-63. 

2.2. THEOREM (limit of Theorem 1.9 [61). The set of  operators {T;: 1 ~< i ~< N} 
is commutative, and Y~= ~ T~ = O. 

Although one might have expected that the Laplacian for E would be a sum 
of squares, the fact Zl T~ = 0 removes the obvious candidate. 

2.3. DEFINITION (limit of Def. 1.1 I-6]). For a polynomial f ,  let 

[2(v  j, Vf(x)> 2 f(x)  - f(xtzj)'~ 
= OCj  - - - - -  ,:, t, <v,,x> v, ) 
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The operator L is of degree -2 .  

2.4. THEOREM (limit of Th. 1.10, Prop. 2.2 [6]). TiL= L T  i, L(x.ff(x))= 

x i L f ( x  ) + 2Tif(x), for each i; L commutes with the action of G (namely 
w ~ R(w)f(x),=f(xw),  w e G). 

2.5. THEOREM (limit of Th. 1.11 [5]). l f f  is a homogeneous polynomial of 
degree n, then there is a unique expansion 

[n/21 
f (x)  = ~" [xl2Jf~-2j(x) 

./=0 

with L f ~_ 2j = 0 and f ~_ 2j is homogeneous. Further, 

[n/2] - j  
f~-Ej(X)-- ((4y)Jj[) -1 ~ Ixl2i((-@)ii!) -1U+~f(x). 

i=O 

Henceforth, we shall call f harmonic if L f =  0; the projection f ~ f ,  in 
Theorem 2.5 will be denoted by no- Note that the theorem implies the set of 
restrictions of P to S agrees with the set of restrictions of harmonic 
polynomials. 

Here is the main orthogonality result for PE. 

2.6. THEOREM. Let f and g be harmonic homogeneous polynomials, then 

(degf-deg g) ~ f(x)g(x) = O. 
xEE 

Proof. The form 

(f, Z 
~j [v j l2 ( f (x )  ~ f ~x~j~g ~X~ 

x~E j :  1 (v~,  x )  2 

is symmetric, because E is G-invariant and (vj, x)  2 > 0 on E. Further, L f  = 0 
implies 

f (x)  -- f(xaj)  (v~, Vf(x)) 
j= ~ j= ~ ( %  x )  

= 2~ (x, Vf(x)) = 2~(deg f)f(x), 

for x ~ E by Equation (1.2). Multiply the equation by g(x) and sum over x ~ E. 

B y  the symmetry the sum equals 

(2~/degf) or (2y deg g) times ~ f(x)g(x). [] 
x~E 
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2.7. COROLLARY. Under the hypotheses of  the theorem 

~, f (x)p(x)  = 0 
x~E 

for all polynomials p with (deg p) < (degf), (this also uses 2.5). 

2.8. COROLLARY. I f  ~/ is a homogeneous G-invariant of  positive degree, then 
I E = 0. 

Proof. The homogeneous harmonic polynomial lr o(¢) is also G-invariant (by 
2.4), hence is constant on E. But 

,Co(q,)(x)l = o 
x~E 

by 2.6, hence, 

n0(~,)(x ) = 0 for x z E. [] 

The adjoint T* of Ti (on the inner product space PE) is close to being 
multiplication by 27xi; it is actually multiplication by the image of 2yx~ in the 
coinvariant algebra. This will be shown in the following section. 

2.9. LEMMA. L(Ixl2J f(x))  = Ixl2J L f (x)  + 47jlxl 2ts- l) f (x) , for j = 1, 2 . . . . .  and 
any polynomial f .  

We shall define T* on all polynomials, even though it is technically only 
defined on PE, which is interpreted as the set of restrictions of harmonic 
polynomials to E. 

2.10. THEOREM. For each i, and harmonic polynomial f ,  

T ' f  (x) = 27xif(x) - Ixl 2 Ti f (x) .  

Also LT*  = T*L  (considering T* as an operator on all polynomials). 
Proof. For any polynomials f ,  g, 

(f(x)Tig(x) + Tif(x)g(x)) = 27 ~ xJ(x)g(x) ,  
xeE x~E 

indeed, the left-hand side equals 

(f(x) -- f (xaj))g(x)  + f(x)(g(x) -- g(xaj)) 
Z o~j(1;j)i 
~E Jz"= 1 (v  j, x )  

xEE j =  1 ~l ) j ,  X/~ 

_ ~ ej(v.i)i ~, f(x)g(xa3) +f (xaj )g(x)  
j = 1 x~£ ( V  j ,  X>  
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The second sum is zero: replace x by x% then @J, x )  becomes - (v j, x ) .  In the 

first sum, for each x ~ E, 

~ ~j(vj)i _ 7x~ 
j=l <v j, x> 

by (1.2). 
Further, for any polynomial f ,  

L(27xl f (x  ) - Ixl 2 Zlf(x))  

= 27xiLf(x)  + 47Tif(x)  - I x l 2 L T ~ f ( x )  - 4 y T J ( x )  

= (27x / - Ixl 2 Ti)Lf(x) ,  

by 2.4 and 2.9. Thus for any harmonic polynomials f and 0, T ' f ,  as given in 
the statement of the theorem, satisfies 

(Tf f (x))g(x)  = ~ f(x)T,g(x) .  [] 
xcE xcE 

3. THE C O I N V A R I A N T  A L G E B R A  

Chevalley [3] considered the quotient of P modulo the ideal J generated by 
the basic invariants {0 x . . . .  , O N } (that is, the invariants of positive degree). This 
is a finite-dimensional graded algebra, called the coinvariant algebra of G. (It is 
denoted by S o in Hiller [9, Ch. II]; also see this reference for applications ofS o 
in the cohomology theory of Lie groups.) 

The Poincar6 series for S o was shown by Chevalley to be 

N 1 -- qai 
- - ,  

(where d~ = deg 0 i, and the coefficient of q" is the dimension of the component 
of S o with degree n). 

We shall show that the homomorphism P ~ End (PE) (operators on PE) 

given by nlp(x  1 . . . .  , x N) = p(T'~/2y . . . . .  r*/2y) has J as kernel. Then PE is 
itself linearly isomorphic to S o under the map induced by p ( x ) ~  

p(r~/27 . . . .  )1. 
This will be proven in two steps. First, let ;zEp = noplE (the restriction to 

E of the harmonic projection, see 2.5). We show that n2(P~)= 0 for any 
G-invariant ¢ /of  positive degree, and n2(P) = ~I(P) 1 for any polynomial p. 

Note that ix[ z is G-invariant, hence is in J .  It suffices to consider rc2(p~) for 
harmonic p, since no(p(x)ixl 2) = 0 for any p; this follows from the uniqueness 
of the expansion p(x) = Z i ]xI2ipi(x), with Lpi = 0. Suppose now Lp = 0, then 
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by the product rule L(p~,) = pL(~k) and thus =o(p~k) = pno(~k ) (formula of 2.5). 
When ~ is of positive degree rt0($) = 0 on E (Corollary 2.8), hence rc2(p$ ) = 0. 

To show rt2(p) = rq (p)l for any harmonic polynomial p, it suffices to show 
rt2(xip(x)) = (T */2y)rt2(p(x)). From Theorem 2.10, Lp = 0 implies L T * p  = 0; 
further, 

and so 

x , p ( x )  = 
T*p(x) + [xl 2 Tip(x) 

(2y) 

Zro(Xip(x) ) _ T* p(x_____) 
(2~) 

restriction to E gives ;Z2(xip(x)), 
We sketch the argument why the kernel o f x  2 is contained in J :  as in [5, Th. 

3.4] there is a basis of harmonic homogeneous polynomials {q~j: 1 ~< j ~< ]GI} 
for P over pC (the invariants), thus any polynomial p has the expansion 
p(x) = X~ $j(x)tpj(x) with ~,j G-invariant and xoP = Z (~o~,j)q~j. Restricted to 
E, ~2p(x) = Z qq~(x), where cj is the constant term of ~o¢j (see 2.8). Since the 
dimension of PE is ]G], ~2P = 0 implies each c i = 0; that is, each ¢j  ¢ J .  

4. A S S O C I A T I O N  S C H E M E S  

There is an analogy between peak sets and association schemes (for a survey 
see Bannai and Ito [2]): for an orbit fl of the reflection group say that x ~ fl is 
adjacent to the points xaj, 1 <. j <<. m. In addition, the weight ~tiis associated to 
the edge {x, xa;}. Now E is the orbit fl for which 

X ~ otjlog(]x -- xo'j]) 
xeQ j = 1 

is maximized. Indeed, let 

s(x).'= ~ ~ j l o g l x -  xajl 
j = l  

, f E l ( x ,  vj)l'~ 

j = l  

j = l  

Thus s(x) is G-invariant, and the given sum is maximized at fl = E with value 
IEI (log h(x) + constant). 



H A R M O N I C  P O L Y N O M I A L S  165 

The adjacency operator for E is a multiple of M .-= Y~= 1 (Ti T* - T* Ti); 
since 

m f ( x )  = 2 ~ ctJ(xaj). 
j = l  

The eigenvalues of M, which are obtainable from the values of irreducible 
characters at the reflections, were discussed in [6, §2]. 

5. S P E C I F I C  C O X E T E R  G R O U P S  

The peak sets for the groups AN, B N and D N were determined by Stieltjes [12] 
and Schur [11]. Proofs using the differential equations satisfied by Laguerre 
and Hermite polynomials can be found in Szeg6 [14, pp. 140-142]. We shall 
use Equation (1.3) to directly evaluate the invariant polynomials on the peak 
set. 

For 0 ~< l ~< N let et(x ) denote the elementary symmetric function of degree 
I in x 1 . . . . .  xN, with generating function 

N N 

tie,(x) = I-I (1 + xit ) 
1=0 i=1 

(note that x 1 . . . .  , XN is the zero-set of p(t) = EJ~=o tN-J( - 1)Jei(x)). We shall 
use e~(x 2) to denote e~ with argument x2 , . . . ,  x 2. Also, we write di for 8/Oxi, 
l <~ i <<. N. 

5.1. The Group AN-1 (Symmetric Group SN) 

We consider this as the group generated by the reflections in {x i - x j  = 
0:1 ~ i < j  ~< N} on the (N - 1)-dimensional subspace {x: E~ x i = 0} c R N. 
We use {et(x): 2 ~< l ~< N} as the basic invariants. There is one conjugacy class 
of reflections. Let 

and 

h(x) = 1--I I x i -  xjl 
l <~i<j<<.N 

N ( N -  1) 

~-- 2 

Equation (1.3) becomes 

i < j  X i - -  X j  

N(N - 1) (deg p)p(x) 
2 
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for a homogeneous  invar iant  p. N o w  

t~iez(x) - djel(x) = ez-1(:~i) - et-  l (Xi) = (xj - xi)e,-  2(~i, £j); 

where ek('21 . . . .  ) denotes  the e lementary  symmetr ic  function of degree k in 
x l  . . . . .  XN with xi . . . .  omit ted.  We  substi tute this in Equa t ion  (1.3) to obta in  

N ( N - 1 ) l e l ( x ) = ~ e t - 2 ( ~ i , Y ¢ . i ) =  - ( N - l + 2 ) e , - 2 ( x )  
i < j  2 

for x • E. (The last coefficient can be found by count ing the n u m b e r  of  times 

that  x l ,  x2 . . . . .  x~_: appears  in the sum.) Thus  we obta in  a recurrence for 

el(x), x • E, star t ing with eo = 1, el = 0; indeed e~(x) = 0 for l odd  and 

( - -  N ) 2 . ( -  1) m 
e2m(x) = 

2"rn! (N(N - 1)) m 

The  peak set E is the AN-  1-orbit (all permuta t ions)  of (x~, x2 . . . .  , XN), where 

{ x ~ , x 2 , . . . ,  XN} (say x~ < x2 -.. < XN) is the zero-set of  the polynomia l  

p(t) = ~ t N- 2Je2j(x) = (2N(N - 1))- N/2 HN t 
J 

and HN is the Hermi te  po lynomia l  of  degree N. Schur [11] compu ted  the 

discr iminant  of  HN (see Szeg5 [14, p. 143]; one can also use the formula  of  
Stieltjes [ 13] for Jacobi  po lynomia ls  or  tha t  of  Hi lber t  [8] for the discr iminant  

of  the general  po lynomia l  of  hypergeometr ic  type). The  result is: 

N 

h(x) 2 = (N(N - 1)) -N/2 I-I JJ for x • E. 
j = 2  

5.2. The Group B N (the Hyperoctahedral Group) 

For  ~, fl > 0 let 

N 

h(x)..= 1-I Ix, I ~ I-I I x ~ -  x~l ~, 
i = 1  l <<.i<j<~N 

thus 7 = N(~t + ( N -  1)fl). There  are two conjugacy classes of  reflections 

((x 1, x 2 . . . .  ) ~ ( - x  1, x 2 . . . .  ) and (x 1 , x 2 . . . .  ) ~ (x 2, x 1 . . . .  ) are examples  in 
the two classes). The  basic invar iants  a r e  {el(x2); 1 <<, l ~ N } .  T o  write out  
Equa t ion  (1.3) we int roduce the ope ra to r  (which will also be used for F4): 

0,p(x) ÷ aj x!] 
6NP(X),= Z \ Xi Xj + 

l<~i<j<~N Xf "~ Xj  /1 
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Then  Equat ion  (1.3) for the group B N is 

,/(deg p)p(x) ~ dip(x) 
Ix[2 - ~ + ~6NP{X)  

i= l Xi 

(for a homogeneous  invariant p, x e E). Thus 

217et(x 2) 
- -  = 2eZe ,_~(2~  ) + 4fl Z el_ , (2~,2~)  

[xl 2 i i<j 

x e E .  

(using the caret nota t ion as in 5.1). Thus 

el(x2) = (--N)l(1 -- N - ct/fl)z 
I!(N(N - 1 + ~t/fl))' ' 

1 ~< l ~< N for x e E. The polynomial  

p(t) = ~ ( -  1)Jej(x2)t N-j  
J 

= ( - 1 ) N N ! ( N ( N  + c - 1 ) ) - "  L ~ - l ~ ( t N ( m  + c - 1)) 

with c = ~/fl, in terms of the Laguerre polynomials.  The peak set E is the set of 
all permutat ions  o f ( + x l ,  + x  2 . . . .  , +XN), where xj = (t f l(N(N + c - 1))) 1/2, 

0 < tl < t2 ... < tN and L~- i ) ( t j )  = O, 1 <<.j <~ N. F r o m  the known discri- 
minant  of L~-  1) (see Szeg6 [14, p. 143]) we find that  

H j  jp . 1  • h(x) 2 =  N N - 1  + ~ ) )  1=2 1 = o \  + ~ )  " 

Since the sup-norm of h 2 is the limit of p-norms, the given value is the limit of 
(I s h 2n do)) 1In as 11 --* oC; the integral is a form of Selberg's integral (see Askey 

[ I ] ) .  

5.3. The Group D N 

Let h(x) = Fli<j Ix 2 - x21; this is the limiting case ~t ~ 0, fl = 1 of the function 
h in 5.2. The notable change is that eN(x 2) = eN(x) 2 = 0 for x e E. The peak set 
is the set of permutat ions  of (+ x l ,  +- x2, "" +_ XN- 1,0) where 

tj "~/2, O < t ~ < t 2 " . < t N _  
xj = N(IV--  1)] / 
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a n d  

For x e  E, 

L~[i ( t - / )=O,  I ~ < j ~ < N - 1 .  

N 

h(x) 2 = ( N ( N -  1)) -raN- x) 1--I f i ( J -  1)-/-1; 
./=2 

(Schur [11-1). 

5.4. T h e  Group F 4 

The reflections correspond to the vectors (1, 1, 0, 0), (1, - 1, 0, 0) , . . . ,  denoted 

by vl . . . . .  h2  and v/2(1, 0, 0, 0) . . . .  , (1/x/~)(1, ___ 1, + 1, _ 1) denoted by 
v13 . . . . .  v2,; there are two conjugacy classes of reflections {a I . . . .  , tr12 } and 
{a13 . . . .  a24 }. Note that 

12 

I I  L,,> = 1-I (x,  - # ) -  
i = l  l~<i<j~<4 

Consider the orthogonal involution go on R* given by X#o = u, where 

- - x  I + x2 x l  + x2 

N//2 ' bl2 :=  N//~ , 

- - x  3 + x4 x3 + x4 
Us:= x/~ , u4'= V/~ 

Then w ~ goWgo is an automorphism of F ,  because go maps the set {vx,. . . ,  
v12 } onto { _+ v13 . . . . .  _+ v24} (with some choice of signs). Ifp is an F4-invafiant 
polynomial, then so is x ~ p(xgo).  Further, 

24. 

I1 Kx, v,>l = lq tu, - # l .  
i= 13 1 ~<i<j<~4 

Choose ~, fl > 0 and let 

h(x)= I-[ (lu/2 2 = 2 - u ~ l  Ix ,  - x } l ~ ) ;  
1~<i<j~<4 

thus 7 = 12(~ + fl). 
Wc proceed to find the peak set by using the mcthod of Flatto and Wiener 

[71 and Ignatenko [I0] who produced F,-invariants by means of 'powcr- 
12 sums' Z j =  1 (X,  tjj)2ra,m = 3, 4, 6 (and also summed over 13 ~ j  ~< 24). Since 

B4 is a subgroup of F ,  (of index 3), the F4 invariants can be expressed in terms 
ofe~(x2), with 1 ~< 1 ~< 4. The operator 6,  from 5.3, together with the action of 
90, will be used to expand Equation (1.3). 
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For  m = 1, 2 . . . .  , let 

12 
~ 2 m ( X )  : =  ~ ,  ( X ,  1)i> 2m ~- ~, ((X i -- Xj) 2m -]- (X i "~- Xj)2m). 

i=1  l~<i<j~<4 

Then O2m(X) + O2m(Xgo) are respectively invariant,  skew-invariant under  the 
go-action. The values m = i, 3, 4, 6 produce  basic invariants for F4. 

Let  the homogeneous  polynomials  06, 0s, 012 be defined (with ej short  for 
ej(x2)) by: 

06(X ) :=  48e3 -- 8e2el + e 3, 

08(x)-'= 48e4 -- 6eael + 4e22 -- e2e 2, 

012(x).'= 4608e4e2 -- 1440e4e 2 -- 864e ] + 288eae2el -- 128e 3 

+ 48e2e 2 -- 12e2e~ + e 6. 

5.4.1. T H E O R E M .  Ixl 2, 06(x), 0a(x), 012(x)form a set of  basic invariants ofF4, 
06(Xgo) = -06(x) ,  08(X#o)= 08(x), and 012(x00)= -012(x) .  

Proof. The following identities (established with some computer  algebra 
assistance) imply the theorem: 

~/6(X) - -  ~ / 6 ( X g o )  = - -  3 0 6 ( X ) ;  

~s(X) + ea(X0o) = 200s(x) + (~)IxlS;  

1~12(X ) - -  ~ / 1 2 ( X ~ 0 )  = --(18-~)012(X ) - -  (22~4)06(X)IX[6" [] 

The peak-set Equat ion  (1.3) becomes 

24- 
24~a + fl)mO2m(X ) = ~ gi (Vi, V 0 2 s ( X ) >  

" ,= 1 ( v i ,  x )  

with ai = fl for 1 ~< i ~< 12 and a, = g for 13 ~< i ~< 24. The coefficient of  fl is 
640Zs (64 was defined in 5.2). Indeed, 

64. 06  (X) -~- - -  241x16, 6 4  08  (x )  = - 3 0 6  (x )  - 9lxl 6, 

and 

64012(x ) --- 361x12(-80s(x) + ]xi206(x) - ]x ]8 ) .  

To find the coefficient of a we use the go-action (apply 64 to x ~ 02m(Xgo), then 
replace x by Xgo). Thus Equat ion  (1.3) for F 4 becomes: 

72(a + fl)06(x ) = 24(~ - fl); 

96(~ + fl)0s(x) = 3((e - fl)06(x ) - 3(a + fl)); 

144(a + fl)O12(x ) = 36((a + fl)06(x) + (~ - fl)(80s(X) + 1)), 
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(note Ixl 2 = 1 on E). Let  c .'= (~ - fl)/(~t + fl), then 06(X ) = c/3, 08(x ) = (c 2 - 9)/ 
96, 012(x) = c(c 2 + 7)/48. 

Solve for x • E as follows (with e i short  for ej(x2)): 

(i) e a = (8e 2 - 1 + c/3)/48 (from the value of 06) ; 
(ii) e ,  = ( - 4 e  2 + 2e2 + (c + 7)(c - 3)/96)/48 (from the values of 06, 08); 

(iii) let q(e2).'= (4e 2 - 1) 3 - (4e 2 - 1)(c + 1)(c + 3)/32 + (c + 1)2(c + 3)/384 
and solve q(e2) = 0 for e2; this equat ion is obta ined by substituting 
values for e 3 and e4 in the expression for 012; 

(iv) for each of the three roots  of q(e2) = 0 use (i) and (ii) to produce  the 
polynomial  p(t) = Ej t 4 - i ( -  1)Jej(x2), whose zero set gives a B4-orbit  

just  as in 5.2; the peak set is the union of the three B,-orbi ts .  

Note  the degeneracy in q(e2) when c = - 1  (that is, ~ = 0, fl > 0) and 
E reduces to the D 4 case. 

We compute  the value of h(x) 2 on E as follows: express the degree 24 

invariant  

H (xt- 
l~ i< j~<4 

in terms of ej(x2), 1 ~< j ~< 4 (it is also possible to express it in terms of Ixl 2, 06, 
08, 012 but  computat ionaUy more  tedious); use (i) and (ii) to give the value in 
terms of e2 and c (a sixth-degree polynomial);  and find the remainder  modulo  

q(e2) (with compute r  assistance). 
The result is 

l - - I ( x 2 - x 2 )  2 ( l - c )  3 ( 3 - c )  2 ( 3 + c )  
j = (4!1152) 2 for x • E. 

i<j 

Use the go-action to get the other  par t  of h(x); replacing c by - c .  
Fo r  x • E, 

h(x)2 = (3456)-2<~+a)ga~flaB(g + 2fl)~+2p 

x (2~ +/~)2~+p.(~ + fl)-6(~+a). 

R E F E R E N C E S  

1. Askey, R., 'Some Basic Hypergeometric Extensions of Integrals of Selberg and Andrews', 
S.LA.M. J. Math. Anal. 11 (1980), 938-951. 

2. Bannai, E. and Ito, T., Aloebraic Combinatorics I: Association Schemes, Benjamin/Cummings, 
Menlo Park, 1984. 

3. Chevalley, C., 'Invariants of Finite Groups Generated by Reflections', Amer. J. Math. 77 
(1955), 778-782. 

4. Delsarte, Ph., 'Hahn Polynomials, Discrete Harmonics, and t-Designs', S.LA.M.J. Appl. 
Math. 34 (1978), 157-166. 



HARMONIC POLYNOMIALS 171 

5. Dunkl, C., 'Reflection Groups and Orthogonal Polynomials on the Sphere', Math. Z. 197 
(1988), 33-60. 

6. Dunkl, C., 'Differential-Difference Operators Associated to Reflection Groups' Trans. Amer. 
Math. Soc. 311 (1989), 167-183. 

7. Flatto, L. and Wiener, M., Sr, 'Regular Polytopes and Harmonic Polynomials', Canad. J. 
Math. 22 (1970), 7-21. 

8. Hilbert, D., ' t iber die Diskriminante der im Endlichen abbrechenden hypergeometrischen 
Reihe', J. reine angew. Math. 103 (1888), 337-345. 

9. Hiller, H., Geometry of Coxeter Groups, Pitman Publishing, Boston, 1982. 
10. Ignatenko, V. F., 'On Invariants of Finite Groups Generated by Reflections' (Russian), 

Matem. Sbornik 120 (162), (198"3), 556--568; (English) Math. USSR Sbornik 48 (1984), 551-563. 
11. Schur, I., ' t iber die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit 

ganzzahligen Koetfizienten', Math. Z. 1 (1918), 377--402. (Gesammelte Abhandlungen, Bd. II, S. 
213-238, Springer-Verlag, 1973.) 

12. Stieltjes, T., 'Sur quelques th6or6mes d'alg6bre', C.R. Acad. Sci., Paris 100 (1885), 439-440. 
13. Stieltjes, T., 'Sur les polyn6mes de Jacobi', C.R. Acad. Sci., Paris 100 (1885), 620--622. 
14. Szeg6, G., Orthogonal Polynomials (4th edn), American Mathematical Society, Providence, 

1975. 

Author ' s  address: 

C h a r l e s  F.  D u n k l ,  

D e p a r t m e n t  of  M a t h e m a t i c s ,  

U n i v e r s i t y  of  Vi rg in ia ,  

Charlottesville,  VA 22903, 

U.S.A.  

(Received, August 28, 1987) 


